The Future is Now for Precision Genomic Addiction Medicine as a Frontline Modality for Inducing “Dopamine Homeostasis” in Reward Deficiency Syndrome (RDS)

Page: [42 - 57] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

In this genomic era of addiction medicine, ideal treatment planning begins with genetic screening to determine neurogenetic antecedents of the Reward Deficiency Syndrome (RDS) phenotype. Patients suffering from endotype addictions, both substance and behavioral, and other mental health/comorbid disorders that share the neurobiological commonality of dopamine dysfunction, are ideal candidates for RDS solutions that facilitate dopamine homeostasis, addressing the cause, rather than symptoms. Our goal is to promote the interplay of molecular biology and recovery as well as provide evidence linked to RDS and its scientific basis to primary care physicians and others. This was an observational case study with a retrospective chart review in which an RDS treatment plan that utilized Genetic Addiction Risk Severity (GARS) analysis to evaluate neurogenetic challenges was used in order to develop appropriate short- and long-term pharmaceutical and nutraceutical interventions. A Substance Use Disorder (SUD) treatment-resistant patient was successfully treated utilizing the GARS test and RDS science. The RDS Solution Focused Brief Therapy (RDS-SFBT) and the RDS Severity of Symptoms Scale (SOS) may provide clinicians with a useful tool for establishing neurological balance and helping patients to achieve selfefficacy, self-actualization, and prosperity.

[1]
Lozano, Ó.M.; Rojas, A.J.; Fernández Calderón, F. Psychiatric comorbidity and severity of dependence on substance users: How it impacts on their health-related quality of life? J. Ment. Health, 2017, 26(2), 119-126.
[http://dx.doi.org/10.1080/09638237.2016.1177771] [PMID: 27128492]
[2]
el-Guebaly, N. Concurrent substance-related disorders and mental illness: the North American experience. World Psychiatry, 2004, 3(3), 182-187.
[PMID: 16633492]
[3]
Blum, K.; Badgaiyan, R.D.; Agan, G.; Fratantonio, J.; Simpatico, T.; Febo, M.; Haberstick, B.C.; Smolen, A.; Gold, M.S. Molecular genetic testing in reward deficiency syndrome (RDS): Facts and fiction. J. Reward Defic. Syndr., 2015, 1(1), 65-68.
[http://dx.doi.org/10.17756/jrds.2015-009] [PMID: 26052557]
[4]
Blum, K.; Braverman, E.R.; Holder, J.M.; Lubar, J.F.; Monastra, V.J.; Miller, D.; Lubar, J.O.; Chen, T.J.H.; Comings, D.E. Reward deficiency syndrome: A biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J. Psychoactive Drugs, 2000, 32(sup1 Suppl.), 1-112-1-112.
[http://dx.doi.org/10.1080/02791072.2000.10736099] [PMID: 11280926]
[5]
Moberg, C.A.; Humphreys, K. Exclusion criteria in treatment research on alcohol, tobacco and illicit drug use disorders: A review and critical analysis. Drug Alcohol Rev., 2017, 36(3), 378-388.
[http://dx.doi.org/10.1111/dar.12438] [PMID: 27324921]
[6]
Blum, K.; Thompson, B.; Demotrovics, Z.; Femino, J.; Giordano, J.; Oscar-Berman, M.; Teitelbaum, S.; Smith, D.E.; Roy, A.K.; Agan, G.; Fratantonio, J.; Badgaiyan, R.D.; Gold, M.S. The molecular neurobiology of twelve steps program & fellowship: Connecting the dots for recovery. J. Reward Defic. Syndr., 2015, 1(1), 46-64.
[http://dx.doi.org/10.17756/jrds.2015-008] [PMID: 26306329]
[7]
Baron, D.; Blum, K.; Chen, A.; Gold, M.; Badgaiyan, R.D. Conceptualizing addiction from an osteopathic perspective: Dopamine homeostasis. J. Am. Osteopath. Assoc., 2018, 118(2), 115-118.
[PMID: 29379966]
[8]
Edwards, D.; Roy, A.K., III; Boyett, B.; Badgaiyan, R.D.; Thanos, P.K.; Baron, D.; Hauser, M.; Badgaiyan, S.; Brewer, R.; Siwicki, D.B.; Downs, W.; Smith, D.E.; Blum, K. Addiction by any other name is still addiction: Embracing molecular neurogenetic/epigenetic basis of reward deficiency. J. Addict., 2020, 6(1), 1-4.
[http://dx.doi.org/10.17756/jas.2020-043] [PMID: 32432229]
[9]
Blum, K.; Sheridan, P.J.; Wood, R.C.; Braverman, E.R.; Chen, T.J.H. phd, J.G.C.; Comings, D.E. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J. R. Soc. Med., 1996, 89(7), 396-400.
[http://dx.doi.org/10.1177/014107689608900711] [PMID: 8774539]
[10]
Diana, M. The dopamine hypothesis of drug addiction and its potential therapeutic value. Front. Psychiatry, 2011, 2.
[http://dx.doi.org/10.3389/fpsyt.2011.00064]
[11]
Dackis, C.A.; Gold, M.S. New concepts in cocaine addiction: The dopamine depletion hypothesis. Neurosci. Biobehav. Rev., 1985, 9(3), 469-477.
[http://dx.doi.org/10.1016/0149-7634(85)90022-3] [PMID: 2999657]
[12]
Leyton, M.; Vezina, P. Dopamine ups and downs in vulnerability to addictions: A neurodevelopmental model. Trends Pharmacol. Sci., 2014, 35(6), 268-276.
[http://dx.doi.org/10.1016/j.tips.2014.04.002] [PMID: 24794705]
[13]
Blum, K.; Raza, A.; Schultz, T.; Jalali, R.; Green, R.; Brewer, R.; Thanos, P.K.; McLaughlin, T.; Baron, D.; Bowirrat, A.; Elman, I.; Downs, B.W.; Bagchi, D.; Badgaiyan, R.D. Should we embrace the incorporation of genetically guided “dopamine homeostasis” in the treatment of REWARD DEFICIENCY SYNDROME (RSD) as a frontline therapeutic modality? Acta Sci Neurol., 2021, 4(2), 17-24.
[PMID: 33681869]
[14]
Gilley, E.D. Integrating the Science of Addiction and the Science of Wellbeing: 5 year update for the GAB21. The Global Conference on Addiction Medicine, Behavioral Health and Psychiatry, 2021, p. 65.
[15]
Gilley, E. Re-conceptualizing Addiction: Integrating the Sciences of addiction medicine and Reward Deficiency Syndrome. The 2nd Edition Global Conference on Addiction Medicine, Behavioral Health and Psychiatry, 2021, p. 66.
[16]
Blum, K.; Fried, L.; Madigan, M.A.; Giordano, J.; Modestino, E.J.; Steinberg, B.; Baron, D.; DeLeon, M.; McLaughlin, T.; Hauser, M.; Badgaiyan, R.D. Critical analysis of white house anti-drug plan. J. Rehabil. Med., 2017, 1(4), 555568.
[http://dx.doi.org/10.19080/GJARM.2017.01.555568] [PMID: 29057394]
[17]
Columbia, C.A.S.A. Addiction medicine: Closing the gap between science and practice; Columbia University Press, 2012.
[18]
Reese, E.D.; Kane, L.F.; Paquette, C.E.; Frohlich, F.; Daughters, S.B. Lost in translation: The gap between neurobiological mechanisms and psychosocial treatment research for substance use disorders. Curr. Addict. Rep., 2021, 8(3), 440-451.
[http://dx.doi.org/10.1007/s40429-021-00382-8]
[19]
Blum, K.; Wallace, J.E.; Briggs, A.H.; Trachtenberg, M.C. Evidence for the importance of the “genotype” theory in alcohol seeking behavior: A commentary. Alcohol Drug Res., 1985, 1986-1986 6(6), 455-461.
[PMID: 3015159]
[20]
Gilley, E.D. At the intersection of addiction and personality: Future directions for personality theory and research in the genomic era of medicine. European J. Biomed. Pharm. Sci., 2021, 8(9), 13-28.
[21]
Gilley, E.D. Reconceptualizing addiction: Integrating the sciences of addiction and reward deficiency syndrome, Part 1. J. Addict., 2020, 4(1), 1-124.
[22]
Blum, K.; Febo, M.; McLaughlin, T.; Cronjé, F.J.; Han, D.; Gold, M.S. Hatching the behavioral addiction egg: REWARD DEFICIENCY SOLUTION SYSTEM (RDSS)™ as a function of dopaminergic neurogenetics and brain functional connectivity linking all addictions under a common rubric. J. Behav. Addict., 2014, 3(3), 149-156.
[http://dx.doi.org/10.1556/JBA.3.2014.019] [PMID: 25317338]
[23]
Blum, K.; Bowirrat, A.; Lewis, M.C.G.; Simpatico, T.A.; Ceccanti, M.; Steinberg, B.; Modestino, E.J.; Thanos, P.K.; Baron, D.; McLaughlin, T.; Brewer, R.; Badgaiyan, R.D.; Ponce, J.V.; Lott, L.; Gold, M.S. Exploration of epigenetic state hyperdopaminergia (surfeit) and genetic trait hypodopaminergia (deficit) during adolescent brain development. Curr. Psychopharmacol., 2021, 10(3), 181-196.
[http://dx.doi.org/10.2174/2211556010666210215155509] [PMID: 34707969]
[24]
Blum, K.; Kazmi, S.; Modestino, E.J.; Downs, B.W.; Bagchi, D.; Baron, D.; McLaughlin, T.; Green, R.; Jalali, R.; Thanos, P.K.; Elman, I.; Badgaiyan, R.D.; Bowirrat, A.; Gold, M.S. A Novel Precision Approach to Overcome the “Addiction Pandemic” by Incorporating GENETIC ADDICTION RISK SEVERITY (GARS) and Dopamine Homeostasis Restoration. J. Pers. Med., 2021, 11(3), 212.
[http://dx.doi.org/10.3390/jpm11030212] [PMID: 33809702]
[25]
Blum, K.; Badgaiyan, R.D. Translational and molecular cytoarchitectural genetic guided therapy to induce Dopamine Homeostatic Neuro-signaling in Reward Deficiency and associated drug and behavioral addiction seeking: A 60 year sojourn the future is now. EC Psycho Psychiatr, 2021, 10(8), 1-4.
[PMID: 34708222]
[26]
Blum, K.; Badgaiyan, R. REWARD DEFICIENCY SYNDROME (RDS): Entering the genomics and neuroscience era of addiction medicine. J. Reward Defic. Syndr. Addict. Sci., 2015, 1(1), 1-2.
[27]
Blum, K.; Febo, M.; Badgaiyan, R.D.; Demetrovics, Z.; Simpatico, T.; Fahlke, C. M, O.B.; Li, M.; Dushaj, K.; Gold, M.S. Common Neurogenetic diagnosis and Meso Limbic manipulation of hypo-dopaminergic function in REWARD DEFICIENCY SYNDROME (RDS): Changing the recovery landscape. Curr. Neuropharmacol., 2017, 15(1), 184-194.
[http://dx.doi.org/10.2174/1570159X13666160512150918] [PMID: 27174576]
[28]
Beitscher-Campbell, H.; Blum, K.; Febo, M.; Madigan, M.A.; Giordano, J.; Badgaiyan, R.D.; Braverman, E.R.; Dushaj, K.; Li, M.; Gold, M.S. Pilot clinical observations between food and drug seeking derived from fifty cases attending an eating disorder clinic. J. Behav. Addict., 2016, 5(3), 533-541.
[http://dx.doi.org/10.1556/2006.5.2016.055] [PMID: 27502054]
[29]
Blumenthal, D.M.; Gold, M.S. Neurobiology of food addiction. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(4), 359-365.
[http://dx.doi.org/10.1097/MCO.0b013e32833ad4d4] [PMID: 20495452]
[30]
Blum, K.; Bowirrat, A.; Braverman, E.R.; Baron, D.; Cadet, J.L.; Kazmi, S.; Elman, I.; Thanos, P.K.; Badgaiyan, R.D.; Downs, W.B.; Bagchi, D.; Llanos-Gomez, L.; Gold, M.S. REWARD DEFICIENCY SYNDROME (RDS): A cytoarchitectural common neurobiological trait of all addictions. Int. J. Environ. Res. Public Health, 2021, 18(21), 11529.
[http://dx.doi.org/10.3390/ijerph182111529] [PMID: 34770047]
[31]
Kotyuk, E.; Magi, A.; Eisinger, A.; Király, O.; Vereczkei, A.; Barta, C.; Griffiths, M.D.; Székely, A.; Kökönyei, G.; Farkas, J.; Kun, B.; Badgaiyan, R.D.; Urbán, R.; Blum, K.; Demetrovics, Z. Co-occurrences of substance use and other potentially addictive behaviors: Epidemiological results from the PSYCHOLOGICAL AND GENETIC FACTORS of the Addictive Behaviors (PGA) Study. J. Behav. Addict., 2020, 9(2), 272-288.
[http://dx.doi.org/10.1556/2006.2020.00033] [PMID: 32609628]
[32]
Blum, K.; Morgan, J.; Cadet, J.L.; Baron, D.; Carney, P.R.; Khalsa, J.; Badgaiyan, R.D.; Gold, M.S. Psychoactive drugs like cannabis – induced hypodopaminergic anhedonia and neuropsychological dysfunction in humans: Putative induction of dopamine homeostasis via coupling of GENETIC ADDICTION RISK SEVERITY (GARS) testing and precision pro-dopamine regulation (KB220). Neurology, 2021, 13(4), 86-92.
[PMID: 34085060]
[33]
Robbins, T.W.; Ersche, K.D.; Everitt, B.J. Drug addiction and the memory systems of the brain. Ann. N. Y. Acad. Sci., 2008, 1141(1), 1-21.
[http://dx.doi.org/10.1196/annals.1441.020] [PMID: 18991949]
[34]
Bowirrat, A.; Oscar-Berman, M. Relationship between dopaminergic neurotransmission, alcoholism, and reward deficiency syndrome. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2005, 132B(1), 29-37.
[http://dx.doi.org/10.1002/ajmg.b.30080] [PMID: 15457501]
[35]
Borsook, D.; Linnman, C.; Faria, V.; Strassman, A.M.; Becerra, L.; Elman, I. Reward deficiency and anti-reward in pain chronification. Neurosci. Biobehav. Rev., 2016, 68, 282-297.
[http://dx.doi.org/10.1016/j.neubiorev.2016.05.033] [PMID: 27246519]
[36]
Linazaroso, G.; van Blercom, N.; Lasa, A. Hypothesis: Parkinson’s disease, reward deficiency syndrome and addictive effects of levodopa. Neurologia, 2004, 19(3), 117-127.
[37]
Ferré, S. Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology, 2016, 233(10), 1963-1979.
[http://dx.doi.org/10.1007/s00213-016-4212-2] [PMID: 26786412]
[38]
Green, A.I.; Zimmet, S.V.; Straus, R.D.; Schildkraut, J.J. Clozapine for comorbid substance use disorder and schizophrenia: do patients with schizophrenia have a reward-deficiency syndrome that can be ameliorated by clozapine? Harv. Rev. Psychiatry, 1999, 6(6), 287-296.
[http://dx.doi.org/10.3109/10673229909017206] [PMID: 10370435]
[39]
Benton, D.; Young, H.A. A meta-analysis of the relationship between brain dopamine receptors and obesity: a matter of changes in behavior rather than food addiction? Int. J. Obes., 2016, 40(S1), S12-S21.
[http://dx.doi.org/10.1038/ijo.2016.9]
[40]
Kuss, D.J.; Pontes, H.M.; Griffiths, M.D. Neurobiological correlates in internet gaming disorder: A systematic literature review. Front. Psychiatry, 2018, 9, 166.
[http://dx.doi.org/10.3389/fpsyt.2018.00166] [PMID: 29867599]
[41]
Hou, L.; Chang, L.; Chen, L.; Zhou, R. Reduced reward responsiveness in women with moderate - to - severe premenstrual syndrome: Evidence from a probabilistic reward task. Front. Psychiatry, 2020, 11, 28.
[http://dx.doi.org/10.3389/fpsyt.2020.00028] [PMID: 32116845]
[42]
Gola, M.; Draps, M. Ventral striatal reactivity in compulsive sexual behaviors. Front. Psychiatry, 2018, 9, 546.
[http://dx.doi.org/10.3389/fpsyt.2018.00546] [PMID: 30487759]
[43]
Alguacil, L.F.; González-Martín, C. Target identification and validation in brain reward dysfunction. Drug Discov. Today, 2015, 20(3), 347-352.
[http://dx.doi.org/10.1016/j.drudis.2014.10.014] [PMID: 25541474]
[44]
Wolters, E.C.; van der Werf, Y.D.; van den Heuvel, O.A. Parkinson’s disease-related disorders in the impulsive-compulsive spectrum. J. Neurol., 2008, 255(Suppl. 5), 48-56.
[http://dx.doi.org/10.1007/s00415-008-5010-5] [PMID: 18787882]
[45]
Elman, I.; Borsook, D.; Volkow, N.D. Pain and suicidality: Insights from reward and addiction neuroscience. Prog. Neurobiol., 2013, 109, 1-27.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.003] [PMID: 23827972]
[46]
Lin, X.; Deng, J.; Shi, L.; Wang, Q.; Li, P.; Li, H.; Liu, J.; Que, J.; Chang, S.; Bao, Y.; Shi, J.; Weinberger, D.R.; Wu, P.; Lu, L. Neural substrates of smoking and reward cue reactivity in smokers: a meta-analysis of fMRI studies. Transl. Psychiatry, 2020, 10(1), 97.
[http://dx.doi.org/10.1038/s41398-020-0775-0] [PMID: 32184386]
[47]
Doremus-Fitzwater, T.L.; Spear, L.P. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals. Neurosci. Biobehav. Rev., 2016, 70, 121-134.
[http://dx.doi.org/10.1016/j.neubiorev.2016.08.015] [PMID: 27524639]
[48]
Maigaard, K.; Nejad, A.B.; Andersen, K.W.; Herz, D.M.; Hagstrøm, J.; Pagsberg, A.K.; Skov, L.; Siebner, H.R.; Plessen, K.J. A superior ability to suppress fast inappropriate responses in children with Tourette syndrome is further improved by prospect of reward. Neuropsychologia, 2019, 131, 342-352.
[http://dx.doi.org/10.1016/j.neuropsychologia.2019.05.012] [PMID: 31103639]
[49]
Rovai, L.; Maremmani, A.G.; Pacini, M.; Pani, P.P.; Rugani, F.; Lamanna, F.; Schiavi, E.; Mautone, S.; Dell’Osso, L.; Maremmani, I. Negative dimension in psychiatry. Amotivational syndrome as a paradigm of negative symptoms in substance abuse. Riv. Psichiatr., 2013, 48(1), 1-9.
[http://dx.doi.org/10.1708/1228.13610] [PMID: 23438696]
[50]
Mangge, H.; Summers, K.; Almer, G.; Prassl, R.; Weghuber, D.; Schnedl, W.; Fuchs, D. Antioxidant food supplements and obesity-related inflammation. Curr. Med. Chem., 2013, 20(18), 2330-2337.
[http://dx.doi.org/10.2174/0929867311320180004] [PMID: 23531214]
[51]
Gyollai, A.; Griffiths, M.; Barta, C.; Vereczkei, A.; Urbán, R.; Kun, B.; Kökönyei, G.; Székely, A.; Sasvári-Székely, M.; Blum, K.; Demetrovics, Z. The genetics of problem and pathological gambling: a systematic review. Curr. Pharm. Des., 2014, 20(25), 3993-3999.
[http://dx.doi.org/10.2174/13816128113199990626] [PMID: 24001288]
[52]
Manzardo, A.M.; Penick, E.C. A theoretical argument for inherited thiamine insensitivity as one possible biological cause of familial alcoholism. Alcohol. Clin. Exp. Res., 2006, 30(9), 1545-1550.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00186.x] [PMID: 16930217]
[53]
Paelecke-Habermann, Y.; Paelecke, M.; Giegerich, K.; Reschke, K.; Kübler, A. Implicit and explicit reward learning in chronic nicotine use. Drug Alcohol Depend., 2013, 129(1-2), 8-17.
[http://dx.doi.org/10.1016/j.drugalcdep.2012.09.004] [PMID: 23098679]
[54]
Paelecke-Habermann, Y.; Paelecke, M.; Mauth, J.; Tschisgale, J.; Lindenmeyer, J.; Kübler, A. A comparison of implicit and explicit reward learning in low risk alcohol users versus people who binge drink and people with alcohol dependence. Addict. Behav. Rep., 2019, 9, 100178.
[http://dx.doi.org/10.1016/j.abrep.2019.100178] [PMID: 31193786]
[55]
Johnson, R.J.; Gold, M.S.; Johnson, D.R.; Ishimoto, T.; Lanaspa, M.A.; Zahniser, N.R.; Avena, N.M. Attention-deficit/hyperactivity disorder: is it time to reappraise the role of sugar consumption? Postgrad. Med., 2011, 123(5), 39-49.
[http://dx.doi.org/10.3810/pgm.2011.09.2458] [PMID: 21904085]
[56]
Carroll, D.; Ginty, A.T.; Whittaker, A.C.; Lovallo, W.R.; de Rooij, S.R. The behavioural, cognitive, and neural corollaries of blunted cardiovascular and cortisol reactions to acute psychological stress. Neurosci. Biobehav. Rev., 2017, 77, 74-86.
[http://dx.doi.org/10.1016/j.neubiorev.2017.02.025] [PMID: 28254428]
[57]
Maremmani, A.; Pacini, M.; Maremmani, I. What we have learned from the Methadone Maintenance Treatment of Dual Disorder Heroin Use Disorder patients. Int. J. Environ. Res. Public Health, 2019, 16(3), 447.
[http://dx.doi.org/10.3390/ijerph16030447] [PMID: 30717435]
[58]
McAllister, C.J.; Whittington, J.E.; Holland, A.J. Development of the eating behaviour in Prader–Willi Syndrome: advances in our understanding. Int. J. Obes., 2011, 35(2), 188-197.
[http://dx.doi.org/10.1038/ijo.2010.139] [PMID: 20680019]
[59]
Kamarajan, C.; Rangaswamy, M.; Tang, Y.; Chorlian, D.B.; Pandey, A.K.; Roopesh, B.N.; Manz, N.; Saunders, R.; Stimus, A.T.; Porjesz, B. Dysfunctional reward processing in male alcoholics: An ERP study during a gambling task. J. Psychiatr. Res., 2010, 44(9), 576-590.
[http://dx.doi.org/10.1016/j.jpsychires.2009.11.019] [PMID: 20035952]
[60]
Hahn, T.; Notebaert, K.H.; Dresler, T.; Kowarsch, L.; Reif, A.; Fallgatter, A.J. Linking online gaming and addictive behavior: converging evidence for a general reward deficiency in frequent online gamers. Front. Behav. Neurosci., 2014, 8, 385.
[http://dx.doi.org/10.3389/fnbeh.2014.00385] [PMID: 25426039]
[61]
Oberlin, B.G.; Dzemidzic, M.; Bragulat, V.; Lehigh, C.A.; Talavage, T.; O’Connor, S.J.; Kareken, D.A. Limbic responses to reward cues correlate with antisocial trait density in heavy drinkers. Neuroimage, 2012, 60(1), 644-652.
[http://dx.doi.org/10.1016/j.neuroimage.2011.12.043] [PMID: 22227139]
[62]
Verbeken, S.; Braet, C.; Lammertyn, J.; Goossens, L.; Moens, E. How is reward sensitivity related to bodyweight in children? Appetite, 2012, 58(2), 478-483.
[http://dx.doi.org/10.1016/j.appet.2011.11.018] [PMID: 22138702]
[63]
Davis, C.; Fox, J. Sensitivity to reward and body mass index (BMI): Evidence for a non-linear relationship. Appetite, 2008, 50(1), 43-49.
[http://dx.doi.org/10.1016/j.appet.2007.05.007] [PMID: 17614159]
[64]
Harb, M.R.; Almeida, O.F.X. Altered motivation masks appetitive learning potential of obese mice. Front. Behav. Neurosci., 2014, 8, 377.
[http://dx.doi.org/10.3389/fnbeh.2014.00377] [PMID: 25400563]
[65]
Davis, C.; Levitan, R.D.; Kaplan, A.S.; Carter, J.; Reid, C.; Curtis, C.; Patte, K.; Hwang, R.; Kennedy, J.L. Reward sensitivity and the D2 dopamine receptor gene: A case-control study of binge eating disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(3), 620-628.
[http://dx.doi.org/10.1016/j.pnpbp.2007.09.024] [PMID: 18262320]
[66]
Rahman, N.; Mihalkovic, A.; Geary, O.; Haffey, R.; Hamilton, J.; Thanos, P.K. Chronic aerobic exercise: Autoradiographic assessment of GABA(a) and mu-opioid receptor binding in adult rats. Pharmacol. Biochem. Behav., 2020, 196, 172980.
[http://dx.doi.org/10.1016/j.pbb.2020.172980] [PMID: 32593790]
[67]
Nestor, L.; Hester, R.; Garavan, H. Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. Neuroimage, 2010, 49(1), 1133-1143.
[http://dx.doi.org/10.1016/j.neuroimage.2009.07.022] [PMID: 19631753]
[68]
Gerra, M.C.; Manfredini, M.; Cortese, E.; Antonioni, M.C.; Leonardi, C.; Magnelli, F.; Somaini, L.; Jayanthi, S.; Cadet, J.L.; Donnini, C. Genetic and environmental risk factors for cannabis Use: Preliminary results for the role of parental care perception. Subst. Use Misuse, 2019, 54(4), 670-680.
[http://dx.doi.org/10.1080/10826084.2018.1531430] [PMID: 30663487]
[69]
Wu, C.; Garamszegi, S.P.; Xie, X.; Mash, D.C. Altered dopamine synaptic markers in postmortem brain of obese subjects. Front. Hum. Neurosci., 2017, 11, 386.
[http://dx.doi.org/10.3389/fnhum.2017.00386] [PMID: 28824395]
[70]
Rothman, R.B.; Blough, B.E.; Baumann, M.H. Dual dopamine/serotonin releasers as potential medications for stimulante and alcohol addictions. AAPS J., 2007, 9(1), E1-E10.
[http://dx.doi.org/10.1208/aapsj0901001] [PMID: 17408232]
[71]
Rivas-Grajales, A.M.; Sawyer, K.S.; Karmacharya, S.; Papadimitriou, G.; Camprodon, J.A.; Harris, G.J.; Kubicki, M.; Oscar-Berman, M.; Makris, N. Sexually dimorphic structural abnormalities in major connections of the medial forebrain bundle in alcoholism. Neuroimage Clin., 2018, 19, 98-105.
[http://dx.doi.org/10.1016/j.nicl.2018.03.025] [PMID: 30035007]
[72]
Lazaratou, H.; Palaiologou, A.; Anagnostopoulos, D. Impulsivity as an immediate factor between addictive disorders and Attention Deficit-Hyperactivity Disorder. Psychiatriki, 2017, 28(2), 156-164.
[http://dx.doi.org/10.22365/jpsych.2017.282.156]
[73]
Fronczek, R.; Schinkelshoek, M.; Shan, L.; Lammers, G.J. The orexin/hypocretin system in neuropsychiatric disorders: Relation to signs and symptoms. Handb. Clin. Neurol., 2021, 180, 343-358.
[http://dx.doi.org/10.1016/B978-0-12-820107-7.00021-5] [PMID: 34225940]
[74]
Kononoff Vanhanen, J.; Nuutinen, S.; Tuominen, M.; Panula, P. Histamine H3 receptor regulates sensorimotor gating and dopaminergic signaling in the striatum. J. Pharmacol. Exp. Ther., 2016, 357(2), 264-272.
[http://dx.doi.org/10.1124/jpet.115.230771] [PMID: 26945087]
[75]
Kim, M.; Custodio, R.J.; Botanas, C.J.; de la Peña, J.B.; Sayson, L.V.; Abiero, A.; Ryoo, Z.Y.; Cheong, J.H.; Kim, H.J. The circadian gene, Per2, influences methamphetamine sensitization and reward through the dopaminergic system in the striatum of mice. Addict. Biol., 2019, 24(5), 946-957.
[http://dx.doi.org/10.1111/adb.12663] [PMID: 30091820]
[76]
Suzuki, H.; Han, S.D.; Lucas, L.R. Chronic passive exposure to aggression decreases D2 and 5-HT1B receptor densities. Physiol. Behav., 2010, 99(5), 562-570.
[http://dx.doi.org/10.1016/j.physbeh.2010.01.018] [PMID: 20114057]
[77]
Ananth, M.; Hetelekides, E.M.; Hamilton, J.; Thanos, P.K. Dopamine D4 receptor gene expression plays important role in extinction and reinstatement of cocaine-seeking behavior in mice. Behav. Brain Res., 2019, 365, 1-6.
[http://dx.doi.org/10.1016/j.bbr.2019.02.036] [PMID: 30797855]
[78]
Shukla, A.; Beroun, A.; Panopoulou, M.; Neumann, P.A.; Grant, S.G.N.; Olive, M.F.; Dong, Y.; Schlüter, O.M. Calcium‐permeable AMPA receptors and silent synapses in cocaine‐conditioned place preference. EMBO J., 2017, 36(4), 458-474.
[http://dx.doi.org/10.15252/embj.201695465] [PMID: 28077487]
[79]
Hamilton, J.; Swenson, S.; Hajnal, A.; Thanos, P.K. Roux-en-Y gastric bypass surgery normalizes dopamine D1, D2, and DAT levels. Synapse, 2018, 72(10), e22058. Epub ahead of print
[http://dx.doi.org/10.1002/syn.22058] [PMID: 29992624]
[80]
Kosillo, P.; Bateup, H.S. Dopaminergic dysregulation in syndromic autism spectrum disorders: Insights from genetic mouse models. Front. Neural Circuits, 2021, 15, 700968.
[http://dx.doi.org/10.3389/fncir.2021.700968] [PMID: 34366796]
[81]
Althaus, M.; Groen, Y.; Wijers, A.A.; Mulder, L.J.M.; Minderaa, R.B.; Kema, I.P.; Dijck, J.D.A.; Hartman, C.A.; Hoekstra, P.J. Differential effects of 5-HTTLPR and DRD2/ANKK1 polymorphisms on electrocortical measures of error and feedback processing in children. Clin. Neurophysiol., 2009, 120(1), 93-107.
[http://dx.doi.org/10.1016/j.clinph.2008.10.012] [PMID: 19046929]
[82]
Figueiredo, A.; Hamilton, J.; Marion, M.; Blum, K.; Kaczocha, M.; Haj-Dahmane, S.; Deutsch, D.; Thanos, P.K. Pharmacological inhibition of brain fatty acid binding protein reduces ethanol consumption in mice. J. Reward Defic. Syndr. Addict. Sci., 2017, 3(2), 21-27.
[http://dx.doi.org/10.17756/jrdsas.2017-037] [PMID: 29367955]
[83]
Cui, Y.; Ostlund, S.B.; James, A.S.; Park, C.S.; Ge, W.; Roberts, K.W.; Mittal, N.; Murphy, N.P.; Cepeda, C.; Kieffer, B.L.; Levine, M.S.; Jentsch, J.D.; Walwyn, W.M.; Sun, Y.E.; Evans, C.J.; Maidment, N.T.; Yang, X.W. Targeted expression of μ-opioid receptors in a subset of striatal direct-pathway neurons restores opiate reward. Nat. Neurosci., 2014, 17(2), 254-261.
[http://dx.doi.org/10.1038/nn.3622] [PMID: 24413699]
[84]
Ponce, G.; Jimenez-Arriero, M.A.; Rubio, G.; Hoenicka, J.; Ampuero, I.; Ramos, J.A.; Palomo, T. The A1 allele of the DRD2 gene (TaqI A polymorphisms) is associated with antisocial personality in a sample of alcohol-dependent patients. Eur. Psychiatry, 2003, 18(7), 356-360.
[http://dx.doi.org/10.1016/j.eurpsy.2003.06.006] [PMID: 14643564]
[85]
Porat, O.; Hassin-Baer, S.; Cohen, O.S.; Markus, A.; Tomer, R. Asymmetric dopamine loss differentially affects effort to maximize gain or minimize loss. Cortex, 2014, 51, 82-91.
[http://dx.doi.org/10.1016/j.cortex.2013.10.004] [PMID: 24267688]
[86]
Robison, L.S.; Ananth, M.; Hadjiargyrou, M.; Komatsu, D.E.; Thanos, P.K. Chronic oral methylphenidate treatment reversibly increases striatal dopamine transporter and dopamine type 1 receptor binding in rats. J. Neural Transm., 2017, 124(5), 655-667.
[http://dx.doi.org/10.1007/s00702-017-1680-4] [PMID: 28116523]
[87]
Obici, S.; Magrisso, I.J.; Ghazarian, A.S.; Shirazian, A.; Miller, J.R.; Loyd, C.M.; Begg, D.P.; Krawczewski Carhuatanta, K.A.; Haas, M.K.; Davis, J.F.; Woods, S.C.; Sandoval, D.A.; Seeley, R.J.; Goodyear, L.J.; Pothos, E.N.; Mul, J.D. Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation. Mol. Metab., 2015, 4(10), 692-705.
[http://dx.doi.org/10.1016/j.molmet.2015.07.003] [PMID: 26500841]
[88]
Castañé, A.; Robledo, P.; Matifas, A.; Kieffer, B.L.; Maldonado, R. Cannabinoid withdrawal syndrome is reduced in double mu and delta opioid receptor knockout mice. Eur. J. Neurosci., 2003, 17(1), 155-159.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02409.x] [PMID: 12534979]
[89]
Trigo, J.M.; Zimmer, A.; Maldonado, R. Nicotine anxiogenic and rewarding effects are decreased in mice lacking β-endorphin. Neuropharmacology, 2009, 56(8), 1147-1153.
[http://dx.doi.org/10.1016/j.neuropharm.2009.03.013] [PMID: 19376143]
[90]
Contarino, A.; Kitchener, P.; Vallée, M.; Papaleo, F.; Piazza, P.V. CRF1 receptor-deficiency increases cocaine reward. Neuropharmacology, 2017, 117, 41-48.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.024] [PMID: 28137450]
[91]
Hommer, D.W.; Bjork, J.M.; Gilman, J.M. Imaging brain response to reward in addictive disorders. Ann. N. Y. Acad. Sci., 2011, 1216(1), 50-61.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05898.x] [PMID: 21272010]
[92]
Koob, G.F.; Le Moal, M. Addiction and the brain antireward system. Annu. Rev. Psychol., 2008, 59(1), 29-53.
[http://dx.doi.org/10.1146/annurev.psych.59.103006.093548] [PMID: 18154498]
[93]
Chang, Y.; Wang, Y.; Mei, S.; Yi, W.; Zheng, Y. Blunted neural effects of perceived control on reward feedback in major depressive disorder. J. Affect. Disord., 2020, 276, 112-118.
[http://dx.doi.org/10.1016/j.jad.2020.06.071] [PMID: 32697689]
[94]
Cador, M.; Taylor, J.R.; Robbins, T.W. Potentiation of the effects of reward-related stimuli by dopaminergic-dependent mechanisms in the nucleus accumbens. Psychopharmacology, 1991, 104(3), 377-385.
[http://dx.doi.org/10.1007/BF02246039] [PMID: 1924645]
[95]
Shen, H.; Chen, K.; Marino, R.A.M.; McDevitt, R.A.; Xi, Z.X. Deletion of VGLUT2 in midbrain dopamine neurons attenuates dopamine and glutamate responses to methamphetamine in mice. Pharmacol. Biochem. Behav., 2021, 202, 173104.
[http://dx.doi.org/10.1016/j.pbb.2021.173104] [PMID: 33444596]
[96]
Blaker, A.L.; Moore, E.R.; Yamamoto, B.K. Serial exposure to ethanol drinking and methamphetamine enhances glutamate excitotoxicity. J. Neurochem., 2019, 151(6), 749-763.
[http://dx.doi.org/10.1111/jnc.14861] [PMID: 31478210]
[97]
Cléry-Melin, M.L.; Jollant, F.; Gorwood, P. Reward systems and cognitions in Major Depressive Disorder. CNS Spectr., 2019, 24(1), 64-77.
[http://dx.doi.org/10.1017/S1092852918001335] [PMID: 30472971]
[98]
Althobaiti, Y.S.; Almutairi, F.M.; Alshehri, F.S.; Altowairqi, E.; Marghalani, A.M.; Alghorabi, A.A.; Alsanie, W.F.; Gaber, A.; Alsaab, H.O.; Almalki, A.H.; Hakami, A.Y.; Alkhalifa, T.; Almalki, A.D.; Hardy, A.M.G.; Shah, Z.A. Involvement of the dopaminergic system in the reward-related behavior of pregabalin. Sci. Rep., 2021, 11(1), 10577.
[http://dx.doi.org/10.1038/s41598-021-88429-8] [PMID: 34011976]
[99]
Tata, D.A.; Yamamoto, B.K. Interactions between methamphetamine and environmental stress: role of oxidative stress, glutamate and mitochondrial dysfunction. Addiction, 2007, 102(Suppl. 1), 49-60.
[http://dx.doi.org/10.1111/j.1360-0443.2007.01770.x] [PMID: 17493053]
[100]
Stephans, S.E.; Yamamoto, B.K. Methamphetamine-induced neurotoxicity: Roles for glutamate and dopamine efflux. Synapse, 1994, 17(3), 203-209.
[http://dx.doi.org/10.1002/syn.890170310] [PMID: 7974204]
[101]
Stephans, S.E.; Yamamoto, B.K. Effect of repeated methamphetamine administrations on dopamine and glutamate efflux in rat prefrontal cortex. Brain Res., 1995, 700(1-2), 99-106.
[http://dx.doi.org/10.1016/0006-8993(95)00938-M] [PMID: 8624733]
[102]
Kumar, P.; Goer, F.; Murray, L.; Dillon, D.G.; Beltzer, M.L.; Cohen, A.L.; Brooks, N.H.; Pizzagalli, D.A. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology, 2018, 43(7), 1581-1588.
[http://dx.doi.org/10.1038/s41386-018-0032-x] [PMID: 29540863]
[103]
Badgaiyan, R.D.; Sinha, S.; Sajjad, M.; Wack, D.S. Attenuated tonic and enhanced phasic release of dopamine in attention deficit hyperactivity disorder. PLoS One, 2015, 10(9), e0137326.
[http://dx.doi.org/10.1371/journal.pone.0137326] [PMID: 26422146]
[104]
Blum, K.; Thanos, P.; Oscar-Berman, M.; Febo, M.; Baron, D.; Badgaiyan, R.D.; Gardner, E.; Demetrovics, Z.; Fahlke, C.; Haberstick, B.C.; Dushaj, K.; Gold, M.S. Dopamine in the brain: Hypothesizing surfeit or deficit links to reward and addiction. J. Reward Defic. Syndr., 2015, 1(3), 95-104.
[http://dx.doi.org/10.17756/jrds.2015-016] [PMID: 27398406]
[105]
Nutt, D.J.; Lingford-Hughes, A.; Erritzoe, D.; Stokes, P.R.A. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci., 2015, 16(5), 305-312.
[http://dx.doi.org/10.1038/nrn3939] [PMID: 25873042]
[106]
Blum, K.; Febo, M.; Fried, L.; Li, M.; Dushaj, K.; Braverman, E.R.; McLaughlin, T.; Steinberg, B.; Badgaiyan, R.D. Hypothesizing that neuropharmacological and neuroimaging studies of glutaminergic-dopaminergic optimization complex (KB220Z) are associated with “Dopamine homeostasis” in reward deficiency syndrome (RDS). Subst. Use Misuse, 2017, 52(4), 535-547.
[http://dx.doi.org/10.1080/10826084.2016.1244551] [PMID: 28033474]
[107]
Dackis, C.A.; Gold, M.S.; Davies, R.K.; Sweeney, D.R. Bromocriptine treatment for cocaine abuse: the dopamine depletion hypothesis. Int. J. Psychiatry Med., 1986-1986-1986, 15(2), 125-135.
[http://dx.doi.org/10.2190/GXPA-98AK-4RR4-HD9B] [PMID: 3902694]
[108]
Willuhn, I.; Burgeno, L.M.; Groblewski, P.A.; Phillips, P.E.M. Excessive cocaine use results from decreased phasic dopamine signaling in the striatum. Nat. Neurosci., 2014, 17(5), 704-709.
[http://dx.doi.org/10.1038/nn.3694] [PMID: 24705184]
[109]
Borsini, A.; Wallis, A.S.J.; Zunszain, P.; Pariante, C.M.; Kempton, M.J. Characterizing anhedonia: A systematic review of neuroimaging across the subtypes of reward processing deficits in depression. Cogn. Affect. Behav. Neurosci., 2020, 20(4), 816-841.
[http://dx.doi.org/10.3758/s13415-020-00804-6] [PMID: 32472419]
[110]
Madrid, G.A.; MacMurray, J.; Lee, J.W.; Anderson, B.A.; Comings, D.E. Stress as a mediating factor in the association between the DRD2 TaqI polymorphism and alcoholism. Alcohol, 2001, 23(2), 117-122.
[http://dx.doi.org/10.1016/S0741-8329(00)00138-5] [PMID: 11331109]
[111]
Kótyuk, E.; Urbán, R.; Hende, B.; Richman, M.; Magi, A.; Király, O.; Barta, C.; Griffiths, M.D.; Potenza, M.N.; Badgaiyan, R.D.; Blum, K.; Demetrovics, Z. Development and validation of the REWARD DEFICIENCY SYNDROME QUESTIONNAIRE (RDSQ-29). J. Psychopharmacol., 2022, 36(3), 409-422.
[http://dx.doi.org/10.1177/02698811211069102] [PMID: 35102768]
[112]
Enoch, M.A. The influence of gene-environment interactions on the development of alcoholism and drug dependence. Curr. Psychiatry Rep., 2012, 14(2), 150-158.
[http://dx.doi.org/10.1007/s11920-011-0252-9] [PMID: 22367454]
[113]
Gold, M.S.; Blum, K.; Oscar-Berman, M.; Braverman, E.R. Low dopamine function in attention deficit/hyperactivity disorder: should genotyping signify early diagnosis in children? Postgrad. Med., 2014, 126(1), 153-177.
[http://dx.doi.org/10.3810/pgm.2014.01.2735] [PMID: 24393762]
[114]
Gilley, E. The new science of attention deficit hyperactivity disorder: News from the cutting edge of research science. Journal of Psychiatry and Psychiatric Disorders, 2018, 2(3), 71-76. [b
[http://dx.doi.org/10.26502/jppd.2572-519X0043]
[115]
Archer, T.; Oscar Berman, M.; Blum, K. Epigenetics in developmental disorder. ADHD and Endophenotypes. J. Genet. Syndr. Gene Ther., 2011, 2(1), 1-33.
[http://dx.doi.org/10.4172/2157-7412.1000104] [PMID: 22224195]
[116]
Blum, K.; Baron, D.; Lott, L.; Ponce, V.; Siwicki, D. In search of REWARD DEFICIENCY SYNDROME (RDS)-Free Controls: The Holy Grail in genetic addiction risk testing. Curr. Psychopharmacol., 2019, 8, 1-15.
[PMID: 32432025]
[117]
Gilley, E.D. A proposed treatment plan model for Reward Deficiency Syndrome: To help in restructuring the addiction recovery industry. European J. Biomed. Pharm. Sci., 2018, 5(11), 84-90.
[118]
Blum, K.; Oscar-Berman, M.; Jacobs, W.; McLaughlin, T.; Gold, M.S. Buprenorphine response as a function of neurogenetic polymorphic antecedents: Can dopamine genes affect clinical outcomes in REWARD DEFICIENCY SYNDROME (RDS). J. Addict. Res. Ther., 2014, 5(3), 1000185.
[http://dx.doi.org/10.4172/2155-6105.1000185] [PMID: 25664200]
[119]
Moran, M.; Blum, K.; Ponce, J.V.; Lott, L.; Gondré-Lewis, M.C.; Badgaiyan, S.; Brewer, R.; Downs, B.W.; Fynman, P.; Weingarten, A.; Cadet, J.L.; Smith, D.E.; Baron, D.; Thanos, P.K.; Modestino, E.J.; Badgaiyan, R.D.; Elman, I.; Gold, M.S. High Genetic Addiction Risk Score (GARS) in chronically prescribed severe chronic opioid probands attending multi-pain clinics: An open clinical pilot trial. Mol. Neurobiol., 2021, 58(7), 3335-3346.
[http://dx.doi.org/10.1007/s12035-021-02312-1] [PMID: 33683627]
[120]
Fried, L.; Modestino, E.J.; Siwicki, D.; Lott, L.; Thanos, P.K.; Baron, D.; Badgaiyan, R.D.; Ponce, J.V.; Giordano, J.; Downs, W.B.; Gondré-Lewis, M.C.; Bruce, S.; Braverman, E.R.; Boyett, B.; Blum, K. Hypodopaminergia and “Precision Behavioral Management” (PBM): It is a generational family affair. Curr. Pharm. Biotechnol., 2020, 21(6), 528-541.
[http://dx.doi.org/10.2174/1389201021666191210112108] [PMID: 31820688]
[121]
Noble, E.P.; Blum, K.; Ritchie, T.; Montgomery, A.; Sheridan, P.J. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch. Gen. Psychiatry, 1991, 48(7), 648-654.
[http://dx.doi.org/10.1001/archpsyc.1991.01810310066012] [PMID: 2069496]
[122]
Jiang, Y.; Liu, B.; Wu, C.; Gao, X.; Lu, Y.; Lian, Y.; Liu, J. Dopamine receptor D2 gene (DRD2) polymorphisms, job stress, and their interaction on sleep dysfunction. Int. J. Environ. Res. Public Health, 2020, 17(21), 8174.
[http://dx.doi.org/10.3390/ijerph17218174] [PMID: 33167416]
[123]
Jönsson, E.G.; Nöthen, M.M.; Grünhage, F.; Farde, L.; Nakashima, Y.; Propping, P.; Sedvall, G.C. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry, 1999, 4(3), 290-296.
[http://dx.doi.org/10.1038/sj.mp.4000532] [PMID: 10395223]
[124]
Hirvonen, M.M.; Lumme, V.; Hirvonen, J.; Pesonen, U.; Någren, K.; Vahlberg, T.; Scheinin, H.; Hietala, J. C957T polymorphism of the human dopamine D2 receptor gene predicts extrastriatal dopamine receptor availability in vivo. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(4), 630-636.
[http://dx.doi.org/10.1016/j.pnpbp.2009.02.021] [PMID: 19285111]
[125]
Blum, K.; Baron, D.; McLaughlin, T.; Gold, M.S. Molecular neurological correlates of endorphinergic/dopaminergic mechanisms in reward circuitry linked to ENDORPHINERGIC DEFICIENCY SYNDROME (EDS). J. Neurol. Sci., 2020, 411, 116733.
[http://dx.doi.org/10.1016/j.jns.2020.116733] [PMID: 32088516]
[126]
Hillemacher, T.; Frieling, H.; Buchholz, V.; Hussein, R.; Bleich, S.; Meyer, C.; John, U.; Bischof, A. Rumpf, HJ Alterations in DNA-methylation of the dopamine-receptor 2 gene are associated with abstinence and health care utilization in individuals with a lifetime history of pathologic gambling. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2015, 63, 30-34.
[http://dx.doi.org/10.1016/j.pnpbp.2015.05.013]
[127]
Linnet, J. The anticipatory dopamine response in addiction: A common neurobiological underpinning of gambling disorder and substance use disorder? Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109802] [PMID: 31678482]
[128]
Gold, M.S.; Baron, D.; Bowirrat, A.; Blum, K. Neurological correlates of brain reward circuitry linked to opioid use disorder (OUD): Do homo sapiens acquire or have a reward deficiency syndrome? J. Neurol. Sci., 2020, 418, 117137.
[http://dx.doi.org/10.1016/j.jns.2020.117137] [PMID: 32957037]
[129]
Gilley, E.D. Reward deficiency syndrome solution focused brief therapy to begin integrating the sciences of addiction & reward deficiency syndrome (RDS). J. Reward Defic. Syndr. Addict. Sci., 2019, 5(1), 1-6.
[http://dx.doi.org/10.17756/jrdsas.2019-042]
[130]
Miller, M.; Chen, A.L.C.; Stokes, S.D.; Silverman, S.; Bowirrat, A.; Manka, M.; Manka, D.; Miller, D.K.; Perrine, K.; Chen, T.J.H.; Bailey, J.A.; Downs, W.; Waite, R.L.; Madigan, M.A.; Braverman, E.R.; Damle, U.; Kerner, M.; Giordano, J.; Morse, S.; Oscar-Berman, M.; Barh, D.; Blum, K. Early intervention of intravenous KB220IV-neuroadaptagen amino-acid therapy (NAAT) improves behavioral outcomes in a residential addiction treatment program: a pilot study. J. Psychoactive Drugs, 2012, 44(5), 398-409.
[http://dx.doi.org/10.1080/02791072.2012.737727] [PMID: 23457891]
[131]
Blum, K.; Chen, T.J.H.; Downs, B.W.; Bowirrat, A.; Waite, R.L.; Braverman, E.R.; Madigan, M.; Oscar-Berman, M.; DiNubile, N.; Stice, E.; Giordano, J.; Morse, S.; Gold, M. Neurogenetics of dopaminergic receptor supersensitivity in activation of brain reward circuitry and relapse: proposing “DEPRIVATION-AMPLIFICATION RELAPSE THERAPY” (DART). Postgrad. Med., 2009, 121(6), 176-196.
[http://dx.doi.org/10.3810/pgm.2009.11.2087] [PMID: 19940429]
[132]
Blum, K.; Khalsa, J.; Cadet, J.L.; Baron, D.; Bowirrat, A.; Boyett, B.; Lott, L.; Brewer, R.; Gondré-Lewis, M.; Bunt, G.; Kazmi, S. Gold, M.S. -Induced hypodopaminergic anhedonia and cognitive decline in humans: Embracing putative induction of dopamine homeostasis. Front. Psychiatry, 2021, 12, 623403.
[http://dx.doi.org/10.3389/fpsyt.2021.623403] [PMID: 33868044]
[133]
Weiland, B.J.; Zucker, R.A.; Zubieta, J.K.; Heitzeg, M.M. Striatal dopaminergic reward response relates to age of first drunkenness and feedback response in at-risk youth. Addict. Biol., 2017, 22(2), 502-512.
[http://dx.doi.org/10.1111/adb.12341] [PMID: 26732626]
[134]
Thompson, L.L.; Claus, E.D.; Mikulich-Gilbertson, S.K.; Banich, M.T.; Crowley, T.; Krmpotich, T.; Miller, D.; Tanabe, J. Negative reinforcement learning is affected in substance dependence. Drug Alcohol Depend., 2012, 123(1-3), 84-90.
[http://dx.doi.org/10.1016/j.drugalcdep.2011.10.017] [PMID: 22079143]
[135]
Tooby, J.; Cosmides, L. On the universality of human nature and the uniqueness of the individual: The role of genetics and adaptation. J. Pers., 1990, 58(1), 17-67.
[http://dx.doi.org/10.1111/j.1467-6494.1990.tb00907.x] [PMID: 2198338]
[136]
Karimpour-Vazifehkhorani, A.; Bakhshipour Rudsari, A.; Rezvanizadeh, A. Kehtary- Harzang, L.; Hasanzadeh, K. Behavioral activation, therapy on reward seeking behaviors in depressed people: An experimental study. J. Caring Sci., 2020, 9(4), 195-202.
[http://dx.doi.org/10.34172/jcs.2020.030] [PMID: 33409163]
[137]
Cunningham, S.; Mazurka, R.; Wynne-Edwards, K.E.; Milev, R.V.; Pizzagalli, D.A.; Kennedy, S.; Harkness, K.L. Cortisol reactivity to stress predicts behavioral responsivity to reward moderation by sex, depression, and anhedonia. J. Affect. Disord., 2021, 293, 1-8.
[http://dx.doi.org/10.1016/j.jad.2021.05.126] [PMID: 34153656]
[138]
Kalivas, P.W.; O’Brien, C. Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology, 2008, 33(1), 166-180.
[http://dx.doi.org/10.1038/sj.npp.1301564] [PMID: 17805308]
[139]
Gilley, E.D. The evolution of addiction treatment: The disease is reward deficiency syndrome (RDS) and Addiction is its symptom. European J. Biomed. Pharm. Sci., 2018, 5(1), 161-166.
[140]
Saddoris, M.P.; Wang, X.; Sugam, J.A.; Carelli, R.M. Cocaine self-administration experience induces pathological phasic accumbens dopamine signals and abnormal incentive behaviors in drug-abstinent rats. J. Neurosci., 2016, 36(1), 235-250.
[http://dx.doi.org/10.1523/JNEUROSCI.3468-15.2016] [PMID: 26740664]
[141]
Owesson-White, C.A.; Ariansen, J.; Stuber, G.D.; Cleaveland, N.A.; Cheer, J.F.; Mark Wightman, R.; Carelli, R.M. Neural encoding of cocaine-seeking behavior is coincident with phasic dopamine release in the accumbens core and shell. Eur. J. Neurosci., 2009, 30(6), 1117-1127.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06916.x] [PMID: 19735286]
[142]
Blum, K.; Downs, B.W.; Dushaj, K.; Li, M.; Braverman, E.R.; Fried, L.; Waite, R.; Demotrovics, Z.; Badgaiyan, R.D. The benefits of customized DNA directed nutrition to balance the brain reward circuitry and reduce addictive behaviors. Precis. Med., 2016, 1(1), 18-33.
[PMID: 28066828]
[143]
Blum, K.; Modestino, E.J.; Gondre-Lewis, M.C.; Baron, D.; Steinberg, B.; Thanos, P.; Downs, W.; Siwicki, D.; Lott, L.; Braverman, E.; Moran, M.; Miller, D.; Fried, L.; Bedgaiyan, R. Pro-dopamine regulator (KB220) a fifty year sojourn to combat reward deficiency syndrome (RDS): Evidence based bibliography (Annotated). Addict. Biol., 2018, 1(2), 1-26.
[144]
Gunderson, J.G. Commentary on “Personality traits and the classification of mental disorders: Toward a more complete integration in DSM-5 and an empirical model of psychopathology”. Pers. Disord., 2010, 1(2), 119-122.
[http://dx.doi.org/10.1037/a0019974]
[145]
Blinkhorn, S.; Johnson, C. The insignificance of personality testing. Nature, 1990, 348(6303), 671-672.
[http://dx.doi.org/10.1038/348671a0]
[146]
Baumeister, R.F.; Tice, D.M. Rethinking and reclaiming the interdisciplinary role of personality psychology: The science of human nature should be the center of the social sciences and humanities. J. Res. Pers., 1996, 30(3), 363-373.
[http://dx.doi.org/10.1006/jrpe.1996.0025]
[147]
Swenson, S.; Blum, K.; McLaughlin, T.; Gold, M.S.; Thanos, P.K. The therapeutic potential of exercise for neuropsychiatric diseases: A review. J. Neurol. Sci., 2020, 412, 116763.
[http://dx.doi.org/10.1016/j.jns.2020.116763] [PMID: 32305746]
[148]
Kjaer, T.W.; Bertelsen, C.; Piccini, P.; Brooks, D.; Alving, J.; Lou, H.C. Increased dopamine tone during meditation-induced change of consciousness. Brain Res. Cogn. Brain Res., 2002, 13(2), 255-259.
[http://dx.doi.org/10.1016/S0926-6410(01)00106-9] [PMID: 11958969]
[149]
Beraldo, L.; Gil, F.; Ventriglio, A.; de Andrade, A.G.; da Silva, A.G.; Torales, J.; Gonçalves, P.D.; Bhugra, D.; Castaldelli-Maia, J.M. Spirituality, religiosity and addiction recovery: Current perspectives. Curr. Drug Res. Rev., 2019, 11(1), 26-32.
[http://dx.doi.org/10.2174/1874473711666180612075954] [PMID: 29895258]
[150]
Schoenthaler, S.J.; Blum, K.; Braverman, E.R.; Giordano, J.; Thompson, B.; Oscar-Berman, M.; Badgaiyan, R.D.; Madigan, M.A.; Dushaj, K.; Li, M.; Demotrovics, Z.; Waite, R.L.; Gold, M.S. NIDA-drug addiction treatment outcome study (DATOS) relapse as a function of spirituality/religiosity. J. Reward Defic. Syndr., 2015, 1(1), 36-45.
[http://dx.doi.org/10.17756/jrds.2015-007] [PMID: 26052556]
[151]
Jayawickreme, E.; Forgeard, M.J.C.; Seligman, M.E.P. The engine of well-being. Rev. Gen. Psychol., 2012, 16(4), 327-342.
[http://dx.doi.org/10.1037/a0027990]
[152]
Krentzman, A.R. Review of the application of positive psychology to substance use, addiction, and recovery research. Psychol. Addict. Behav., 2013, 27(1), 151-165.
[http://dx.doi.org/10.1037/a0029897] [PMID: 22985057]
[153]
Kobau, R.; Seligman, C.; Peterson, C.; Diener, E.; Zack, W.; Chapman, D. Mental health promotion in public health: Perspectives and strategies from positive psychology. American Journal of Public Health, 2011, 101(8), el-e9.
[http://dx.doi.org/10.2105/AJPH.2010.300083]
[154]
Hoge, E.A.; Bui, E.; Marques, L.; Metcalf, C.A.; Morris, L.K.; Robinaugh, D.J.; Worthington, J.J.; Pollack, M.H.; Simon, N.M. Randomized controlled trial of mindfulness meditation for generalized anxiety disorder: Effects on anxiety and stress reactivity. J. Clin. Psychiatry, 2013, 74(8), 786-792.
[http://dx.doi.org/10.4088/JCP.12m08083] [PMID: 23541163]
[155]
Flanagan, O. The shame of addiction. Front. Psychiatry, 2013, 4, 120.
[http://dx.doi.org/10.3389/fpsyt.2013.00120] [PMID: 24115936]
[156]
Judge, T.A.; Bono, J.E. Relationship of core self-evaluations traits—self-esteem, generalized self-efficacy, locus of control, and emotional stability—with job satisfaction and job performance: A meta-analysis. J. Appl. Psychol., 2001, 86(1), 80-92.
[http://dx.doi.org/10.1037/0021-9010.86.1.80] [PMID: 11302235]
[157]
Abijo, T.; Blum, K.; Gondré-Lewis, M.C. Neuropharmacological and neurogenetic correlates of opioid use disorder (OUD) as a function of ethnicity: Relevance to precision addiction medicine. Curr. Neuropharmacol., 2020, 18(7), 578-595.
[http://dx.doi.org/10.2174/1570159X17666191118125702] [PMID: 31744450]
[158]
Blum, K.; Modestino, E.J.; Neary, J.; Gondré-Lewis, M.C.; Siwicki, D.; Moran, M.; Hauser, M.; Braverman, E.R.; Baron, D.; Steinberg, B.; Laughlin, T.M. Badgaiyan, RD promoting PRECISION ADDICTION MANAGEMENT (PAM) to Combat the Global Opioid Crisis. Biomed. J. Sci. Tech. Res., 2018, 2(2), 1-4.
[http://dx.doi.org/10.26717/BJSTR.2018.02.000738]
[159]
Balconi, M.; Finocchiaro, R. Decisional impairments in cocaine addiction, reward bias, and cortical oscillation “unbalance”. Neuropsychiatr. Dis. Treat., 2015, 11, 777-786.
[http://dx.doi.org/10.2147/NDT.S79696] [PMID: 25848274]
[160]
Kuhlemeier, A.; Desai, Y.; Tonigan, A.; Witkiewitz, K.; Jaki, T.; Hsiao, Y.Y.; Chang, C.; Van Horn, M.L. Applying methods for personalized medicine to the treatment of alcohol use disorder. J. Consult. Clin. Psychol., 2021, 89(4), 288-300.
[http://dx.doi.org/10.1037/ccp0000634] [PMID: 34014691]
[161]
Blum, K.; Han, D.; Hauser, M.; Downs, B.; Giordano, J. Neurogenetic impairments of brain reward circuitry links to reward deficiency syndrome (RDS) as evidenced by genetic addiction risk score (GARS): A case study. IIOAB J., 2013, 4, 4-9.
[162]
South, S. Hamrick’s, S. Personality disorders: Toward theoretical and empirical integration in diagnosis and assessment; American Psychological Association, 2015, pp. 163-201.
[163]
Casey, K.F.; Benkelfat, C.; Cherkasova, M.V.; Baker, G.B.; Dagher, A.; Leyton, M. Reduced dopamine response to amphetamine in subjects at ultra-high risk for addiction. Biol. Psychiatry, 2014, 76(1), 23-30.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.033] [PMID: 24138922]
[164]
Blum, K.; Gondré-Lewis, M.C.; Modestino, E.J.; Lott, L.; Baron, D.; Siwicki, D.; McLaughlin, T.; Howeedy, A.; Krengel, M.H.; Oscar-Berman, M.; Thanos, P.K.; Elman, I.; Hauser, M.; Fried, L.; Bowirrat, A.; Badgaiyan, R.D. Understanding the scientific basis of POST-TRAUMATIC STRESS DISORDER (PTSD): Precision behavioral management overrides stigmatization. Mol. Neurobiol., 2019, 56(11), 7836-7850.
[http://dx.doi.org/10.1007/s12035-019-1600-8] [PMID: 31124077]
[165]
Blum, K.; Gold, M.S.; Llanos-Gomez, L.; Jalali, R.; Thanos, P.K.; Bowirrat, A.; Downs, W.B.; Bagchi, D.; Braverman, E.R.; Baron, D.; Roy, A.K., III; Badgaiyan, R.D. Hypothesizing nutrigenomic-based precision anti-obesity treatment and prophylaxis: Should we be targeting sarcopenia induced brain dysfunction? Int. J. Environ. Res. Public Health, 2021, 18(18), 9774.
[http://dx.doi.org/10.3390/ijerph18189774] [PMID: 34574696]
[166]
Blum, K.; Chen, A.L.C.; Oscar-Berman, M.; Chen, T.J.H.; Lubar, J.; White, N.; Lubar, J.; Bowirrat, A.; Braverman, E.; Schoolfield, J.; Waite, R.L.; Downs, B.W.; Madigan, M.; Comings, D.E.; Davis, C.; Kerner, M.M.; Knopf, J.; Palomo, T.; Giordano, J.J.; Morse, S.A.; Fornari, F.; Barh, D.; Femino, J.; Bailey, J.A. Generational association studies of dopaminergic genes in REWARD DEFICIENCY SYNDROME (RDS) subjects: Selecting appropriate phenotypes for reward dependence behaviors. Int. J. Environ. Res. Public Health, 2011, 8(12), 4425-4459.
[http://dx.doi.org/10.3390/ijerph8124425] [PMID: 22408582]
[167]
Blum, K.; Modestino, E.J.; Baron, D.; Brewer, R.; Thanos, P.; Elman, I.; Badgaiyan, R.D.; Downs, B.W.; Bagchi, D.; McLaughlin, T.; Bowirrat, A.; Roy, A.K.; Gold, M.S. Endorphinergic enhancement attenuation of POST-TRAUMATIC STRESS DISORDER (PTSD) via activation of neuro-immunological function in the face of a virus pandemic. Curr. Psychopharmacol., 2021, 10(2), 86-97.
[http://dx.doi.org/10.2174/2211556009999210104221215] [PMID: 34466374]
[168]
Palmer, R.; Brick, L.; Nugent, L.; Bidwell, L.; McGeary, J. Examining the role of common genetics variants on alcohol, tobacco, cannabis, and illicit drug dependence. Addiction, 2015, 110, 530-537.
[http://dx.doi.org/10.1111/add.12815] [PMID: 25424661]
[169]
Blum, K.; Chen, A.L.; Chen, T.J.H.; Braverman, E.R.; Reinking, J.; Blum, S.H.; Cassel, K.; Downs, B.W.; Waite, R.L.; Williams, L.; Prihoda, T.J.; Kerner, M.M.; Palomo, T.; Comings, D.E.; Tung, H.; Rhoades, P.; Oscar-Berman, M. Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of REWARD DEFICIENCY SYNDROME (RDS): A commentary. Theor. Biol. Med. Model., 2008, 5(1), 24.
[http://dx.doi.org/10.1186/1742-4682-5-24] [PMID: 19014506]
[170]
Blum, K.; Chen, A.L.C.; Giordano, J.; Borsten, J.; Chen, T.J.H.; Hauser, M.; Simpatico, T.; Femino, J.; Braverman, E.R.; Barh, D. The addictive brain: All roads lead to dopamine. J. Psychoactive Drugs, 2012, 44(2), 134-143.
[http://dx.doi.org/10.1080/02791072.2012.685407] [PMID: 22880541]
[171]
Blum, K.; Chen, T.J.H.; Morse, S.; Giordano, J.; Chen, A.L.C.; Thompson, J.; Allen, C.; Smolen, A.; Lubar, J.; Stice, E.; Downs, B.W.; Waite, R.L.; Madigan, M.A.; Kerner, M.; Fornari, F.; Braverman, E.R. Overcoming qEEG abnormalities and reward gene deficits during protracted abstinence in male psychostimulant and polydrug abusers utilizing putative dopamine D₂ agonist therapy: part 2. Postgrad. Med., 2010, 122(6), 214-226.
[http://dx.doi.org/10.3810/pgm.2010.11.2237] [PMID: 21084796]
[172]
Blum, K.; Braverman, E.; Carbajal, J. Hypothesizing synergy between acupuncture/auriotherapy and natural activation of mesolimbic dopaminergic pathways: Putative natural treatment modalities for the reduction of drug hunger and relapse. Integrative Omics and Applied Biotechnology Letters, 2011, 1, 1-14.
[173]
Gilley, E. Integrating the Science of Addiction and the Science of Wellbeing. J. Alcohol. Drug Depend., 2017, 5(4), 2781.
[http://dx.doi.org/10.4172/2329-6488.1000275]
[174]
Blum, K.; Thanos, P.K.; Gold, M.S. Dopamine and glucose, obesity, and reward deficiency syndrome. Front. Psychol., 2014, 5, 919.
[http://dx.doi.org/10.3389/fpsyg.2014.00919] [PMID: 25278909]
[175]
Archer, T.; Badgaiyan, R.D.; Blum, K. Physical exercise interventions for drug addictive disorders. J. Reward Defic. Syndr. Addict. Sci., 2017, 3(1), 17-20.
[http://dx.doi.org/10.17756/jrdsas.2017-036] [PMID: 29034367]
[176]
Finan, P.H.; Letzen, J.; Epstein, D.H.; Mun, C.J.; Stull, S.; Kowalczyk, W.J.; Agage, D.; Phillips, K.A.; Pizzagalli, D.A.; Preston, K.L. Reward responsiveness in patients with opioid use disorder on opioid agonist treatment: Role of comorbid chronic pain. Pain Med., 2021, 22(9), 2019-2027.
[http://dx.doi.org/10.1093/pm/pnab031] [PMID: 33624802]
[177]
Prendergast, M.L.; Podus, D.; Chang, E.; Urada, D. The effectiveness of drug abuse treatment: A meta-analysis of comparison group studies. Drug Alcohol Depend., 2002, 67(1), 53-72.
[http://dx.doi.org/10.1016/S0376-8716(02)00014-5] [PMID: 12062779]
[178]
Moses, T.E.H.; Burmeister, M.; Greenwald, M.K. Heroin delay discounting and impulsivity: Modulation by DRD1 genetic variation. Addict. Biol., 2020, 25(3), e12777.
[http://dx.doi.org/10.1111/adb.12777] [PMID: 31192519]
[179]
Leyton, M. Altered dopamine transmission as a familial risk trait for addictions. Curr. Opin. Behav. Sci., 2017, 13, 130-138.
[http://dx.doi.org/10.1016/j.cobeha.2016.11.011]
[180]
Luz, M.; Mash, D. Evaluating the toxicity and therapeutic potential of ibogaine in the treatment of chronic opioid abuse. Expert Opin. Drug Metab. Toxicol., 2021.
[http://dx.doi.org/10.1080/17425255.2021.1944099]
[181]
Volkow, N. Harnessing the power of science to inform substance abuse and addiction policy and practice; National Institute on Drug Abuse, 2014.