[7]
Khan, M.M. Saigal, Khan, S.; Shareef, S.; Danish, M. Organocatalyzed synthesis and antifungal activity of fully substituted 1, 4-dihydropyridines. Chem. Select, 2018, 3(24), 6830-6835.
[14]
Demirbas, N.; Mermer, A.; Demirbas, A. Green methodologies leading to formation of new c-c and c-heteroatom bond; Chembridge Scholars Publishing: England, 2022, pp. 1-30.
[15]
Khandelwal, S.; Tailor, Y. K.; Rushell, E.; Kumar, M. Use of sustainable organic transformations in the construction of heterocyclic scaffolds. Green App. Med. Chem. Sus. Drug Des., 2020, 245-352.
[40]
Yue, S.; Jin, X.; Dong, X.; Qu, C. Extraction rate of total flavonoids from Toona sinensis seeds with different deep eutectic solvents. J. Fuyang Normal University. Nat. Sci., 2020, 37, 67-71.
[58]
Zhu, J.J.; Wang, Z.M.; Ma, X.Y.; Feng, W-H.; Zhang, Q-W. A quantitative method for simultaneous determination of four anthraquinones with one marker in Rhei Radix et Rhizoma. Chin. Herb. Med., 2012, 4(2), 157-163.
[59]
Wang, J.; Chen, F.; Liu, X.; Shuchang, W. Application of deep eutectic solvents in Chinese materia medica. Chin. Tradit. Herbal Drugs., 2020, J. Anal. Methods Chem.
[79]
Nandi, S.; Jamatia, R.; Sarkar, R.; Sarkar, F.K.; Alam, S.; Pal, A.K. One-pot multicomponent reaction: A highly versatile strategy for the construction of valuable nitrogen-containing heterocycles. Chem. Select, 2000, 7(33), e202201901.
[87]
Henkel, B.; Beck, B.; Westner, B.; Mejat, B.; Dömling, A. Convergent multicomponent assembly of 2-acyloxymethyl thiazoles, Tet. Lett, 2003, 44(50), 8947-8950.
[94]
Okandeji, B.O.; Gordon, J.R.; Sello, J.K. Catalysis of Ugi Four Component Coupling Reactions by Rare Earth Metal Triflates. J. Org. Chem., 2008, 73(14), 5595-5597.
[97]
Niu, T-F.; Lu, G-P.; Cai, C. The Ugi reaction in a polyethylene glycol medium: A mild, protocol for the production of compound libraries. J. Chem. Res., 2011, 8, 444-447.
[123]
Wang, T.; Huang, X-G.; Liu, J.; Li, B.; Wu, J.J.; Chen, K.X.; Zhu, W.L.; Xu, X.Y.; Zeng, B.B. An efficient one-pot synthesis of substituted 2-aminothiophenes via three-component Gewald reaction catalyzed by L-Proline. Synlett, 2010, 9, 1351-1354.
[131]
Dos Santos, B.D.D.C.F.; Forero, J.S.B.; de Carvalho, E.M.; Jones, J.; da Silva, A.M. Solventlesssynthesis of 2-aminothiophenes via the Gewald reaction under ultrasonic conditions. Het. Lett., 2012, 2(1), 31-36.
[140]
Soto, J. L.; Seoane, C.; Zamorano, P.; Rubio, M. J.; Monforte, A.; Quinteiro, M. Synthesis of heterocyclic compounds. Part 46. The reactions of malonamide and 2-cyanoacetamide with substituted propenones. J Chem Society, Perkin Transac. 1, 1985, 8, 1681-1685.
[182]
Shilpa, T.; Harry, N.; Shilpa, T.; Anilkumar, G. An overview of microwave-assisted kabachnik-fields reactions. ChemSelect, 2020, 5, 4422-4436.
[183]
Nazish, M.; Saravanan, S.; Khan, N.H.; Kumari, P.; Kureshy, R.I.; Abdi, S.H.R.; Bajaj, H.C. Magnetic Fe3O4 nanoparticle-supported phosphotungstic acid as a recyclable catalyst for the kabachnik-fields reaction of isatins, imines, and aldehydes under solvent-free conditions. ChemPlusChem, 2014, 79, 1753-1760.
[184]
Zefirov, N.S.; Matveeva, E.D. Catalytic Kabachnik-Fields reaction: New horizons for old reaction. ARKIVO, 2008, 2008, 1-17.
[186]
Wang, L.; Zhu, K-Q.; Chen, Q.; He, M-Y. Facile and green synthesis of Hantzsch derivatives in deep eutectic solvent. Green Process Synthesis, 2014, 3(6), 1-5.
[187]
Xia, J.J.; Wang, G.W. One-pot synthesis and aromatization of 1, 4-dihydropyridines in refluxing water. Synthesis, 2005, 14, 2379-2383.
[214]
Al-Momani, L.A.; Lorbach, V.; Detry, J.; Geilenkirchen, P.; Mller, M. β- and σ-amino acids (2, 3- and 3,4-trans-CHA) as catalysts in Knoevenagel condensation and asymmetric aldol reactions. ARKIVOC, 2016, 6, 172-183.
[228]
Dabiri, M.; Salehi, P.; Koohshari, M.; Hajizadeh, Z. MaGee, D.I An efficient synthesis of tetrahydropyrazolopyridine derivatives by a one-pot tandem multi-component reaction in a green media. ARKIVOC, 2014, 4, 204-214.
[233]
Khandelwal, S.; Tailor, Y.G.; Rushell, E.; Kumar, M. Advances in Green and Sustainable Chemistry. Green App. Med. Chem. Sus. Drug Des., 2023, 2023, 245-352.
[240]
Singh, G.; Singh, G.; Yadav, A.K.; Mishra, A.K. Synthesis and antimicrobial evaluation of some new pyrido [2,3-d]pyrimidines and their ribofuranosides. Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem., 2002, 41, 430-432.
[273]
Wang, X.S.; Zeng, Z.S.; Shi, D.Q.; Tu, S.J.; Wei, X.Y.; Zong, Z.M. Three component one-pot synthesis of pyrido[2,3-d]pyrimidine derivatives catalyzed by KF-alumina. Synth. Commun., 2006, 26, 256-259.
[275]
Kakade, G.; Madje, B.; Ware, M.; Balaskar, R.; Shingare, M.S. Solvent-free one-pot synthesis of polyhydropyridopyrimidine derivatives via Hantzsch condensation using sulphamic acid catalyst. Org. Chem. Indian J., 2007, 3, 104-106.
[276]
Verma, S.; Jain, S.L. Thiourea dioxide in water as a recyclable catalyst for the synthesis of structurally diverse dihydropyrido [2,3-d]pyrimidine-2,4-diones. Tet. Lett, 2012, 53, 2595-2600.
[290]
Krasavin, M.; Tsirulnikov, S.; Nikulnikov, M.; Sandulenko, Y.; Bukhryakov, K. tert-Butyl isocyanide revisited as a convertible reagent in the Groebke-Blackburn reaction. Tet. Lett, 2008, 49, 7318-7321.
[291]
Parchinsky, V.Z.; Shuvalova, O.; Ushakova, O.; Kravchenko, D.V.; Krasavin, M. Multi-component reactions between 2-aminopyrimidine, aldehydes and isonitriles: The use of a nonpolar solvent suppresses formation of multiple products. Tet. Lett, 2006, 47, 947-951.
[294]
Rousseau, A.L.; Matlaba, P.; Parkinson, C.J. Multicomponent synthesis of imidazo [1, 2-a] pyridines using catalytic zinc chloride. Tet. Lett, 2007, 48, 4079-4082.
[295]
Adib, M.; Mahdavi, M.; Noghani, M.A.; Mirzaei, P. Catalyst-free threecomponent reaction between 2-aminopyridines (or 2-aminothiazoles), aldehydes, and isocyanides in water. Tet. Lett, 2007, 48, 7263-7265.
[334]
Gupta, A.K.; Kumari, K.; Singh, N.; Raghuvanshi, D.S.; Singh, K.N. An eco-safe approach to benzopyranopyrimidines and 4H-chromenes in ionic liquid at room temperature. Tet. Lett, 2012, 53, 650-653.
[337]
Manhas, M.S.; Ganguly, S.N.; Mukherjee, S.; Jain, A.K.; Bose, A.K. Microwave initiated reactions: Pechmann coumarin synthesis, Biginelli reaction and acylation. Tet. Lett, 2006, 47, 2423-2425.
[338]
Augustine, J.K.; Bombrun, A.; Ramappa, B.; Boodappa, C. An efficient one-pot synthesis of coumarins mediated by propylphosphonic anhydride (T3P) via the Perkin condensation. Tet. Lett, 2012, 53, 4422-4425.
[341]
Moafi, L.; Ahadi, S.; Bazgir, A.; New, H.A. 14-1 Analogues: Synthesis of 2-amino-4-cyano-4H-chromenes. Tet. Lett, 2010, 51, 6270-6274.
[347]
Shanthi, G.; Perumal, P.T. An eco-friendly synthesis of 2-aminochromenes and indolyl chromenes catalyzed by InCl3 in aqueous media. Tet. Lett, 2007, 48, 6785-6789.
[349]
Lakshmi, N.V.; Kiruthika, S.E.; Perumal, P.T. A rapid and efficient access to 4-substituted 2-amino-4H-chromenes catalyzed by InCl3. Synlett, 2011, 10, 1389-1394.
[350]
Ghahremanzadeh, R.; Amanpour, T.; Bazgir, A. Pseudo four-component synthesis of benzopyranopyrimidines. Tet. Lett, 2010, 51, 4202-4420.
[354]
Bremner, J.B.; Samosorn, S. Azepines and their Fused-Ring Derivatives. Comprehensive Heterocyclic Chem. III, 2008, 13, 1-43.
[362]
Li, R.; Farmer, P.S.; Wang, J.; Boyd, R.J.; Cameron, T.S.; Quilliam, M.A.; Walter, J.A.; Howlett, S.E. Molecular geometries of dibenzothiazepinone and dibenzoxazepinone calcium antagonists Drug Des. Dis., 1995, 12(4), 337-358.
[363]
Nagarajan, K.; David, J.; Kulkarni, Y.; Hendi, S.; Shenoy, S.; Upadhyaya, P. Piperazinylbenzonaphthoxazepines with CNS depressant properties. Eur. J. Med. Chem., 1986, 21, 21-26.