Nobiletin in Cancer Therapy; Mechanisms and Therapy Perspectives

Page: [1713 - 1728] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Cancer has remained to be one of the major challenges in medicine and regarded as the second leading cause of death worldwide. Different types of cancer may resist anti-cancer drugs following certain mutations such as those in tumor suppressor genes, exhaustion of the immune system, and overexpression of drug resistance mediators, which increase the required concentration of anticancer drugs so as to overcome drug resistance. Moreover, treatment with a high dose of such drugs is highly associated with severe normal tissue toxicity. Administration of low-toxic agents has long been an intriguing idea to enhance tumor suppression. Naturally occurring agents e.g., herb-derived molecules have shown a dual effect on normal and malignant cells. On the one hand, these agents may induce cell death in malignant cells, while on the other hand reduce normal cell toxicity. Nobiletin, one of the well-known polymethoxyflavones (PMFs), has reportedly shown various beneficial effects on the suppression of cancer and the protection of normal cells against different toxic agents. Our review aims to explain the main mechanisms underlying nobiletin as an inhibitor of cancer. We have reviewed the mechanisms of cancer cell death caused by nobiletin, such as stimulation of reactive oxygen species (ROS), modulation of immune evasion mechanisms, targeting tumor suppressor genes, and modulation of epigenetic modulators, among others; the inhibitory mechanisms of nobiletin affecting tumor resistance properties such as modulation of hypoxia, multidrug resistance, angiogenesis, epithelial-mesenchymal transition (EMT) have been fully investigated. Also, the inhibition of anti-apoptotic and invasive mechanisms induced by nobiletin will later be discussed. In the end, protective mechanisms of nobiletin on normal cells/tissue, clinical trial results, and future perspectives are reviewed.

[1]
Nail AN, McCaffrey LM, Banerjee M, Ferragut Cardoso AP, States JC. Chronic arsenic exposure suppresses ATM pathway activation in human keratinocytes. Toxicol Appl Pharmacol 2022; 446: 116042.
[http://dx.doi.org/10.1016/j.taap.2022.116042] [PMID: 35513056]
[2]
Patil V, Herceg Z. DNA methylation and carcinogenesis: Current and future perspectives. Clin Epigenetics 2019; 153-71.
[3]
Okazaki Y. The role of ferric nitrilotriacetate in renal carcinogenesis and cell death: From animal models to clinical implications. Cancers 2022; 14(6): 1495.
[http://dx.doi.org/10.3390/cancers14061495] [PMID: 35326646]
[4]
Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58(12): 875-88.
[http://dx.doi.org/10.1002/gcc.22796] [PMID: 31393631]
[5]
Wang Z, Liu Y, Musa AE. Regulation of cell death mechanisms by melatonin: Implications in cancer therapy. Anticancer Agents Med Chem 2022; 22(11): 2080-90.
[6]
Cronin KA, Lake AJ, Scott S, et al. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. Cancer 2018; 124(13): 2785-800.
[http://dx.doi.org/10.1002/cncr.31551] [PMID: 29786848]
[7]
Sala-Trepat M, Cole J, Green MHL, Rigaud O, Vilcoq JR, Moustacchi E. Genotoxic effects of radiotherapy and chemotherapy on the circulating lymphocytes of breast cancer patients. III: Measurements of mutant frequency to 6-thioguanine resistance. Mutagenesis 1990; 5(6): 593-8.
[http://dx.doi.org/10.1093/mutage/5.6.593] [PMID: 2263217]
[8]
Xie X, Zhang Y, Li F, et al. Challenges and opportunities from basic cancer biology for nanomedicine for targeted drug delivery. Curr Cancer Drug Targets 2019; 19(4): 257-76.
[http://dx.doi.org/10.2174/1568009618666180628160211] [PMID: 29956629]
[9]
Adnan M, Rasul A, Shah MA, et al. Radioprotective role of natural polyphenols: From sources to mechanisms. Anticancer Agents Med Chem 2022; 22(1): 30-9.
[10]
Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: A current overview. Clin Exp Metastasis 2018; 35(4): 309-18.
[http://dx.doi.org/10.1007/s10585-018-9903-0] [PMID: 29799080]
[11]
Shaaban M, Othman H, Ibrahim T, et al. Immune checkpoint regulators: A new era toward promising cancer therapy. Curr Cancer Drug Targets 2020; 20(6): 429-60.
[http://dx.doi.org/10.2174/1568009620666200422081912] [PMID: 32321404]
[12]
Mrowka P, Glodkowska-Mrowka E. PPARγ agonists in combination cancer therapies. Curr Cancer Drug Targets 2020; 20(3): 197-215.
[http://dx.doi.org/10.2174/1568009619666191209102015] [PMID: 31814555]
[13]
Candeias M. The immune system in cancer prevention, development and therapy. Anticancer Agents Med Chem 2016; 16(1): 101-7.
[14]
Oruganti L, Meriga B. Plant polyphenolic compounds potentiates therapeutic efficiency of anticancer chemotherapeutic drugs: A review. Endocr Metab Immune Disord Drug 2021; 21(2): 246-52.
[15]
Goh JXH, Tan LT-H, Goh JK, et al. Nobiletin and derivatives: Functional compounds from citrus fruit peel for colon cancer chemoprevention. Cancers 2019; 11(6): 867.
[http://dx.doi.org/10.3390/cancers11060867] [PMID: 31234411]
[16]
Wu X, Song M, Qiu P, et al. Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis. Carcinogenesis 2017; 38(4): 455-64.
[http://dx.doi.org/10.1093/carcin/bgx018] [PMID: 28207072]
[17]
Yasuda N, Ishii T, Oyama D, et al. Neuroprotective effect of nobiletin on cerebral ischemia-reperfusion injury in transient middle cerebral artery-occluded rats. Brain Res 2014; 1559: 46-54.
[http://dx.doi.org/10.1016/j.brainres.2014.02.007] [PMID: 24534366]
[18]
Seoka M, Ma G, Zhang L, et al. Expression and functional analysis of the nobiletin biosynthesis-related gene CitOMT in citrus fruit. Sci Rep 2020; 10(1): 15288.
[http://dx.doi.org/10.1038/s41598-020-72277-z] [PMID: 32943728]
[19]
Mizuno H, Yoshikawa H, Usuki T. Extraction of nobiletin and tangeretin from peels of shekwasha and ponkan using [Cmim][(MeO)(H)PO2] and centrifugation. Nat Prod Commun 2019; 14(5): 1934578X19845816.
[20]
Tung YC, Chou YC, Hung WL, et al. Polymethoxyflavones: Chemistry and molecular mechanisms for cancer prevention and treatment. Curr Pharmacol Rep 2019; 5(2): 98-113.
[http://dx.doi.org/10.1007/s40495-019-00170-z]
[21]
Nguyen-Ngo C, Salomon C, Quak S, Lai A, Willcox JC, Lappas M. Nobiletin exerts anti-diabetic and anti-inflammatory effects in an in vitro human model and in vivo murine model of gestational diabetes. Clin Sci 2020; 134(6): 571-92.
[http://dx.doi.org/10.1042/CS20191099] [PMID: 32129440]
[22]
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 2019; 234(10): 17187-204.
[http://dx.doi.org/10.1002/jcp.28504] [PMID: 30912132]
[23]
Potue P, Wunpathe C, Maneesai P, Kukongviriyapan U, Prachaney P, Pakdeechote P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in l-NAME induced hypertensive rats. Food Funct 2019; 10(4): 1880-92.
[http://dx.doi.org/10.1039/C8FO02408A] [PMID: 30864566]
[24]
Ijaz MU, Tahir A, Samad A, Anwar H. Nobiletin ameliorates nonylphenol-induced testicular damage by improving biochemical, steroidogenic, hormonal, spermatogenic, apoptotic and histological profile. Hum Exp Toxicol 2021; 40(3): 403-16.
[http://dx.doi.org/10.1177/0960327120950007] [PMID: 32815738]
[25]
Huang H, Li L, Shi W, et al. The multifunctional effects of nobiletin and its metabolites in vivo and in vitro. Evid Based Complement Alternat Med 2016; 2016: 1-14.
[http://dx.doi.org/10.1155/2016/2918796] [PMID: 27761146]
[26]
Di Minno A, Spadarella G, Prisco D, Scalera A, Ricciardi E, Di Minno G. Antithrombotic drugs, patient characteristics, and gastrointestinal bleeding: Clinical translation and areas of research. Blood Rev 2015; 29(5): 335-43.
[http://dx.doi.org/10.1016/j.blre.2015.03.004] [PMID: 25866382]
[27]
Thilakarathna S, Rupasinghe H. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 2013; 5(9): 3367-87.
[http://dx.doi.org/10.3390/nu5093367] [PMID: 23989753]
[28]
Onoue S, Nakamura T, Uchida A, et al. Physicochemical and biopharmaceutical characterization of amorphous solid dispersion of nobiletin, a citrus polymethoxylated flavone, with improved hepatoprotective effects. Eur J Pharm Sci 2013; 49(4): 453-60.
[http://dx.doi.org/10.1016/j.ejps.2013.05.014] [PMID: 23707470]
[29]
Onoue S, Uchida A, Takahashi H, et al. Development of high-energy amorphous solid dispersion of nanosized nobiletin, a citrus polymethoxylated flavone, with improved oral bioavailability. J Pharm Sci 2011; 100(9): 3793-801.
[http://dx.doi.org/10.1002/jps.22585] [PMID: 21520087]
[30]
Li S, Wang H, Guo L, Zhao H, Ho CT. Chemistry and bioactivity of nobiletin and its metabolites. J Funct Foods 2014; 6: 2-10.
[http://dx.doi.org/10.1016/j.jff.2013.12.011]
[31]
Hollman PC. Absorption, bioavailability, and metabolism of flavonoids. Pharm Biol 2004; 42 (sup1): 74-83.
[32]
Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med 2010; 31(6): 446-67.
[http://dx.doi.org/10.1016/j.mam.2010.09.007] [PMID: 20854839]
[33]
Ajazuddin Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010; 81(7): 680-9.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[34]
Babazadeh A, Zeinali M, Hamishehkar H. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Curr Drug Targets 2018; 19(2): 170-80.
[http://dx.doi.org/10.2174/1389450118666170508095250] [PMID: 28482783]
[35]
Khazei K, Mohajeri N, Bonabi E, Turk Z, Zarghami N. New insights toward nanostructured drug delivery of plant-derived polyphenol compounds: Cancer treatment and gene expression profiles. Curr Cancer Drug Targets 2021; 21(8): 689-701.
[http://dx.doi.org/10.2174/1568009621666210525152802] [PMID: 34036921]
[36]
Hu J, Wei P, Seeberger PH, Yin J. Mannose-functionalized nanoscaffolds for targeted delivery in biomedical applications. Chem Asian J 2018; 13(22): 3448-59.
[http://dx.doi.org/10.1002/asia.201801088] [PMID: 30251341]
[37]
Kong SM, Costa DF, Jagielska A, Van Vliet KJ, Hammond PT. Stiffness of targeted layer-by-layer nanoparticles impacts elimination half-life, tumor accumulation, and tumor penetration. Proc Natl Acad Sci USA 2021; 118(42): e2104826118.
[http://dx.doi.org/10.1073/pnas.2104826118] [PMID: 34649991]
[38]
Mu Q, Najafi M. Resveratrol for targeting the tumor microenvironment and its interactions with cancer cells. Int Immunopharmacol 2021; 98: 107895.
[http://dx.doi.org/10.1016/j.intimp.2021.107895] [PMID: 34171623]
[39]
Fu X, Li M, Tang C, Huang Z, Najafi M. Targeting of cancer cell death mechanisms by resveratrol: A review. Apoptosis 2021; 26(11-12): 561-73.
[http://dx.doi.org/10.1007/s10495-021-01689-7] [PMID: 34561763]
[40]
Liao W, Liu Z, Zhang T, et al. Enhancement of anti-inflammatory properties of nobiletin in macrophages by a nano-emulsion preparation. J Agric Food Chem 2018; 66(1): 91-8.
[http://dx.doi.org/10.1021/acs.jafc.7b03953] [PMID: 29236498]
[41]
Wu D, Liang Y, Pei Y, Li B, Liang H. Plant exine capsules based encapsulation strategy: A high loading and long-term effective delivery system for nobiletin. Food Res Int 2020; 127: 108691.
[http://dx.doi.org/10.1016/j.foodres.2019.108691] [PMID: 31882107]
[42]
Hattori T, Tagawa H, Inai M, et al. Transdermal delivery of nobiletin using ionic liquids. Sci Rep 2019; 9(1): 20191.
[http://dx.doi.org/10.1038/s41598-019-56731-1] [PMID: 31882884]
[43]
Chen YY, Liang JJ, Wang DL, et al. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review. Crit Rev Food Sci Nutr 2022; 1-21.
[http://dx.doi.org/10.1080/10408398.2022.2030297] [PMID: 35089821]
[44]
Amini P, Nodooshan SJ, Ashrafizadeh M, et al. Resveratrol induces apoptosis and attenuates proliferation of MCF-7 cells in combination with radiation and hyperthermia. Curr Mol Med 2021; 21(2): 142-50.
[http://dx.doi.org/10.2174/18755666MTA2pODE0z] [PMID: 32436827]
[45]
Nodooshan SJ, Amini P, Ashrafizadeh M, et al. Suberosin attenuates the proliferation of MCF-7 breast cancer cells in combination with radiotherapy or hyperthermia. Curr Drug Res Rev 2021; 13(2): 148-53.
[http://dx.doi.org/10.2174/2589977512666201228104528] [PMID: 33371865]
[46]
Moslehi M, Moazamiyanfar R, Dakkali MS, et al. Modulation of the immune system by melatonin; implications for cancer therapy. Int Immunopharmacol 2022; 108: 108890.
[http://dx.doi.org/10.1016/j.intimp.2022.108890] [PMID: 35623297]
[47]
Mitra S, Dash R. Natural products for the management and prevention of breast cancer. Evid Based Complementary Altern Med 2018; 2018
[http://dx.doi.org/10.1155/2018/8324696]
[48]
Fu X, Tang J, Wen P, Huang Z, Najafi M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch Biochem Biophys 2021; 708: 108952.
[http://dx.doi.org/10.1016/j.abb.2021.108952] [PMID: 34097901]
[49]
Chaiswing L, St Clair WH, St Clair DK. Redox paradox: A novel approach to therapeutics-resistant cancer. Antioxid Redox Signal 2018; 29(13): 1237-72.
[http://dx.doi.org/10.1089/ars.2017.7485] [PMID: 29325444]
[50]
Farhood B, Najafi M, Salehi E, et al. Disruption of the redox balance with either oxidative or anti‐oxidative overloading as a promising target for cancer therapy. J Cell Biochem 2019; 120(1): 71-6.
[http://dx.doi.org/10.1002/jcb.27594] [PMID: 30203529]
[51]
Bakalova R, Semkova S, Ivanova D, et al. Selective targeting of cancerous mitochondria and suppression of tumor growth using redox-active treatment adjuvant. Oxid Med Cell Longev 2020; 2020
[http://dx.doi.org/10.1155/2020/6212935]
[52]
Yang J, Yang Y, Wang L, Jin Q, Pan M. Nobiletin selectively inhibits oral cancer cell growth by promoting apoptosis and DNA damage in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130(4): 419-27.
[http://dx.doi.org/10.1016/j.oooo.2020.06.020] [PMID: 32868254]
[53]
Zhang R, Chen J, Mao L, et al. Nobiletin triggers reactive oxygen species-mediated pyroptosis through regulating autophagy in ovarian cancer cells. J Agric Food Chem 2020; 68(5): 1326-36.
[http://dx.doi.org/10.1021/acs.jafc.9b07908] [PMID: 31955565]
[54]
Li C, Zhang C, Wang Y, Ghidan AY, Antary T. Nobiletin enhances the chemotherapeutic efficacy of docetaxel through inhibition of phosphatidylinositol 3-Kinase/Protein kinase B and induction of apoptosis in colon cancer cells. Indian J Pharm Sci 2021; 83(5): 1057-64.
[55]
Feng S, Zhou Y, Huang H, et al. Nobiletin induces ferroptosis in human skin melanoma cells through the GSK3β-mediated Keap1/Nrf2/HO-1 signalling pathway. Front Genet 2022; 13: 865073.
[http://dx.doi.org/10.3389/fgene.2022.865073]
[56]
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int Immunopharmacol 2020; 87: 106807.
[http://dx.doi.org/10.1016/j.intimp.2020.106807] [PMID: 32683299]
[57]
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Rezaeyan A, Najafi M. Abscopal effect in radioimmunotherapy. Int Immunopharmacol 2020; 85: 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[58]
Huang J, Chen X, Chang Z, Xiao C, Najafi M. Boosting anti-tumour immunity using adjuvant apigenin. Anticancer Agents Med Chem 2023; 23(3): 266-77.
[PMID: 35616683]
[59]
Mortezaee K, Najafi M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit Rev Oncol Hematol 2021; 157: 103180.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103180] [PMID: 33264717]
[60]
Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol 2021; 226: 108707.
[http://dx.doi.org/10.1016/j.clim.2021.108707] [PMID: 33662590]
[61]
Sp N, Kang DY, Lee JM, Jang KJ. Mechanistic insights of anti-immune evasion by nobiletin through regulating miR-197/STAT3/PD-L1 Signaling in Non-Small Cell Lung Cancer (NSCLC) cells. Int J Mol Sci 2021; 22(18): 9843.
[http://dx.doi.org/10.3390/ijms22189843] [PMID: 34576006]
[62]
Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nat Rev Mol Cell Biol 2018; 19(9): 547-62.
[http://dx.doi.org/10.1038/s41580-018-0015-0] [PMID: 29858604]
[63]
Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: An overview. Cell Physiol Biochem 2018; 51(6): 2647-93.
[http://dx.doi.org/10.1159/000495956] [PMID: 30562755]
[64]
Yu C, Yang B, Najafi M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin Pharmacol Toxicol 2021; 129(6): 397-415.
[http://dx.doi.org/10.1111/bcpt.13648] [PMID: 34473898]
[65]
Gupta A, Shah K, Oza MJ, Behl T. Reactivation of p53 gene by MDM2 inhibitors: A novel therapy for cancer treatment. Biomed Pharmacother 2019; 109: 484-92.
[http://dx.doi.org/10.1016/j.biopha.2018.10.155] [PMID: 30551517]
[66]
Huang J, Chang Z, Lu Q, Chen X, Najafi M. Nobiletin as an inducer of programmed cell death in cancer: A review. Apoptosis 2022; 27(5-6): 297-310.
[http://dx.doi.org/10.1007/s10495-022-01721-4] [PMID: 35312885]
[67]
Wu X, Song M, Qiu P, et al. A metabolite of nobiletin, 4′-demethylnobiletin and atorvastatin synergistically inhibits human colon cancer cell growth by inducing G0/G1 cell cycle arrest and apoptosis. Food Funct 2018; 9(1): 87-95.
[http://dx.doi.org/10.1039/C7FO01155E] [PMID: 29063088]
[68]
Jiang YP, Guo H, Wang XB. Nobiletin (NOB) suppresses autophagic degradation via over-expressing AKT pathway and enhances apoptosis in multidrug-resistant SKOV3/TAX ovarian cancer cells. Biomed Pharmacother 2018; 103: 29-37.
[http://dx.doi.org/10.1016/j.biopha.2018.03.126] [PMID: 29635125]
[69]
Luo G, Guan X, Zhou L. Apoptotic effect of citrus fruit extract nobiletin on lung cancer cell line A549 in vitro and in vivo. Cancer Biol Ther 2008; 7(6): 966-73.
[http://dx.doi.org/10.4161/cbt.7.6.5967] [PMID: 18379194]
[70]
Moon JY, Cho M, Ahn KS, Cho SK. Nobiletin induces apoptosis and potentiates the effects of the anticancer drug 5-fluorouracil in p53-mutated SNU-16 human gastric cancer cells. Nutr Cancer 2013; 65(2): 286-95.
[http://dx.doi.org/10.1080/01635581.2013.756529] [PMID: 23441616]
[71]
Zhang Y, Dou H, Li H, He Z, Wu H. The citrus flavonoid nobiletin inhibits proliferation and induces apoptosis in human pancreatic cancer cells in vitro. Food Sci Biotechnol 2014; 23(1): 225-9.
[http://dx.doi.org/10.1007/s10068-014-0031-6]
[72]
Chen J, Creed A, Chen AY, et al. Nobiletin suppresses cell viability through AKT Pathways in PC-3 and DU-145 prostate cancer cells. BMC Pharmacol Toxicol 2014; 15(1): 59.
[http://dx.doi.org/10.1186/2050-6511-15-59] [PMID: 25342300]
[73]
Chen J, Chen A, Huang H, et al. The flavonoid nobiletin inhibits tumor growth and angiogenesis of ovarian cancers via the Akt pathway. Int J Oncol 2015; 46(6): 2629-38.
[http://dx.doi.org/10.3892/ijo.2015.2946] [PMID: 25845666]
[74]
Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer 2018; 18(7): 433-41.
[http://dx.doi.org/10.1038/s41568-018-0004-9] [PMID: 29622806]
[75]
Bentires-Alj M, Barbu V, Fillet M, et al. NF-κB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 2003; 22(1): 90-7.
[http://dx.doi.org/10.1038/sj.onc.1206056] [PMID: 12527911]
[76]
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Najafi M. Damage-associated molecular patterns in tumor radiotherapy. Int Immunopharmacol 2020; 86: 106761.
[http://dx.doi.org/10.1016/j.intimp.2020.106761] [PMID: 32629409]
[77]
Kim E, Kim YJ, Ji Z, et al. ROR activation by Nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer. Cell Death Dis 2022; 13(4): 374.
[http://dx.doi.org/10.1038/s41419-022-04826-5] [PMID: 35440077]
[78]
Jiang H, Chen H, Jin C, Mo J, Wang H. Nobiletin flavone inhibits the growth and metastasis of human pancreatic cancer cells via induction of autophagy, G0/G1 cell cycle arrest and inhibition of NF-kB signalling pathway. J BUON 2020; 25(2): 1070-5.
[79]
Ma Y, Ren X, Patel N, et al. Nobiletin, a citrus polymethoxyflavone, enhances the effects of bicalutamide on prostate cancer cells via down regulation of NF-κB, STAT3, and ERK activation. RSC Advances 2020; 10(17): 10254-62.
[http://dx.doi.org/10.1039/C9RA10020B] [PMID: 35498570]
[80]
Wang JG, Jian WJ, Li Y, Zhang J. Nobiletin promotes the pyroptosis of breast cancer via regulation of miR ‐200b/JAZF1 axis. Kaohsiung J Med Sci 2021; 37(7): 572-82.
[http://dx.doi.org/10.1002/kjm2.12371] [PMID: 33728753]
[81]
Collins DC, Chenard-Poirier M, Lopez JS. The PI3K pathway at the crossroads of cancer and the immune system: Strategies for next generation immunotherapy combinations. Curr Cancer Drug Targets 2018; 18(4): 355-64.
[http://dx.doi.org/10.2174/1568009617666170927114440] [PMID: 28969535]
[82]
Narayanankutty A. PI3K/Akt/mTOR pathway as a therapeutic target for colorectal cancer: A review of preclinical and clinical evidence. Curr Drug Targets 2019; 20(12): 1217-26.
[http://dx.doi.org/10.2174/1389450120666190618123846] [PMID: 31215384]
[83]
Stefani C, Miricescu D, Stanescu-Spinu II, et al. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: Where are we now? Int J Mol Sci 2021; 22(19): 10260.
[http://dx.doi.org/10.3390/ijms221910260] [PMID: 34638601]
[84]
Xu C, Najafi M, Shang Z. Lung pneumonitis and fibrosis in cancer therapy; A review on cellular and molecular mechanisms. Curr Drug Targets 2022; 23(16): 1505-25.
[http://dx.doi.org/10.2174/1389450123666220907144131] [PMID: 36082868]
[85]
Lai X, Najafi M. Redox interactions in chemo/radiation therapy-induced lung toxicity; mechanisms and therapy perspectives. Curr Drug Targets 2022; 23(13): 1261-76.
[http://dx.doi.org/10.2174/1389450123666220705123315] [PMID: 35792117]
[86]
Park JY, Kang SE, Ahn KS, et al. Inhibition of the PI3K-AKT-mTOR pathway suppresses the adipocyte-mediated proliferation and migration of breast cancer cells. J Cancer 2020; 11(9): 2552-9.
[http://dx.doi.org/10.7150/jca.37975] [PMID: 32201525]
[87]
Muscella A, Stefàno E, Calabriso N, De Pascali SA, Fanizzi FP, Marsigliante S. Role of epidermal growth factor receptor signaling in a Pt(II)-resistant human breast cancer cell line. Biochem Pharmacol 2021; 192: 114702.
[http://dx.doi.org/10.1016/j.bcp.2021.114702] [PMID: 34324869]
[88]
Xu Z, Han X, Ou D, et al. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl Microbiol Biotechnol 2020; 104(2): 575-87.
[http://dx.doi.org/10.1007/s00253-019-10257-8] [PMID: 31832711]
[89]
Chen C, Ono M, Takeshima M, Nakano S. Antiproliferative and apoptosis-inducing activity of nobiletin against three subtypes of human breast cancer cell lines. Anticancer Res 2014; 34(4): 1785-92.
[PMID: 24692711]
[90]
Zhang Z, Zhang Z, Jiang G, Sun H, Yu D. Nobiletin sensitizes colorectal cancer cells to oxaliplatin by PI3K Akt MTOR pathway. Front Biosci 2019; 24(2): 303-12.
[http://dx.doi.org/10.2741/4719] [PMID: 30468657]
[91]
Goan YG, Wu WT, Liu CI, Neoh CA, Wu YJ. Involvement of mitochondrial dysfunction, endoplasmic reticulum stress, and the PI3K/AKT/mTOR pathway in nobiletin-induced apoptosis of human bladder cancer cells. Molecules 2019; 24(16): 2881.
[http://dx.doi.org/10.3390/molecules24162881] [PMID: 31398899]
[92]
Fujita Y, Yagishita S, Hagiwara K, et al. The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol Ther 2015; 23(4): 717-27.
[http://dx.doi.org/10.1038/mt.2015.10] [PMID: 25597412]
[93]
Poli V, Camporeale A. STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front Oncol 2015; 5: 121.
[http://dx.doi.org/10.3389/fonc.2015.00121] [PMID: 26106584]
[94]
Ma W, Feng S, Yao X, Yuan Z, Liu L, Xie Y. Nobiletin enhances the efficacy of chemotherapeutic agents in ABCB1 overexpression cancer cells. Sci Rep 2015; 5(1): 18789.
[http://dx.doi.org/10.1038/srep18789] [PMID: 26689156]
[95]
Li P, Huang T, Zou Q, et al. FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. J Immunol 2019; 202(10): 3065-75.
[http://dx.doi.org/10.4049/jimmunol.1801199] [PMID: 30979816]
[96]
Li Y, Chen G, Han Z, Cheng H, Qiao L, Li Y. IL-6/STAT3 signaling contributes to sorafenib resistance in hepatocellular carcinoma through targeting cancer stem cells. OncoTargets Ther 2020; 13: 9721-30.
[http://dx.doi.org/10.2147/OTT.S262089] [PMID: 33061451]
[97]
Wang X, Li Y, Dai Y, et al. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep 2016; 6(1): 36796.
[http://dx.doi.org/10.1038/srep36796] [PMID: 27824145]
[98]
Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer 2020; 19(1): 145.
[http://dx.doi.org/10.1186/s12943-020-01258-7] [PMID: 32972405]
[99]
Mohan CD, Rangappa S, Preetham HD, et al. Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature. Semin Cancer Biol 2022; 80: 157-82.
[100]
Wei D, Zhang G, Zhu Z, et al. Nobiletin inhibits cell viability via the SRC/AKT/STAT3/YY1AP1 pathway in human renal carcinoma cells. Front Pharmacol 2019; 10: 690.
[http://dx.doi.org/10.3389/fphar.2019.00690] [PMID: 31354472]
[101]
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36(11): 1461-73.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[102]
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today 2022; 27(1): 82-101.
[http://dx.doi.org/10.1016/j.drudis.2021.07.007] [PMID: 34252612]
[103]
Liu X, Ma R, Yi B, Riker AI, Xi Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol Sin 2021; 42(7): 1018-26.
[http://dx.doi.org/10.1038/s41401-020-00540-0] [PMID: 33037405]
[104]
Han SH, Han JH, Chun WJ, Lee SS, Kim HS, Lee JW. Nobiletin inhibits non-small-cell lung cancer by inactivating WNT/β-catenin signaling through downregulating miR-15-5p. Evid Based Complement Alternat Med 2021; 2021: 7782963.
[http://dx.doi.org/10.1155/2021/7782963]
[105]
Adham AN, Abdelfatah S, Naqishbandi A, Sugimoto Y, Fleischer E, Efferth T. Transcriptomics, molecular docking, and cross-resistance profiling of nobiletin in cancer cells and synergistic interaction with doxorubicin upon SOX5 transfection. Phytomedicine 2022; 100: 154064.
[http://dx.doi.org/10.1016/j.phymed.2022.154064] [PMID: 35344715]
[106]
You L, Lin J, Yu Z, et al. Nobiletin suppresses cholangiocarcinoma proliferation via inhibiting GSK3β. Int J Biol Sci 2022; 18(15): 5698-712.
[http://dx.doi.org/10.7150/ijbs.78345] [PMID: 36263164]
[107]
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239: 114542.
[http://dx.doi.org/10.1016/j.ejmech.2022.114542] [PMID: 35751979]
[108]
Yasuhisa K, Shin-ya M, Michinori M, Kazumitsu U. Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci 2007; 98(9): 1303-10.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00538.x] [PMID: 17608770]
[109]
Feng W, Zhang M, Wu ZX, et al. Erdafitinib antagonizes ABCB1-mediated multidrug resistance in cancer cells. Front Oncol 2020; 10: 955.
[http://dx.doi.org/10.3389/fonc.2020.00955] [PMID: 32670878]
[110]
Efferth T, Kadioglu O, Saeed MEM, Seo EJ, Mbaveng AT, Kuete V. Medicinal plants and phytochemicals against multidrug-resistant tumor cells expressing ABCB1, ABCG2, or ABCB5: A synopsis of 2 decades. Phytochem Rev 2021; 20(1): 7-53.
[http://dx.doi.org/10.1007/s11101-020-09703-7]
[111]
Long W, Zhang L, Wang Y, Xie H, Wang L, Yu H. Research progress and prospects of autophagy in the mechanism of multidrug resistance in tumors. J Oncol 2022; 2022
[112]
Spirina LV, Avgustinovich AV, Afanas’ev SG, et al. Molecular mechanism of resistance to chemotherapy in gastric cancers, the role of autophagy. Curr Drug Targets 2020; 21(7): 713-21.
[http://dx.doi.org/10.2174/1389450120666191127113854] [PMID: 31775598]
[113]
Li YJ, Lei YH, Yao N, et al. Autophagy and multidrug resistance in cancer. Chin J Cancer 2017; 36(1): 52.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[114]
Moon J, Cho S. Nobiletin induces protective autophagy accompanied by ER-stress mediated apoptosis in human gastric cancer SNU-16 Cells. Molecules 2016; 21(7): 914.
[http://dx.doi.org/10.3390/molecules21070914] [PMID: 27428937]
[115]
Najafi M, Mortezaee K, Majidpoor J. Stromal reprogramming: A target for tumor therapy. Life Sci 2019; 239: 117049.
[http://dx.doi.org/10.1016/j.lfs.2019.117049] [PMID: 31730862]
[116]
Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E. VEGF expression in human macrophages is NF-κB-dependent: Studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBα and a kinase-defective form of the IκB kinase 2. J Cell Sci 2003; 116(4): 665-74.
[http://dx.doi.org/10.1242/jcs.00286] [PMID: 12538767]
[117]
Binion DG, Otterson MF, Rafiee P. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 2008; 57(11): 1509-17.
[http://dx.doi.org/10.1136/gut.2008.152496] [PMID: 18596194]
[118]
Adya R, Tan BK, Punn A, Chen J, Randeva HS. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: Novel insights into visfatin-induced angiogenesis. Cardiovasc Res 2008; 78(2): 356-65.
[http://dx.doi.org/10.1093/cvr/cvm111] [PMID: 18093986]
[119]
Niu G, Wright KL, Huang M, et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21(13): 2000-8.
[http://dx.doi.org/10.1038/sj.onc.1205260] [PMID: 11960372]
[120]
Taeb S, Ashrafizadeh M, Zarrabi A, et al. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr Cancer Drug Targets 2022; 22(1): 18-30.
[http://dx.doi.org/10.2174/1568009622666211224154952] [PMID: 34951575]
[121]
Kunimasa K, Ikekita M, Sato M, et al. Nobiletin, a citrus polymethoxyflavonoid, suppresses multiple angiogenesis-related endothelial cell functions and angiogenesis in vivo. Cancer Sci 2010; 101(11): 2462-9.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01668.x] [PMID: 20670297]
[122]
Sp N, Kang D, Kim D, et al. Nobiletin inhibits CD36-dependent tumor angiogenesis, migration, invasion, and sphere formation through the Cd36/Stat3/Nf-Κb signaling axis. Nutrients 2018; 10(6): 772.
[http://dx.doi.org/10.3390/nu10060772] [PMID: 29914089]
[123]
Febbraio M, Hajjar DP, Silverstein RL. CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001; 108(6): 785-91.
[http://dx.doi.org/10.1172/JCI14006] [PMID: 11560944]
[124]
German AE, Mammoto T, Jiang E, Ingber DE, Mammoto A. Paxillin controls endothelial cell migration and tumor angiogenesis by altering neuropilin 2 expression. J Cell Sci 2014; 127(8): 1672-83.
[http://dx.doi.org/10.1242/jcs.132316] [PMID: 24522185]
[125]
Sp N, Kang D, Joung Y, et al. Nobiletin inhibits angiogenesis by regulating src/fak/stat3-mediated signaling through PXN in ER+ breast cancer cells. Int J Mol Sci 2017; 18(5): 935.
[http://dx.doi.org/10.3390/ijms18050935] [PMID: 28468300]
[126]
Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 2009; 1796(2): 75-90.
[PMID: 19306912]
[127]
Kawabata K, Murakami A, Ohigashi H. Nobiletin, a citrus flavonoid, down-regulates matrix metalloproteinase-7 (matrilysin) expression in HT-29 human colorectal cancer cells. Biosci Biotechnol Biochem 2005; 69(2): 307-14.
[http://dx.doi.org/10.1271/bbb.69.307] [PMID: 15725655]
[128]
Xu C, Zhao H, Chen H, Yao Q. CXCR4 in breast cancer: Oncogenic role and therapeutic targeting. Drug Des Devel Ther 2015; 9: 4953-64.
[PMID: 26356032]
[129]
Baek SH, Kim SM, Nam D, et al. Antimetastatic effect of nobiletin through the down-regulation of CXC chemokine receptor type 4 and matrix metallopeptidase-9. Pharm Biol 2012; 50(10): 1210-8.
[http://dx.doi.org/10.3109/13880209.2012.664151] [PMID: 22853317]
[130]
Heerboth S, Housman G, Leary M, et al. EMT and tumor metastasis. Clin Transl Med 2015; 4(1): 6.
[http://dx.doi.org/10.1186/s40169-015-0048-3] [PMID: 25852822]
[131]
Smith B, Bhowmick N. Role of EMT in metastasis and therapy resistance. J Clin Med 2016; 5(2): 17.
[http://dx.doi.org/10.3390/jcm5020017] [PMID: 26828526]
[132]
Noguchi S, Saito A, Nagase T. YAP/TAZ signaling as a molecular link between fibrosis and cancer. Int J Mol Sci 2018; 19(11): 3674.
[http://dx.doi.org/10.3390/ijms19113674] [PMID: 30463366]
[133]
Gaianigo N, Melisi D, Carbone C. EMT and treatment resistance in pancreatic cancer. Cancers 2017; 9(12): 122.
[http://dx.doi.org/10.3390/cancers9090122] [PMID: 28895920]
[134]
Qin X, Lv X, Li P, et al. Matrix stiffness modulates ILK-mediated YAP activation to control the drug resistance of breast cancer cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866(3): 165625.
[http://dx.doi.org/10.1016/j.bbadis.2019.165625] [PMID: 31785406]
[135]
Da C, Liu Y, Zhan Y, Liu K, Wang R. Nobiletin inhibits epithelial-mesenchymal transition of human non-small cell lung cancer cells by antagonizing the TGF-β1/Smad3 signaling pathway. Oncol Rep 2016; 35(5): 2767-74.
[http://dx.doi.org/10.3892/or.2016.4661] [PMID: 26986176]
[136]
Zhang X, Zheng K, Li C, et al. Nobiletin inhibits invasion via inhibiting AKT/GSK3β/β-catenin signaling pathway in Slug-expressing glioma cells. Oncol Rep 2017; 37(5): 2847-56.
[http://dx.doi.org/10.3892/or.2017.5522] [PMID: 28339056]
[137]
Liu F, Zhang S, Yin M, Guo L, Xu M, Wang Y. Nobiletin inhibits hypoxia‐induced epithelial‐mesenchymal transition in renal cell carcinoma cells. J Cell Biochem 2019; 120(2): 2039-46.
[http://dx.doi.org/10.1002/jcb.27511] [PMID: 30203502]
[138]
Gao X-J, Liu J-W, Zhang Q-G, Zhang J-J, Xu H-T, Liu H-J. Nobiletin inhibited hypoxia-induced epithelial-mesenchymal transition of lung cancer cells by inactivating of Notch-1 signaling and switching on miR-200b. Pharmazie 2015; 70(4): 256-62.
[PMID: 26012256]
[139]
Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234: 116781.
[http://dx.doi.org/10.1016/j.lfs.2019.116781] [PMID: 31430455]
[140]
Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M. Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells 2015; 7(9): 1185-201.
[PMID: 26516409]
[141]
Koury J, Zhong L, Hao J. Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int 2017; 2017
[http://dx.doi.org/10.1155/2017/2925869]
[142]
Hermawan A, Putri H. Bioinformatics studies provide insight into possible target and mechanisms of action of nobiletin against cancer stem cells. Asian Pac J Cancer Prev 2020; 21(3): 611-20.
[http://dx.doi.org/10.31557/APJCP.2020.21.3.611] [PMID: 32212785]
[143]
Turdo A, Glaviano A, Pepe G, et al. Nobiletin and xanthohumol sensitize colorectal cancer stem cells to standard chemotherapy. Cancers 2021; 13(16): 3927.
[http://dx.doi.org/10.3390/cancers13163927] [PMID: 34439086]
[144]
Chien SY, Hsieh MJ, Chen CJ, Yang SF, Chen MK. Nobiletin inhibits invasion and migration of human nasopharyngeal carcinoma cell lines by involving ERK1/2 and transcriptional inhibition of MMP-2. Expert Opin Ther Targets 2015; 19(3): 307-20.
[http://dx.doi.org/10.1517/14728222.2014.992875] [PMID: 25563790]
[145]
Miyata Y, Sato T, Imada K, Dobashi A, Yano M, Ito A. A citrus polymethoxyflavonoid, nobiletin, is a novel MEK inhibitor that exhibits antitumor metastasis in human fibrosarcoma HT-1080 cells. Biochem Biophys Res Commun 2008; 366(1): 168-73.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.100] [PMID: 18053806]
[146]
Cheng HL, Hsieh MJ, Yang JS, et al. Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression. Oncotarget 2016; 7(23): 35208-23.
[http://dx.doi.org/10.18632/oncotarget.9106] [PMID: 27144433]
[147]
Shi MD, Liao YC, Shih YW, Tsai LY. Nobiletin attenuates metastasis via both ERK and PI3K/Akt pathways in HGF-treated liver cancer HepG2 cells. Phytomedicine 2013; 20(8-9): 743-52.
[http://dx.doi.org/10.1016/j.phymed.2013.02.004] [PMID: 23537747]
[148]
Lee YC, Cheng TH, Lee JS, et al. Nobiletin, a citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells. Mol Cell Biochem 2011; 347(1-2): 103-15.
[http://dx.doi.org/10.1007/s11010-010-0618-z] [PMID: 20963626]
[149]
Ren X, Ma Y, Wang X, et al. Nobiletin inhibits cell growth, migration and invasion, and enhances the anti-cancer effect of gemcitabine on pancreatic cancer cells. Nat Prod Commun 2021; 16(4): 1934578X211004062.
[150]
Wang M, Meng D, Zhang P, et al. Antioxidant protection of nobiletin, 5-demethylnobiletin, tangeretin, and 5-demethyltangeretin from citrus peel in Saccharomyces cerevisiae. J Agric Food Chem 2018; 66(12): 3155-60.
[http://dx.doi.org/10.1021/acs.jafc.8b00509] [PMID: 29526093]
[151]
Malik S, Bhatia J, Suchal K, et al. Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Exp Toxicol Pathol 2015; 67(7-8): 427-33.
[http://dx.doi.org/10.1016/j.etp.2015.04.008] [PMID: 26002685]
[152]
Nakajima A, Nemoto K, Ohizumi Y. An evaluation of the genotoxicity and subchronic toxicity of the peel extract of Ponkan cultivar ‘Ohta ponkan’ (Citrus reticulata Blanco) that is rich in nobiletin and tangeretin with anti-dementia activity. Regul Toxicol Pharmacol 2020; 114: 104670.
[http://dx.doi.org/10.1016/j.yrtph.2020.104670] [PMID: 32371103]
[153]
Seki T, Kamiya T, Furukawa K, et al. Nobiletin-rich Citrus reticulata peels, a kampo medicine for Alzheimer’s disease: A case series. Geriatr Gerontol Int 2013; 13(1): 236-8.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00892.x] [PMID: 23286569]
[154]
Yamada S, Shirai M, Ono K, Teruya T, Yamano A, Tae Woo J. Beneficial effects of a nobiletin‐rich formulated supplement of Sikwasa (C. depressa) peel on cognitive function in elderly Japanese subjects; A multicenter, randomized, double‐blind, placebo‐controlled study. Food Sci Nutr 2021; 9(12): 6844-53.
[http://dx.doi.org/10.1002/fsn3.2640] [PMID: 34925812]
[155]
Hashimoto M, Matsuzaki K, Maruyama K, et al. Perilla seed oil in combination with nobiletin-rich ponkan powder enhances cognitive function in healthy elderly Japanese individuals: A possible supplement for brain health in the elderly. Food Funct 2022; 13(5): 2768-81.
[http://dx.doi.org/10.1039/D1FO03508H] [PMID: 35171190]
[156]
Zhang M, Feng K, Huang G, et al. Assessment of oral bioavailability and biotransformation of emulsified nobiletin using in vitro and in vivo models. J Agric Food Chem 2020; 68(41): 11412-20.
[http://dx.doi.org/10.1021/acs.jafc.0c04450] [PMID: 32935545]
[157]
Farhood B, Noodeh FA, Mosaed R, Hassanzadeh G, Bagheri H, Najafi M. Histopathological evaluation of nanocurcumin for mitigation of radiation-induced small intestine injury. Curr Radiopharm 2022.
[158]
Yao J, Zhou JP, Ping QN, Lu Y, Chen L. Distribution of nobiletin chitosan-based microemulsions in brain following i.v. injection in mice. Int J Pharm 2008; 352(1-2): 256-62.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.010] [PMID: 18053660]
[159]
Wang Y, Xie J, Ai Z, Su J. Nobiletin-loaded micelles reduce ovariectomy-induced bone loss by suppressing osteoclastogenesis. Int J Nanomedicine 2019; 14: 7839-49.
[http://dx.doi.org/10.2147/IJN.S213724] [PMID: 31576127]
[160]
Lei L, Zhang Y, He L, Wu S, Li B, Li Y. Fabrication of nanoemulsion-filled alginate hydrogel to control the digestion behavior of hydrophobic nobiletin. Lebensm Wiss Technol 2017; 82: 260-7.
[http://dx.doi.org/10.1016/j.lwt.2017.04.051]
[161]
Sun G, Liu F, Zhao R, et al. Enhanced stability and bioaccessibility of nobiletin in whey protein/cinnamaldehyde-stabilized microcapsules and application in yogurt. Food Structure 2021; 30: 100217.
[http://dx.doi.org/10.1016/j.foostr.2021.100217]
[162]
Ju SN, Shi HH, Yang JY, et al. Characterization, stability, digestion and absorption of a nobiletin nanoemulsion using DHA-enriched phosphatidylcholine as an emulsifier in vivo and in vitro. Food Chem 2022; 397: 133787.
[http://dx.doi.org/10.1016/j.foodchem.2022.133787] [PMID: 35908471]
[163]
Luque-Alcaraz AG, Lizardi J, Goycoolea FM, et al. Characterization and antiproliferative activity of nobiletin-loaded chitosan nanoparticles. J Nanomater 2012; 2012
[http://dx.doi.org/10.1155/2012/265161]
[164]
Bayoumi M, Arafa MG, Nasr M, Sammour OA. Nobiletin-loaded composite penetration enhancer vesicles restore the normal miRNA expression and the chief defence antioxidant levels in skin cancer. Sci Rep 2021; 11(1): 20197.
[http://dx.doi.org/10.1038/s41598-021-99756-1] [PMID: 34642396]
[165]
Pezeshki Z, Khosravi A, Nekuei M, et al. Time course of cisplatin-induced nephrotoxicity and hepatotoxicity. J Nephropathol 2017; 6(3): 163-7.
[http://dx.doi.org/10.15171/jnp.2017.28] [PMID: 28975096]
[166]
Popat R, Plesner T, Davies F, et al. A phase 2 study of SRT501 (resveratrol) with bortezomib for patients with relapsed and or refractory multiple myeloma. Br J Haematol 2013; 160(5): 714-7.
[http://dx.doi.org/10.1111/bjh.12154] [PMID: 23205612]