Recent Advances in Novel Recombinant RNAs for Studying Post-transcriptional Gene Regulation in Drug Metabolism and Disposition

Page: [175 - 189] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Drug-metabolizing enzymes and transporters are major determinants of the absorption, disposition, metabolism, and excretion (ADME) of drugs, and changes in ADME gene expression or function may alter the pharmacokinetics/ pharmacodynamics (PK/PD) and further influence drug safety and therapeutic outcomes. ADME gene functions are controlled by diverse factors, such as genetic polymorphism, transcriptional regulation, and coadministered medications. MicroRNAs (miRNAs) are a superfamily of regulatory small noncoding RNAs that are transcribed from the genome to regulate target gene expression at the post-transcriptional level. The roles of miRNAs in controlling ADME gene expression have been demonstrated, and such miRNAs may consequently influence cellular drug metabolism and disposition capacity. Several types of miRNA mimics and small interfering RNA (siRNA) reagents have been developed and widely used for ADME research. In this review article, we first provide a brief introduction to the mechanistic actions of miRNAs in post-transcriptional gene regulation of drug-metabolizing enzymes, transporters, and transcription factors. After summarizing conventional small RNA production methods, we highlight the latest advances in novel recombinant RNA technologies and applications of the resultant bioengineered RNA (BioRNA) agents to ADME studies. BioRNAs produced in living cells are not only powerful tools for general biological and biomedical research but also potential therapeutic agents amenable to clinical investigations.

Graphical Abstract

[1]
Li, A.P. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov. Today, 2001, 6(7), 357-366.
[http://dx.doi.org/10.1016/S1359-6446(01)01712-3] [PMID: 11267922]
[2]
Storelli, F.; Yin, M.; Kumar, A.R.; Ladumor, M.K.; Evers, R.; Chothe, P.P.; Enogieru, O.J.; Liang, X.; Lai, Y.; Unadkat, J.D. The next frontier in ADME science: Predicting transporter-based drug disposition, tissue concentrations and drug-drug interactions in humans. Pharmacol. Ther., 2022, 238, 108271.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108271] [PMID: 36002079]
[3]
Lai, Y.; Chu, X.; Di, L.; Gao, W.; Guo, Y.; Liu, X.; Lu, C.; Mao, J.; Shen, H.; Tang, H.; Xia, C.Q.; Zhang, L.; Ding, X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm. Sin. B, 2022, 12(6), 2751-2777.
[http://dx.doi.org/10.1016/j.apsb.2022.03.009] [PMID: 35755285]
[4]
DeGorter, M.K.; Xia, C.Q.; Yang, J.J.; Kim, R.B. Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 249-273.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134529] [PMID: 21942630]
[5]
Li, Y.; Meng, Q.; Yang, M.; Liu, D.; Hou, X.; Tang, L.; Wang, X.; Lyu, Y.; Chen, X.; Liu, K.; Yu, A.M.; Zuo, Z.; Bi, H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm. Sin. B, 2019, 9(6), 1113-1144.
[http://dx.doi.org/10.1016/j.apsb.2019.10.001] [PMID: 31867160]
[6]
Brouwer, K.L.R.; Evers, R.; Hayden, E.; Hu, S.; Li, C.Y.; Meyer zu Schwabedissen, H.E.; Neuhoff, S.; Oswald, S.; Piquette-Miller, M.; Saran, C.; Sjöstedt, N.; Sprowl, J.A.; Stahl, S.H.; Yue, W. Regulation of drug transport proteins-from mechanisms to clinical impact: A white paper on behalf of the international transporter consortium. Clin. Pharmacol. Ther., 2022, 112(3), 461-484.
[http://dx.doi.org/10.1002/cpt.2605] [PMID: 35390174]
[7]
Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther., 2013, 138(1), 103-141.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[8]
Zhou, S.F.; Liu, J.P.; Chowbay, B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev., 2009, 41(2), 89-295.
[http://dx.doi.org/10.1080/03602530902843483] [PMID: 19514967]
[9]
Honkakoski, P.; Negishi, M. Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochem. J., 2000, 347(2), 321-337.
[http://dx.doi.org/10.1042/bj3470321] [PMID: 10749660]
[10]
Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors, RXR, and the big bang. Cell, 2014, 157(1), 255-266.
[http://dx.doi.org/10.1016/j.cell.2014.03.012] [PMID: 24679540]
[11]
Czuba, L.C.; Hillgren, K.M.; Swaan, P.W. Post-translational modifications of transporters. Pharmacol. Ther., 2018, 192, 88-99.
[http://dx.doi.org/10.1016/j.pharmthera.2018.06.013] [PMID: 29966598]
[12]
Ritacco, I.; Spinello, A.; Ippoliti, E.; Magistrato, A. Post-translational regulation of CYP450s metabolism as revealed by all-atoms simulations of the aromatase enzyme. J. Chem. Inf. Model., 2019, 59(6), 2930-2940.
[http://dx.doi.org/10.1021/acs.jcim.9b00157] [PMID: 31033287]
[13]
Evers, R.; Piquette-Miller, M.; Polli, J.W.; Russel, F.G.M.; Sprowl, J.A.; Tohyama, K.; Ware, J.A.; de Wildt, S.N.; Xie, W.; Brouwer, K.L.R. Disease-associated changes in drug transporters may impact the pharmacokinetics and/or toxicity of drugs: A white paper from the international transporter consortium. Clin. Pharmacol. Ther., 2018, 104(5), 900-915.
[http://dx.doi.org/10.1002/cpt.1115] [PMID: 29756222]
[14]
Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.R.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; Hillgren, K.M.; Hoffmaster, K.A.; Ishikawa, T.; Keppler, D.; Kim, R.B.; Lee, C.A.; Niemi, M.; Polli, J.W.; Sugiyama, Y.; Swaan, P.W.; Ware, J.A.; Wright, S.H.; Wah Yee, S.; Zamek-Gliszczynski, M.J.; Zhang, L. Membrane transporters in drug development. Nat. Rev. Drug Discov., 2010, 9(3), 215-236.
[http://dx.doi.org/10.1038/nrd3028] [PMID: 20190787]
[15]
Bachmann, K. Drug–Drug Interactions with an Emphasis on Drug Metabolism and Transport. Pharmacol.; Hacker, M.; Messer, W; Bachmann, K., Ed.; Academic Press: San Diego, 2009, pp. 303-325.
[http://dx.doi.org/10.1016/B978-0-12-369521-5.00012-9]
[16]
Hao, X.; Li, Y.; Bian, J.; Zhang, Y.; He, S.; Yu, F.; Feng, Y.; Huang, L. Impact of DNA methylation on ADME gene expression, drug disposition, and efficacy. Drug Metab. Rev., 2022, 54(2), 194-206.
[http://dx.doi.org/10.1080/03602532.2022.2064488] [PMID: 35412942]
[17]
Zhou, S.; Shu, Y. Transcriptional regulation of solute carrier drug transporters. Drug Metab. Dispos., 2022, 50(9), 1238-1250.
[http://dx.doi.org/10.1124/dmd.121.000704] [PMID: 35644529]
[18]
Ning, B.; Yu, D.; Yu, A.M. Advances and challenges in studying noncoding RNA regulation of drug metabolism and development of RNA therapeutics. Biochem. Pharmacol., 2019, 169, 113638.
[http://dx.doi.org/10.1016/j.bcp.2019.113638] [PMID: 31518552]
[19]
Wang, J.; Yu, L.; Jiang, H.; Zheng, X.; Zeng, S. Epigenetic regulation of differentially expressed drug-metabolizing enzymes in cancer. Drug Metab. Dispos., 2020, 48(9), 759-768.
[http://dx.doi.org/10.1124/dmd.120.000008] [PMID: 32601104]
[20]
Nakano, M.; Nakajima, M. Current knowledge of microRNA-mediated regulation of drug metabolism in humans. Expert Opin. Drug Metab. Toxicol., 2018, 14(5), 493-504.
[http://dx.doi.org/10.1080/17425255.2018.1472237] [PMID: 29718737]
[21]
Li, D.; Tolleson, W.H.; Yu, D.; Chen, S.; Guo, L.; Xiao, W.; Tong, W.; Ning, B. MicroRNA-dependent gene regulation of the human cytochrome P450 Pharmacoepigenetics. 2019, 129-138.
[22]
Bartel, D.P. MicroRNAs. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[23]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(1993), 843-854.
[24]
Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75(5), 855-862.
[http://dx.doi.org/10.1016/0092-8674(93)90530-4] [PMID: 8252622]
[25]
Alles, J.; Fehlmann, T.; Fischer, U.; Backes, C.; Galata, V.; Minet, M.; Hart, M.; Abu-Halima, M.; Grässer, F.A.; Lenhof, H.P.; Keller, A.; Meese, E. An estimate of the total number of true human miRNAs. Nucleic Acids Res., 2019, 47(7), 3353-3364.
[http://dx.doi.org/10.1093/nar/gkz097] [PMID: 30820533]
[26]
Yu, A.M.; Tian, Y.; Tu, M.J.; Ho, P.Y.; Jilek, J.L. MicroRNA pharmacoepigenetics: Posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab. Dispos., 2016, 44(3), 308-319.
[http://dx.doi.org/10.1124/dmd.115.067470] [PMID: 26566807]
[27]
Si, W.; Shen, J.; Zheng, H.; Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenetics, 2019, 11(1), 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[28]
Fire, A.; Albertson, D.; Harrison, S.W.; Moerman, D.G. Production of antisense RNA leads to effective and specific inhibition of gene expression in C. elegans muscle. Development, 1991, 113(2), 503-514.
[http://dx.doi.org/10.1242/dev.113.2.503] [PMID: 1782862]
[29]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(1998), 806-811.
[30]
Bernstein, E.; Caudy, A.A.; Hammond, S.M.; Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818), 363-366.
[http://dx.doi.org/10.1038/35053110] [PMID: 11201747]
[31]
Tang, G. siRNA and miRNA: An insight into RISCs. Trends Biochem. Sci., 2005, 30(2), 106-114.
[http://dx.doi.org/10.1016/j.tibs.2004.12.007] [PMID: 15691656]
[32]
Yu, A.M.; Tu, M.J. Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. Pharmacol. Ther., 2022, 230, 107967.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107967] [PMID: 34403681]
[33]
Traber, G.M.; Yu, A.M. RNAi-based therapeutics and novel RNA bioengineering technologies. J. Pharmacol. Exp. Ther., 2023, 384(1), 133-154.
[http://dx.doi.org/10.1124/jpet.122.001234] [PMID: 35680378]
[34]
Yu, A.M.; Pan, Y.Z. Noncoding microRNAs: Small RNAs play a big role in regulation of ADME? Acta Pharm. Sin. B, 2012, 2(2), 93-101.
[http://dx.doi.org/10.1016/j.apsb.2012.02.011] [PMID: 32154096]
[35]
Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 2004, 23(20), 4051-4060.
[http://dx.doi.org/10.1038/sj.emboj.7600385] [PMID: 15372072]
[36]
Cai, X.; Hagedorn, C.H.; Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004, 10(12), 1957-1966.
[http://dx.doi.org/10.1261/rna.7135204] [PMID: 15525708]
[37]
Borchert, G.M.; Lanier, W.; Davidson, B.L. RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol., 2006, 13(12), 1097-1101.
[http://dx.doi.org/10.1038/nsmb1167] [PMID: 17099701]
[38]
Bushati, N.; Cohen, S.M. microRNA Functions. Annu. Rev. Cell Dev. Biol., 2007, 23(1), 175-205.
[http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406] [PMID: 17506695]
[39]
Kim, V.N. MicroRNA biogenesis: Coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol., 2005, 6(5), 376-385.
[http://dx.doi.org/10.1038/nrm1644] [PMID: 15852042]
[40]
Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Rådmark, O.; Kim, S.; Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003, 425(6956), 415-419.
[http://dx.doi.org/10.1038/nature01957] [PMID: 14508493]
[41]
Denli, A.M.; Tops, B.B.J.; Plasterk, R.H.A.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the microprocessor complex. Nature, 2004, 432(7014), 231-235.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[42]
Han, J.; Lee, Y.; Yeom, K.H.; Kim, Y.K.; Jin, H.; Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev., 2004, 18(24), 3016-3027.
[http://dx.doi.org/10.1101/gad.1262504] [PMID: 15574589]
[43]
Lund, E.; Guttinger, S.; Calado, A.; Dahlberg, J.E.; Kutay, U. Nuclear export of microRNA precursors. Science, 2004, 303(2004), 95-98.
[44]
Chendrimada, T.P.; Gregory, R.I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 2005, 436(7051), 740-744.
[http://dx.doi.org/10.1038/nature03868] [PMID: 15973356]
[45]
Haase, A.D.; Jaskiewicz, L.; Zhang, H.; Lainé, S.; Sack, R.; Gatignol, A.; Filipowicz, W. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep., 2005, 6(10), 961-967.
[http://dx.doi.org/10.1038/sj.embor.7400509] [PMID: 16142218]
[46]
Lee, Y.; Hur, I.; Park, S.Y.; Kim, Y.K.; Suh, M.R.; Kim, V.N. The role of PACT in the RNA silencing pathway. EMBO J., 2006, 25(3), 522-532.
[http://dx.doi.org/10.1038/sj.emboj.7600942] [PMID: 16424907]
[47]
Winter, J.; Jung, S.; Keller, S.; Gregory, R.I.; Diederichs, S. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat. Cell Biol., 2009, 11(3), 228-234.
[http://dx.doi.org/10.1038/ncb0309-228] [PMID: 19255566]
[48]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[49]
Meister, G.; Landthaler, M.; Patkaniowska, A.; Dorsett, Y.; Teng, G.; Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell, 2004, 15(2), 185-197.
[http://dx.doi.org/10.1016/j.molcel.2004.07.007] [PMID: 15260970]
[50]
Mourelatos, Z.; Dostie, J.; Paushkin, S.; Sharma, A.; Charroux, B.; Abel, L.; Rappsilber, J.; Mann, M.; Dreyfuss, G. miRNPs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev., 2002, 16(6), 720-728.
[http://dx.doi.org/10.1101/gad.974702] [PMID: 11914277]
[51]
Kawamata, T.; Tomari, Y. Making RISC. Trends Biochem. Sci., 2010, 35(7), 368-376.
[http://dx.doi.org/10.1016/j.tibs.2010.03.009] [PMID: 20395147]
[52]
Hutvágner, G.; Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002, 297(5589), 2056-2060.
[http://dx.doi.org/10.1126/science.1073827] [PMID: 12154197]
[53]
Liu, J.; Carmell, M.A.; Rivas, F.V.; Marsden, C.G.; Thomson, J.M.; Song, J.J.; Hammond, S.M.; Joshua-Tor, L.; Hannon, G.J. Argonaute2 is the catalytic engine of mammalian RNAi. Science, 2004, 305(5689), 1437-1441.
[http://dx.doi.org/10.1126/science.1102513] [PMID: 15284456]
[54]
Pillai, R.S.; Artus, C.G.; Filipowicz, W. Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA, 2004, 10(10), 1518-1525.
[http://dx.doi.org/10.1261/rna.7131604] [PMID: 15337849]
[55]
Eulalio, A.; Huntzinger, E.; Izaurralde, E. Getting to the root of miRNA-mediated gene silencing. Cell, 2008, 132(1), 9-14.
[http://dx.doi.org/10.1016/j.cell.2007.12.024] [PMID: 18191211]
[56]
Hutvagner, G.; Simard, M.J. Argonaute proteins: Key players in RNA silencing. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 22-32.
[http://dx.doi.org/10.1038/nrm2321] [PMID: 18073770]
[57]
Martinez, J.; Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev., 2004, 18(9), 975-980.
[http://dx.doi.org/10.1101/gad.1187904] [PMID: 15105377]
[58]
Behm-Ansmant, I.; Rehwinkel, J.; Doerks, T.; Stark, A.; Bork, P.; Izaurralde, E. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev., 2006, 20(14), 1885-1898.
[http://dx.doi.org/10.1101/gad.1424106] [PMID: 16815998]
[59]
Selbach, M.; Schwanhäusser, B.; Thierfelder, N.; Fang, Z.; Khanin, R.; Rajewsky, N. Widespread changes in protein synthesis induced by microRNAs. Nature, 2008, 455(2008), 58-63.
[60]
Baek, D.; Villén, J.; Shin, C.; Camargo, F.D.; Gygi, S.P.; Bartel, D.P. The impact of microRNAs on protein output. Nature, 2008, 455(7209), 64-71.
[http://dx.doi.org/10.1038/nature07242] [PMID: 18668037]
[61]
Hendrickson, D.G.; Hogan, D.J.; McCullough, H.L.; Myers, J.W.; Herschlag, D.; Ferrell, J.E.; Brown, P.O. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol., 2009, 7(11), e1000238.
[http://dx.doi.org/10.1371/journal.pbio.1000238] [PMID: 19901979]
[62]
Huntzinger, E.; Izaurralde, E. Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat. Rev. Genet., 2011, 12(2), 99-110.
[http://dx.doi.org/10.1038/nrg2936] [PMID: 21245828]
[63]
Iyanagi, T. Molecular mechanism of phase i and phase ii drug-metabolizing enzymes: Implications for detoxification. Int. Rev. Cytol., 2007, 260, 35-112.
[64]
Guengerich, F.P. Human cytochrome P450 enzymes.Cytochrome; Ortiz de Montellano, P., Ed.; Springer: Cham,, 2015.
[65]
Chen, Y.; Xiao, J.; Zhang, X.; Bian, X. MicroRNAs as key mediators of hepatic detoxification. Toxicology, 2016, 368-369, 80-90.
[http://dx.doi.org/10.1016/j.tox.2016.08.005] [PMID: 27501766]
[66]
Tsuchiya, Y.; Nakajima, M.; Takagi, S.; Taniya, T.; Yokoi, T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res., 2006, 66(18), 9090-9098.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1403] [PMID: 16982751]
[67]
Pan, Y.Z.; Gao, W.; Yu, A.M. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab. Dispos., 2009, 37(10), 2112-2117.
[http://dx.doi.org/10.1124/dmd.109.027680] [PMID: 19581388]
[68]
Ji, J.; Zhang, J.; Huang, G.; Qian, J.; Wang, X.; Mei, S. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett., 2009, 583(4), 759-766.
[http://dx.doi.org/10.1016/j.febslet.2009.01.034] [PMID: 19185571]
[69]
Yu, D.; Green, B.; Tolleson, W.H.; Jin, Y.; Mei, N.; Guo, Y.; Deng, H.; Pogribny, I.; Ning, B. MicroRNA hsa-miR-29a-3p modulates CYP2C19 in human liver cells. Biochem. Pharmacol., 2015, 98(1), 215-223.
[http://dx.doi.org/10.1016/j.bcp.2015.08.094] [PMID: 26296572]
[70]
Jin, Y.; Yu, D.; Tolleson, W.H.; Knox, B.; Wang, Y.; Chen, S.; Ren, Z.; Deng, H.; Guo, Y.; Ning, B. MicroRNA hsa-miR-25-3p suppresses the expression and drug induction of CYP2B6 in human hepatocytes. Biochem. Pharmacol., 2016, 113, 88-96.
[http://dx.doi.org/10.1016/j.bcp.2016.06.007] [PMID: 27311985]
[71]
Wang, Y.; Yu, D.; Tolleson, W.H.; Yu, L.R.; Green, B.; Zeng, L.; Chen, Y.; Chen, S.; Ren, Z.; Guo, L.; Tong, W.; Guan, H.; Ning, B. A systematic evaluation of microRNAs in regulating human hepatic CYP2E1. Biochem. Pharmacol., 2017, 138, 174-184.
[http://dx.doi.org/10.1016/j.bcp.2017.04.020] [PMID: 28438567]
[72]
Tang, X.; Chen, S. Epigenetic regulation of cytochrome P450 enzymes and clinical implication. Curr. Drug Metab., 2015, 16(2), 86-96.
[http://dx.doi.org/10.2174/138920021602150713114159] [PMID: 26179605]
[73]
Guillemette, C.; Lévesque, É.; Rouleau, M. Pharmacogenomics of human uridine diphospho-glucuronosyltransferases and clinical implications. Clin. Pharmacol. Ther., 2014, 96(3), 324-339.
[http://dx.doi.org/10.1038/clpt.2014.126] [PMID: 24922307]
[74]
Papageorgiou, I.; Court, M.H. Identification and validation of microRNAs directly regulating the UDP-glucuronosyltransferase 1A subfamily enzymes by a functional genomics approach. Biochem. Pharmacol., 2017, 137, 93-106.
[http://dx.doi.org/10.1016/j.bcp.2017.04.017] [PMID: 28433553]
[75]
Dluzen, D.F.; Sun, D.; Salzberg, A.C.; Jones, N.; Bushey, R.T.; Robertson, G.P.; Lazarus, P. Regulation of UDP-glucuronosyltransferase 1A1 expression and activity by microRNA 491-3p. J. Pharmacol. Exp. Ther., 2014, 348(3), 465-477.
[http://dx.doi.org/10.1124/jpet.113.210658] [PMID: 24399855]
[76]
Li, D.; Knox, B.; Chen, S.; Wu, L.; Tolleson, W.H.; Liu, Z.; Yu, D.; Guo, L.; Tong, W.; Ning, B. MicroRNAs hsa-miR-495-3p and hsa-miR-486-5p suppress basal and rifampicin-induced expression of human sulfotransferase 2A1 (SULT2A1) by facilitating mRNA degradation. Biochem. Pharmacol., 2019, 169, 113617.
[http://dx.doi.org/10.1016/j.bcp.2019.08.019] [PMID: 31445882]
[77]
Meng, C.L.; Zhao, W.; Zhong, D.N. Epigenetics and microRNAs in UGT1As. Hum. Genom., 2021, 15(1), 30.
[http://dx.doi.org/10.1186/s40246-021-00331-6] [PMID: 34034810]
[78]
Hu, D.G.; Mackenzie, P.I.; Hulin, J.A.; McKinnon, R.A.; Meech, R. Regulation of human UDP-glycosyltransferase (UGT) genes by miRNAs. Drug Metab. Rev., 2022, 54(2), 120-140.
[http://dx.doi.org/10.1080/03602532.2022.2048846] [PMID: 35275773]
[79]
Nigam, S.K. What do drug transporters really do? Nat. Rev. Drug Discov., 2015, 14(1), 29-44.
[http://dx.doi.org/10.1038/nrd4461] [PMID: 25475361]
[80]
Borst, P.; Evers, R.; Kool, M.; Wijnholds, J. A family of drug transporters: The multidrug resistance-associated proteins. J. Natl. Cancer Inst., 2000, 92(16), 1295-1302.
[http://dx.doi.org/10.1093/jnci/92.16.1295] [PMID: 10944550]
[81]
Choi, C.H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int., 2005, 5(1), 30.
[http://dx.doi.org/10.1186/1475-2867-5-30] [PMID: 16202168]
[82]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[83]
Gao, M.; Miao, L.; Liu, M.; Li, C.; Yu, C.; Yan, H.; Yin, Y.; Wang, Y.; Qi, X.; Ren, J. miR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1. Oncotarget, 2016, 7(37), 59714-59726.
[http://dx.doi.org/10.18632/oncotarget.10845] [PMID: 27487127]
[84]
Li, Y.; Liu, Y.; Ren, J.; Deng, S.; Yi, G.; Guo, M.; Shu, S.; Zhao, L.; Peng, Y.; Qi, S. miR-1268a regulates ABCC1 expression to mediate temozolomide resistance in glioblastoma. J. Neurooncol., 2018, 138(3), 499-508.
[http://dx.doi.org/10.1007/s11060-018-2835-3] [PMID: 29876787]
[85]
Pei, K.; Zhu, J.J.; Wang, C.E.; Xie, Q.L.; Guo, J.Y. MicroRNA-185-5p modulates chemosensitivity of human non-small cell lung cancer to cisplatin via targeting ABCC1. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(22), 4697-4704.
[PMID: 27906433]
[86]
Liu, H.; Wu, X.; Huang, J.; Peng, J.; Guo, L. miR-7 modulates chemoresistance of small cell lung cancer by repressing MRP1/ABCC1. Int. J. Exp. Pathol., 2015, 96(4), 240-247.
[http://dx.doi.org/10.1111/iep.12131] [PMID: 26108539]
[87]
Li, S.; Yang, J.; Wang, J.; Gao, W.; Ding, Y.; Ding, Y.; Jia, Z. Down-regulation of miR-210-3p encourages chemotherapy resistance of renal cell carcinoma via modulating ABCC1. Cell Biosci., 2018, 8(1), 9.
[http://dx.doi.org/10.1186/s13578-018-0209-3] [PMID: 29445446]
[88]
Ma, J.; Wang, T.; Guo, R.; Yang, X.; Yin, J.; Yu, J.; Xiang, Q.; Pan, X.; Tang, H.; Lei, X. Involvement of miR-133a and miR-326 in ADM resistance of HepG2 through modulating expression of ABCC1. J. Drug Target., 2015, 23(6), 519-524.
[http://dx.doi.org/10.3109/1061186X.2015.1015536] [PMID: 25714665]
[89]
Pan, Y.Z.; Zhou, A.; Hu, Z.; Yu, A.M. Small nucleolar RNA-derived microRNA hsa-miR-1291 modulates cellular drug disposition through direct targeting of ABC transporter ABCC1. Drug Metab. Dispos., 2013, 41(10), 1744-1751.
[http://dx.doi.org/10.1124/dmd.113.052092] [PMID: 23686318]
[90]
Zhan, M.; Qu, Q.; Wang, G.; Zhou, H. Let-7c sensitizes acquired cisplatin-resistant A549 cells by targeting ABCC2 and Bcl-XL. Pharmazie, 2013, 68(12), 955-961.
[PMID: 24400442]
[91]
Xu, K.; Liang, X.; Shen, K.; Cui, D.; Zheng, Y.; Xu, J.; Fan, Z.; Qiu, Y.; Li, Q.; Ni, L.; Liu, J. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochem. J., 2012, 446(2), 291-300.
[http://dx.doi.org/10.1042/BJ20120386] [PMID: 22676135]
[92]
Haenisch, S.; Laechelt, S.; Bruckmueller, H.; Werk, A.; Noack, A.; Bruhn, O.; Remmler, C.; Cascorbi, I. Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379. Mol. Pharmacol., 2011, 80(2), 314-320.
[http://dx.doi.org/10.1124/mol.110.070714] [PMID: 21540293]
[93]
Loeser, H.; von Brandenstein, M.; Herschung, A.; Schlosser, M.; Büttner, R.; Fries, J.W.U. ET-1 induced downregulation of MRP2 via miRNA 133a-a marker for tubular nephrotoxicity? Am. J. Nephrol., 2015, 41(3), 191-199.
[http://dx.doi.org/10.1159/000381272] [PMID: 25871823]
[94]
Tian, J.; Xu, Y-Y.; Li, L.; Hao, Q. MiR-490-3p sensitizes ovarian cancer cells to cisplatin by directly targeting ABCC2. Am. J. Transl. Res., 2017, 9(3), 1127-1138.
[PMID: 28386339]
[95]
Molina-Pinelo, S.; Gutiérrez, G.; Pastor, M.D.; Hergueta, M.; Moreno-Bueno, G.; García-Carbonero, R.; Nogal, A.; Suárez, R.; Salinas, A.; Pozo-Rodríguez, F.; Lopez-Rios, F.; Agulló-Ortuño, M.T.; Ferrer, I.; Perpiñá, A.; Palacios, J.; Carnero, A.; Paz-Ares, L. MicroRNA-dependent regulation of transcription in non-small cell lung cancer. PLoS One, 2014, 9(3), e90524.
[http://dx.doi.org/10.1371/journal.pone.0090524] [PMID: 24625834]
[96]
Bruckmueller, H.; Martin, P.; Kähler, M.; Haenisch, S.; Ostrowski, M.; Drozdzik, M.; Siegmund, W.; Cascorbi, I.; Oswald, S. Clinically relevant multidrug transporters are regulated by microRNAs along the human intestine. Mol. Pharm., 2017, 14(7), 2245-2253.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00076] [PMID: 28510455]
[97]
Zeng, C.; Fan, D.; Xu, Y.; Li, X.; Yuan, J.; Yang, Q.; Zhou, X.; Lu, J.; Zhang, C.; Han, J.; Gu, J.; Gao, Y.; Sun, L.; Wang, S. Curcumol enhances the sensitivity of doxorubicin in triple-negative breast cancer via regulating the miR-181b-2-3p-ABCC3 axis. Biochem. Pharmacol., 2020, 174, 113795.
[http://dx.doi.org/10.1016/j.bcp.2020.113795] [PMID: 31926937]
[98]
Markova, S.M.; Kroetz, D.L. ABCC4 is regulated by microRNA-124a and microRNA-506. Biochem. Pharmacol., 2014, 87(3), 515-522.
[http://dx.doi.org/10.1016/j.bcp.2013.10.017] [PMID: 24184504]
[99]
Hu, H.; Wang, Y.; Qin, Z.; Sun, W.; Chen, Y.; Wang, J.; Wang, Y.; Nie, J.; Chen, L.; Cai, S.; Yu, L.; Zeng, S. Regulation of MRP4 Expression by circHIPK3 via Sponging miR-124-3p/miR-4524-5p in Hepatocellular Carcinoma. Biomedicines, 2021, 9(5), 497.
[http://dx.doi.org/10.3390/biomedicines9050497] [PMID: 33946595]
[100]
Park, J.E.; Ryoo, G.; Lee, W. Alternative splicing: Expanding diversity in major ABC and SLC drug transporters. AAPS J., 2017, 19(6), 1643-1655.
[http://dx.doi.org/10.1208/s12248-017-0150-0] [PMID: 28971357]
[101]
Bruhn, O.; Lindsay, M.; Wiebel, F.; Kaehler, M.; Nagel, I.; Böhm, R.; Röder, C.; Cascorbi, I. Alternative polyadenylation of ABC transporters of the C-family (ABCC1, ABCC2, ABCC3) and implications on posttranscriptional micro-RNA regulation. Mol. Pharmacol., 2020, 97(2), 112-122.
[http://dx.doi.org/10.1124/mol.119.116590] [PMID: 31757862]
[102]
To, K.K.W.; Leung, W.W.; Ng, S.S.M. Exploiting a novel miR-519c–HuR–ABCG2 regulatory pathway to overcome chemoresistance in colorectal cancer. Exp. Cell Res., 2015, 338(2), 222-231.
[http://dx.doi.org/10.1016/j.yexcr.2015.09.011] [PMID: 26386386]
[103]
To, K.K.W.; Robey, R.W.; Knutsen, T.; Zhan, Z.; Ried, T.; Bates, S.E. Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol. Cancer Ther., 2009, 8(10), 2959-2968.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0292] [PMID: 19825807]
[104]
To, K.K.W.; Zhan, Z.; Litman, T.; Bates, S.E. Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative microRNA in the S1 colon cancer cell line. Mol. Cell. Biol., 2008, 28(17), 5147-5161.
[http://dx.doi.org/10.1128/MCB.00331-08] [PMID: 18573883]
[105]
Tajiri, A.; Hirota, T.; Kawano, S.; Yonamine, A.; Ieiri, I. Regulation of organic anion transporting polypeptide 2B1 expression by microRNA in the human liver. Mol. Pharm., 2020, 17(8), 2821-2830.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00193] [PMID: 32602343]
[106]
Takagi, S.; Nakajima, M.; Kida, K.; Yamaura, Y.; Fukami, T.; Yokoi, T. MicroRNAs regulate human hepatocyte nuclear factor 4α modulating the expression of metabolic enzymes and cell cycle. J. Biol. Chem., 2010, 285(7), 4415-4422.
[http://dx.doi.org/10.1074/jbc.M109.085431] [PMID: 20018894]
[107]
Liu, W.; Nakano, M.; Nakanishi, T.; Nakajima, M.; Tamai, I. Post-transcriptional regulation of OATP2B1 transporter by a microRNA, miR-24. Drug Metab. Pharmacokinet., 2020, 35(6), 515-521.
[http://dx.doi.org/10.1016/j.dmpk.2020.07.007] [PMID: 33032910]
[108]
Wang, Y.; Wang, Y.; Qin, Z.; Cai, S.; Yu, L.; Hu, H.; Zeng, S. The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin. Drug Metab. Toxicol., 2021, 17(3), 291-306.
[http://dx.doi.org/10.1080/17425255.2021.1887139] [PMID: 33544643]
[109]
Gomes, B.C.; Rueff, J.; Rodrigues, A.S. MicroRNAs and cancer drug resistance: Over two thousand characters in search of a role. Cancer Drug Resist., 2019, 2(3), 618-633.
[http://dx.doi.org/10.20517/cdr.2019.55] [PMID: 35582590]
[110]
Yi, C.; Yu, A.M. MicroRNAs in the regulation of solute carrier proteins behind xenobiotic and nutrient transport in cells. Front. Mol. Biosci., 2022, 9, 893846.
[http://dx.doi.org/10.3389/fmolb.2022.893846] [PMID: 35755805]
[111]
Pascussi, J.M.; Gerbal-Chaloin, S.; Drocourt, L.; Maurel, P.; Vilarem, M.J. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: A tangle of networks of nuclear and steroid receptors. Biochim. Biophys. Acta, Gen. Subj., 2003, 1619(3), 243-253.
[http://dx.doi.org/10.1016/S0304-4165(02)00483-X] [PMID: 12573484]
[112]
Kugler, N.; Klein, K.; Zanger, U.M. MiR-155 and other microRNAs downregulate drug metabolizing cytochromes P450 in inflammation. Biochem. Pharmacol., 2020, 171, 113725.
[http://dx.doi.org/10.1016/j.bcp.2019.113725] [PMID: 31758923]
[113]
Rieger, J.K.; Reutter, S.; Hofmann, U.; Schwab, M.; Zanger, U.M. Inflammation-associated microRNA-130b down-regulates cytochrome P450 activities and directly targets CYP2C9. Drug Metab. Dispos., 2015, 43(6), 884-888.
[http://dx.doi.org/10.1124/dmd.114.062844] [PMID: 25802328]
[114]
Li, D.; Tolleson, W.H.; Yu, D.; Chen, S.; Guo, L.; Xiao, W.; Tong, W.; Ning, B. Regulation of cytochrome P450 expression by microRNAs and long noncoding RNAs: Epigenetic mechanisms in environmental toxicology and carcinogenesis. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2019, 37(3), 180-214.
[http://dx.doi.org/10.1080/10590501.2019.1639481] [PMID: 31305208]
[115]
Paddison, P.J.; Silva, J.M.; Conklin, D.S.; Schlabach, M.; Li, M.; Aruleba, S.; Balija, V.; O’Shaughnessy, A.; Gnoj, L.; Scobie, K.; Chang, K.; Westbrook, T.; Cleary, M.; Sachidanandam, R.; Richard McCombie, W.; Elledge, S.J.; Hannon, G.J. A resource for large-scale RNA-interference-based screens in mammals. Nature, 2004, 428(6981), 427-431.
[http://dx.doi.org/10.1038/nature02370] [PMID: 15042091]
[116]
Berns, K.; Hijmans, E.M.; Mullenders, J.; Brummelkamp, T.R.; Velds, A.; Heimerikx, M.; Kerkhoven, R.M.; Madiredjo, M.; Nijkamp, W.; Weigelt, B.; Agami, R.; Ge, W.; Cavet, G.; Linsley, P.S.; Beijersbergen, R.L.; Bernards, R. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 2004, 428(6981), 431-437.
[http://dx.doi.org/10.1038/nature02371] [PMID: 15042092]
[117]
Silva, J.M.; Li, M.Z.; Chang, K.; Ge, W.; Golding, M.C.; Rickles, R.J.; Siolas, D.; Hu, G.; Paddison, P.J.; Schlabach, M.R.; Sheth, N.; Bradshaw, J.; Burchard, J.; Kulkarni, A.; Cavet, G.; Sachidanandam, R.; McCombie, W.R.; Cleary, M.A.; Elledge, S.J.; Hannon, G.J. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet., 2005, 37(11), 1281-1288.
[http://dx.doi.org/10.1038/ng1650] [PMID: 16200065]
[118]
Liu, Y.P.; Berkhout, B. miRNA cassettes in viral vectors: Problems and solutions. Biochim. Biophys. Acta, 2011, 1809, 732-745.
[119]
Sioud, M. What are the key targeted delivery technologies of siRNA now?In: RNA Therapeutics; Springer: Cham, 2010, pp. 91-105.
[120]
McBride, J.L.; Boudreau, R.L.; Harper, S.Q.; Staber, P.D.; Monteys, A.M.; Martins, I.; Gilmore, B.L.; Burstein, H.; Peluso, R.W.; Polisky, B.; Carter, B.J.; Davidson, B.L. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: Implications for the therapeutic development of RNAi. Proc. Natl. Acad. Sci., 2008, 105(15), 5868-5873.
[http://dx.doi.org/10.1073/pnas.0801775105] [PMID: 18398004]
[121]
Zeng, Y.; Wagner, E.J.; Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell, 2002, 9(6), 1327-1333.
[http://dx.doi.org/10.1016/S1097-2765(02)00541-5] [PMID: 12086629]
[122]
Taxman, D.J.; Moore, C.B.; Guthrie, E.H.; Huang, M.T-H. Short hairpin RNA (shRNA): Design, delivery, and assessment of gene knockdown, RNA therapeutics.In: RNA therapeutics; Springer: Cham, 2010, pp. 139-156.
[http://dx.doi.org/10.1007/978-1-60761-657-3_10]
[123]
Marshall, W.S.; Kaiser, R.J. Recent advances in the high-speed solid phase synthesis of RNA. Curr. Opin. Chem. Biol., 2004, 8(3), 222-229.
[http://dx.doi.org/10.1016/j.cbpa.2004.04.012] [PMID: 15183319]
[124]
Beaucage, S.L. Solid-phase synthesis of siRNA oligonucleotides. Curr. Opin. Drug Discov. Devel., 2008, 11(2), 203-216.
[PMID: 18283608]
[125]
Yu, J.Y.; DeRuiter, S.L.; Turner, D.L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl. Acad. Sci., 2002, 99(9), 6047-6052.
[http://dx.doi.org/10.1073/pnas.092143499] [PMID: 11972060]
[126]
Wons, E.; Furmanek-Blaszk, B.; Sektas, M. RNA editing by T7 RNA polymerase bypasses InDel mutations causing unexpected phenotypic changes. Nucleic Acids Res., 2015, 43(8), 3950-3963.
[http://dx.doi.org/10.1093/nar/gkv269] [PMID: 25824942]
[127]
Yu, A.M.; Batra, N.; Tu, M.J.; Sweeney, C. Novel approaches for efficient in vivo fermentation production of noncoding RNAs. Appl. Microbiol. Biotechnol., 2020, 104(5), 1927-1937.
[http://dx.doi.org/10.1007/s00253-020-10350-3] [PMID: 31953559]
[128]
Yu, A.M.; Choi, Y.H.; Tu, M.J. RNA drugs and RNA targets for small molecules: Principles, progress, and challenges. Pharmacol. Rev., 2020, 72(4), 862-898.
[http://dx.doi.org/10.1124/pr.120.019554] [PMID: 32929000]
[129]
Yu, A.M.; Jian, C.; Yu, A.H.; Tu, M.J. RNA therapy: Are we using the right molecules? Pharmacol. Ther., 2019, 196, 91-104.
[http://dx.doi.org/10.1016/j.pharmthera.2018.11.011] [PMID: 30521885]
[130]
Rao, D.D.; Vorhies, J.S.; Senzer, N.; Nemunaitis, J. siRNA vs. shRNA: Similarities and differences. Adv. Drug Deliv. Rev., 2009, 61(9), 746-759.
[http://dx.doi.org/10.1016/j.addr.2009.04.004] [PMID: 19389436]
[131]
Ho, P.Y.; Yu, A.M. Bioengineering of noncoding RNAS for research agents and therapeutics. Wiley Interdiscip. Rev. RNA, 2016, 7(2), 186-197.
[http://dx.doi.org/10.1002/wrna.1324] [PMID: 26763749]
[132]
D’Souza, L.M.; Larios-Sanz, M.; Setterquist, R.A.; Willson, R.C.; Fox, G.E. Small RNA sequences are readily stabilized by inclusion in a carrier rRNA. Biotechnol. Prog., 2003, 19(3), 734-738.
[http://dx.doi.org/10.1021/bp025755j]
[133]
Ponchon, L.; Dardel, F. Recombinant RNA technology: The tRNA scaffold. Nat. Methods, 2007, 4(7), 571-576.
[http://dx.doi.org/10.1038/nmeth1058] [PMID: 17558412]
[134]
Ponchon, L.; Beauvais, G.; Nonin-Lecomte, S.; Dardel, F. A generic protocol for the expression and purification of recombinant RNA in Escherichia coli using a tRNA scaffold. Nat. Protoc., 2009, 4(6), 947-959.
[http://dx.doi.org/10.1038/nprot.2009.67] [PMID: 19478810]
[135]
Chen, Q.X.; Wang, W.P.; Zeng, S.; Urayama, S.; Yu, A.M. A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications. Nucleic Acids Res., 2015, 43(7), 3857-3869.
[http://dx.doi.org/10.1093/nar/gkv228] [PMID: 25800741]
[136]
Ho, P.Y.; Duan, Z.; Batra, N.; Jilek, J.L.; Tu, M.J.; Qiu, J.X.; Hu, Z.; Wun, T.; Lara, P.N.; DeVere White, R.W.; Chen, H.W.; Yu, A.M. Bioengineered noncoding rnas selectively change cellular mirnome profiles for cancer therapy. J. Pharmacol. Exp. Ther., 2018, 365(3), 494-506.
[http://dx.doi.org/10.1124/jpet.118.247775] [PMID: 29602831]
[137]
Daròs, J.A.; Aragonés, V.; Cordero, T. A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli. Sci. Rep., 2018, 8(1), 1904.
[http://dx.doi.org/10.1038/s41598-018-20314-3] [PMID: 29382906]
[138]
Kikuchi, Y.; Umekage, S. Extracellular nucleic acids of the marine bacterium Rhodovulum sulfidophilum and recombinant RNA production technology using bacteria. FEMS Microbiol. Lett., 2018, 365(3), fnx268.
[http://dx.doi.org/10.1093/femsle/fnx268] [PMID: 29228187]
[139]
Hashiro, S.; Mitsuhashi, M.; Chikami, Y.; Kawaguchi, H.; Niimi, T.; Yasueda, H. Construction of corynebacterium glutamicum cells as containers encapsulating dsRNA overexpressed for agricultural pest control. Appl. Microbiol. Biotechnol., 2019, 103(20), 8485-8496.
[http://dx.doi.org/10.1007/s00253-019-10113-9] [PMID: 31486873]
[140]
Deutscher, M.P. Maturation and degradation of ribosomal RNA in bacteria, progress in molecular biology and translational science; Academic Press, 2009, pp. 369-391.
[141]
Pitulle, C.; Hedenstierna, K.O.; Fox, G.E. A novel approach for monitoring genetically engineered microorganisms by using artificial, stable RNAs. Appl. Environ. Microbiol., 1995, 61(10), 3661-3666.
[http://dx.doi.org/10.1128/aem.61.10.3661-3666.1995] [PMID: 7487004]
[142]
D’Souza, L.M.; Willson, R.C.; Fox, G.E. Expression of marker RNAs in Pseudomonas putida. Curr. Microbiol., 2000, 40(2), 91-95.
[http://dx.doi.org/10.1007/s002849910017] [PMID: 10594220]
[143]
Zhang, X.; Potty, A.S.R.; Jackson, G.W.; Stepanov, V.; Tang, A.; Liu, Y.; Kourentzi, K.; Strych, U.; Fox, G.E.; Willson, R.C. Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. J. Mol. Recognit., 2009, 22(2), 154-161.
[http://dx.doi.org/10.1002/jmr.917] [PMID: 19195013]
[144]
Liu, Y.; Stepanov, V.G.; Strych, U.; Willson, R.C.; Jackson, G.W.; Fox, G.E. DNAzyme-mediated recovery of small recombinant RNAs from a 5S rRNA-derived chimera expressed in Escherichia coli. BMC Biotechnol., 2010, 10(1), 85.
[http://dx.doi.org/10.1186/1472-6750-10-85] [PMID: 21134283]
[145]
Masson, J.M.; Miller, J.H. Expression of synthetic suppressor tRNA genes under the control of a synthetic promoter. Gene, 1986, 47(2-3), 179-183.
[http://dx.doi.org/10.1016/0378-1119(86)90061-2] [PMID: 3549453]
[146]
Meinnel, T.; Mechulam, Y.; Fayat, G. Fast purification of a functional elongator tRNA met expressed from a synthetic gene in vivo. Nucleic Acids Res., 1988, 16(16), 8095-8112.
[http://dx.doi.org/10.1093/nar/16.16.8095] [PMID: 3419903]
[147]
Ponchon, L.; Dardel, F. Large scale expression and purification of recombinant RNA in Escherichia coli. Methods, 2011, 54(2), 267-273.
[http://dx.doi.org/10.1016/j.ymeth.2011.02.007] [PMID: 21320602]
[148]
Li, M.M.; Addepalli, B.; Tu, M.J.; Chen, Q.X.; Wang, W.P.; Limbach, P.A.; LaSalle, J.M.; Zeng, S.; Huang, M.; Yu, A.M. Chimeric microrna-1291 biosynthesized efficiently in Escherichia coli is effective to reduce target gene expression in human carcinoma cells and improve chemosensitivity. Drug Metab. Dispos., 2015, 43(7), 1129-1136.
[http://dx.doi.org/10.1124/dmd.115.064493] [PMID: 25934574]
[149]
Wang, W.P.; Ho, P.Y.; Chen, Q.X.; Addepalli, B.; Limbach, P.A.; Li, M.M.; Wu, W.J.; Jilek, J.L.; Qiu, J.X.; Zhang, H.J.; Li, T.; Wun, T.; White, R.D.; Lam, K.S.; Yu, A.M. Bioengineering novel chimeric microRNA-34a for Prodrug Cancer Therapy: High-Yield expression and purification, and structural and functional characterization. J. Pharmacol. Exp. Ther., 2015, 354(2), 131-141.
[http://dx.doi.org/10.1124/jpet.115.225631] [PMID: 26022002]
[150]
Li, M.M.; Wang, W.P.; Wu, W.J.; Huang, M.; Yu, A.M. Rapid production of novel pre-microRNA agent hsa-mir-27b in Escherichia coli using recombinant RNA technology for functional studies in mammalian cells. Drug Metab. Dispos., 2014, 42(11), 1791-1795.
[http://dx.doi.org/10.1124/dmd.114.060145] [PMID: 25161167]
[151]
Ponchon, L.; Catala, M.; Seijo, B.; El Khouri, M.; Dardel, F.; Nonin-Lecomte, S.; Tisné, C. Co-expression of RNA–protein complexes in Escherichia coli and applications to RNA biology. Nucleic Acids Res., 2013, 41(15), e150-e150.
[http://dx.doi.org/10.1093/nar/gkt576] [PMID: 23804766]
[152]
Nelissen, F.H.T.; Leunissen, E.H.P.; van de Laar, L.; Tessari, M.; Heus, H.A.; Wijmenga, S.S. Fast production of homogeneous recombinant RNA-towards large-scale production of RNA. Nucleic Acids Res., 2012, 40(13), e102-e102.
[http://dx.doi.org/10.1093/nar/gks292] [PMID: 22457065]
[153]
Li, P.C.; Tu, M.J.; Ho, P.Y.; Batra, N.; Tran, M.M.L.; Qiu, J.X.; Wun, T.; Lara, P.N.; Hu, X.; Yu, A.X.; Yu, A.M. In vivo fermentation production of humanized noncoding RNAs carrying payload miRNAs for targeted anticancer therapy. Theranostics, 2021, 11(10), 4858-4871.
[http://dx.doi.org/10.7150/thno.56596] [PMID: 33754032]
[154]
Tu, M-J.; Wright, H.K.; Batra, N.; Yu, A-M. Expression and purification of tRNA/pre-miRNA-based recombinant noncoding RNAs, RNA Scaffolds. RNA Scaffolds; Springer, 2021, pp. 249-265.
[155]
Petrek, H.; Yan Ho, P.; Batra, N.; Tu, M.J.; Zhang, Q.; Qiu, J.X.; Yu, A.M. Single bioengineered ncRNA molecule for dual-targeting toward the control of non-small cell lung cancer patient-derived xenograft tumor growth. Biochem. Pharmacol., 2021, 189, 114392.
[http://dx.doi.org/10.1016/j.bcp.2020.114392] [PMID: 33359565]
[156]
Tu, M.J.; Ho, P.Y.; Zhang, Q.Y.; Jian, C.; Qiu, J.X.; Kim, E.J.; Bold, R.J.; Gonzalez, F.J.; Bi, H.; Yu, A.M. Bioengineered miRNA-1291 prodrug therapy in pancreatic cancer cells and patient-derived xenograft mouse models. Cancer Lett., 2019, 442, 82-90.
[http://dx.doi.org/10.1016/j.canlet.2018.10.038] [PMID: 30389433]
[157]
Deng, L.; Petrek, H.; Tu, M.J.; Batra, N.; Yu, A.X.; Yu, A.M. Bioengineered miR-124-3p prodrug selectively alters the proteome of human carcinoma cells to control multiple cellular components and lung metastasis in vivo. Acta Pharm. Sin. B, 2021, 11(12), 3950-3965.
[http://dx.doi.org/10.1016/j.apsb.2021.07.027] [PMID: 35024318]
[158]
Li, X.; Tian, Y.; Tu, M.J.; Ho, P.Y.; Batra, N.; Yu, A.M. Bioengineered miR-27b-3p and miR-328-3p modulate drug metabolism and disposition via the regulation of target ADME gene expression. Acta Pharm. Sin. B, 2019, 9(3), 639-647.
[http://dx.doi.org/10.1016/j.apsb.2018.12.002] [PMID: 31193825]
[159]
Oda, Y.; Nakajima, M.; Tsuneyama, K.; Takamiya, M.; Aoki, Y.; Fukami, T.; Yokoi, T. Retinoid X receptor α in human liver is regulated by miR-34a. Biochem. Pharmacol., 2014, 90(2), 179-187.
[http://dx.doi.org/10.1016/j.bcp.2014.05.002] [PMID: 24832862]
[160]
Lamba, V.; Ghodke, Y.; Guan, W.; Tracy, T.S. microRNA-34a is associated with expression of key hepatic transcription factors and cytochromes P450. Biochem. Biophys. Res. Commun., 2014, 445(2), 404-411.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.024] [PMID: 24530915]
[161]
Jilek, J.L.; Tian, Y.; Yu, A.M. Effects of microRNA-34a on the pharmacokinetics of cytochrome P450 probe drugs in mice. Drug Metab. Dispos., 2017, 45(5), 512-522.
[http://dx.doi.org/10.1124/dmd.116.074344] [PMID: 28254952]
[162]
Yamasaki, T.; Seki, N.; Yoshino, H.; Itesako, T.; Yamada, Y.; Tatarano, S.; Hidaka, H.; Yonezawa, T.; Nakagawa, M.; Enokida, H. Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci., 2013, 104(11), 1411-1419.
[http://dx.doi.org/10.1111/cas.12240] [PMID: 23889809]
[163]
Tu, M.J.; Duan, Z.; Liu, Z.; Zhang, C.; Bold, R.J.; Gonzalez, F.J.; Kim, E.J.; Yu, A.M. MicroRNA-1291-5p sensitizes pancreatic carcinoma cells to arginine deprivation and chemotherapy through the regulation of arginolysis and glycolysis. Mol. Pharmacol., 2020, 98(6), 686-694.
[http://dx.doi.org/10.1124/molpharm.120.000130] [PMID: 33051382]
[164]
Pan, Y.Z.; Morris, M.E.; Yu, A.M. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol. Pharmacol., 2009, 75(6), 1374-1379.
[http://dx.doi.org/10.1124/mol.108.054163] [PMID: 19270061]
[165]
Santasusagna, S.; Moreno, I.; Navarro, A.; Muñoz, C.; Martinez, F.; Hernández, R.; Castellano, J.J.; Monzo, M. miR-328 mediates a metabolic shift in colon cancer cells by targeting SLC2A1/GLUT1. Clin. Transl. Oncol., 2018, 20(9), 1161-1167.
[http://dx.doi.org/10.1007/s12094-018-1836-1] [PMID: 29374351]
[166]
Yi, W.; Tu, M.J.; Liu, Z.; Zhang, C.; Batra, N.; Yu, A.X.; Yu, A.M. Bioengineered miR-328-3p modulates GLUT1-mediated glucose uptake and metabolism to exert synergistic antiproliferative effects with chemotherapeutics. Acta Pharm. Sin. B, 2020, 10(1), 159-170.
[http://dx.doi.org/10.1016/j.apsb.2019.11.001] [PMID: 31993313]
[167]
Jilek, J.L.; Tu, M.J.; Zhang, C.; Yu, A.M. Pharmacokinetic and pharmacodynamic factors contribute to synergism between Let-7c-5p and 5-Fluorouracil in inhibiting hepatocellular carcinoma cell viability. Drug Metab. Dispos., 2020, 48(12), 1257-1263.
[http://dx.doi.org/10.1124/dmd.120.000207] [PMID: 33051247]
[168]
Li, P.C.; Tu, M.J.; Ho, P.Y.; Jilek, J.L.; Duan, Z.; Zhang, Q.Y.; Yu, A.X.; Yu, A.M. Bioengineered NRF2-siRNA Is effective to interfere with NRF2 pathways and improve chemosensitivity of human cancer cells. Drug Metab. Dispos., 2018, 46(1), 2-10.
[http://dx.doi.org/10.1124/dmd.117.078741] [PMID: 29061583]