Current Medicinal Chemistry

Author(s): Mikhail S. Drenichev* and Valentina N. Borokh

DOI: 10.2174/0929867330666230420152130

DownloadDownload PDF Flyer Cite As
Purine Nucleosides and Analogues Bearing Chiral Substituents: Medicinal Chemistry and Therapeutic Perspective

Page: [671 - 682] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Adenosine and its analogues play an important role as bioregulators of metabolic processes in animal cells, affecting a variety of metabolic functions by acting through the purinergic signaling system. Synthesis and structure-activity relationship for some known purine nucleosides bearing chiral substituents are considered in this work. These compounds represent a promising potential as drug prototypes for targeted therapy of cancer, metabolic dysfunctions, and neuronal disorders due to their enhanced selectivity to receptors of the purinergic signaling system. Derivatives of adenosine and guanosine containing a chiral substituent also manifest antiviral activity.

Keywords: Adenosine receptors, purinergic signaling, adenosine, chirality, enantiomeric, antiviral, transglycosylation, enzyme.

[1]
Drenichev, M.S.; Oslovsky, V.E.; Mikhailov, S.N. Cytokinin nucleosides – natural compounds with a unique spectrum of biological activities. Curr. Top. Med. Chem., 2016, 16(23), 2562-2576.
[http://dx.doi.org/10.2174/1568026616666160414123717] [PMID: 27086793]
[2]
Jacobson, K.A.; Tosh, D.K.; Toti, K.S.; Ciancetta, A. Polypharmacology of conformationally locked methanocarba nucleosides. Drug Discov. Today, 2017, 22(12), 1782-1791.
[http://dx.doi.org/10.1016/j.drudis.2017.07.013] [PMID: 28781163]
[3]
Ballesteros-Yáñez, I.; Castillo, C.A.; Merighi, S.; Gessi, S. The role of adenosine receptors in psychostimulant addiction. Front. Pharmacol., 2018, 8, 985.
[http://dx.doi.org/10.3389/fphar.2017.00985] [PMID: 29375384]
[4]
Sheth, S.; Brito, R.; Mukherjea, D.; Rybak, L.; Ramkumar, V. Adenosine receptors: Expression, function and regulation. Int. J. Mol. Sci., 2014, 15(2), 2024-2052.
[http://dx.doi.org/10.3390/ijms15022024] [PMID: 24477263]
[5]
Baraldi, P.G.; Tabrizi, M.A.; Gessi, S.; Borea, P.A. Adenosine receptor antagonists: Translating medicinal chemistry and pharmacology into clinical utility. Chem. Rev., 2008, 108(1), 238-263.
[http://dx.doi.org/10.1021/cr0682195] [PMID: 18181659]
[6]
Li, B.; Rosenbaum, P.S.; Jennings, N.M.; Maxwell, K.M.; Roth, S. Differing roles of adenosine receptor subtypes in retinal ischemia-reperfusion injury in the rat. Exp. Eye Res., 1999, 68(1), 9-17.
[http://dx.doi.org/10.1006/exer.1998.0573] [PMID: 9986737]
[7]
Polska, E.; Ehrlich, P.; Luksch, A.; Fuchsja¨ger-Mayrl, G.; Schmetterer, L. Effects of adenosine on intraocular pressure, optic nerve head blood flow, and choroidal blood flow in healthy humans. Invest. Ophthalmol. Vis. Sci., 2003, 44(7), 3110-3114.
[http://dx.doi.org/10.1167/iovs.02-1133] [PMID: 12824258]
[8]
Zhong, Y.; Yang, Z.; Huang, W.C.; Luo, X. Adenosine, adenosine receptors and glaucoma: An updated overview. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(4), 2882-2890.
[http://dx.doi.org/10.1016/j.bbagen.2013.01.005] [PMID: 23328492]
[9]
Jacobson, K.A.; Müller, C.E. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology, 2016, 104, 31-49.
[http://dx.doi.org/10.1016/j.neuropharm.2015.12.001] [PMID: 26686393]
[10]
Poulsen, S.A.; Quinn, R.J. Adenosine receptors: New opportunities for future drugs. Bioorg. Med. Chem., 1998, 6(6), 619-641.
[http://dx.doi.org/10.1016/S0968-0896(98)00038-8] [PMID: 9681130]
[11]
Gao, Z.G.; Blaustein, J.B.; Gross, A.S.; Melman, N.; Jacobson, K.A. N6-Substituted adenosine derivatives: Selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem. Pharmacol., 2003, 65(10), 1675-1684.
[http://dx.doi.org/10.1016/S0006-2952(03)00153-9] [PMID: 12754103]
[12]
Di Virgilio, F.; Vultaggio-Poma, V.; Sarti, A.C. P2X receptors in cancer growth and progression. Biochem. Pharmacol., 2021, 187, 114350.
[http://dx.doi.org/10.1016/j.bcp.2020.114350] [PMID: 33253643]
[13]
Jacobson, K.A. Crystal structures of the A2A adenosine receptor and their use in medicinal chemistry. In Silico Pharmacol., 2013, 1(1), 22.
[http://dx.doi.org/10.1186/2193-9616-1-22] [PMID: 24660138]
[14]
Krügel, U. Purinergic receptors in psychiatric disorders. Neuropharmacology, 2016, 104, 212-225.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.032] [PMID: 26518371]
[15]
North, R.A. P2X receptors. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1700), 20150427-20150427.
[http://dx.doi.org/10.1098/rstb.2015.0427] [PMID: 27377721]
[16]
Ertl, P.; Jelfs, S.; Mühlbacher, J.; Schuffenhauer, A.; Selzer, P. Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds. J. Med. Chem., 2006, 49(15), 4568-4573.
[http://dx.doi.org/10.1021/jm060217p] [PMID: 16854061]
[17]
Cheung, J.W.; Lerman, B.B. CVT-510: A selective A1 adenosine receptor agonist. Cardiovasc. Drug Rev., 2003, 21(4), 277-292.
[http://dx.doi.org/10.1111/j.1527-3466.2003.tb00122.x] [PMID: 14647532]
[18]
Peterman, C.; Sanoski, C.A. Tecadenoson. Cardiol. Rev., 2005, 13(6), 315-321.
[http://dx.doi.org/10.1097/01.crd.0000181621.84565.9d] [PMID: 16230891]
[19]
Ashton, T.D.; Aumann, K.M.; Baker, S.P.; Schiesser, C.H.; Scammells, P.J. Structure–activity relationships of adenosines with heterocyclic N6-substituents. Bioorg. Med. Chem. Lett., 2007, 17(24), 6779-6784.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.028] [PMID: 17967536]
[20]
Klotz, K.N.; Hessling, J.; Hegler, J.; Owman, C.; Kull, B.; Fredholm, B.B.; Lohse, M.J. Comparative pharmacology of human adenosine receptor subtypes – characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch. Pharmacol., 1997, 357(1), 1-9.
[http://dx.doi.org/10.1007/PL00005131] [PMID: 9459566]
[21]
van Galen, P.J.M.; van Bergen, A.H.; Gallo-Rodriguez, C.; Melman, N.; Olah, M.E.; IJzerman, A.P.; Stiles, G.L.; Jacobson, K.A. A binding site model and structure-activity relationships for the rat A3 adenosine receptor. Mol. Pharmacol., 1994, 45(6), 1101-1111.
[PMID: 8022403]
[22]
Berzina, M.Y.; Eletskaya, B.Z.; Kayushin, A.L.; Dorofeeva, E.V.; Lutonina, O.I.; Fateev, I.V.; Paramonov, A.S.; Kostromina, M.A.; Zayats, E.A.; Abramchik, Y.A.; Maltsev, D.V.; Naumenko, L.V.; Taran, A.S.; Yakovlev, D.S.; Spasov, A.A.; Miroshnikov, A.I.; Esipov, R.S.; Konstantinova, I.D. Synthesis of 2-chloropurine ribosides with chiral amino acid amides at C6 and their evaluation as A1 adenosine receptor agonists. Bioorg. Chem., 2022, 126, 105878.
[http://dx.doi.org/10.1016/j.bioorg.2022.105878] [PMID: 35660725]
[23]
Tosh, D.K.; Deflorian, F.; Phan, K.; Gao, Z.G.; Wan, T.C.; Gizewski, E.; Auchampach, J.A.; Jacobson, K.A. Structure-guided design of A(3) adenosine receptor-selective nucleosides: Combination of 2-arylethynyl and bicyclo[3.1.0]hexane substitutions. J. Med. Chem., 2012, 55(10), 4847-4860.
[http://dx.doi.org/10.1021/jm300396n] [PMID: 22559880]
[24]
Tosh, D.K.; Paoletta, S.; Deflorian, F.; Phan, K.; Moss, S.M.; Gao, Z.G.; Jiang, X.; Jacobson, K.A. Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: Receptor docking and potent anticonvulsant activity. J. Med. Chem., 2012, 55(18), 8075-8090.
[http://dx.doi.org/10.1021/jm300965a] [PMID: 22921089]
[25]
Arita, M.; Wakita, T.; Shimizu, H. Characterization of pharmacologically active compounds that inhibit poliovirus and enterovirus 71 infectivity. J. Gen. Virol., 2008, 89(10), 2518-2530.
[http://dx.doi.org/10.1099/vir.0.2008/002915-0] [PMID: 18796721]
[26]
Drenichev, M.S.; Oslovsky, V.E.; Sun, L.; Tijsma, A.; Kurochkin, N.N.; Tararov, V.I.; Chizhov, A.O.; Neyts, J.; Pannecouque, C.; Leyssen, P.; Mikhailov, S.N. Modification of the length and structure of the linker of N6-benzyladenosine modulates its selective antiviral activity against enterovirus 71. Eur. J. Med. Chem., 2016, 111, 84-94.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.036] [PMID: 26854380]
[27]
Oslovsky, V.; Drenichev, M.; Sun, L.; Kurochkin, N.; Kunetsky, V.; Mirabelli, C.; Neyts, J.; Leyssen, P.; Mikhailov, S. Fluorination of naturally occurring N6-benzyladenosine remarkably increased its antiviral activity and selectivity. Molecules, 2017, 22(7), 1219.
[http://dx.doi.org/10.3390/molecules22071219] [PMID: 28726764]
[28]
Tosh, D.K.; Toti, K.S.; Hurst, B.L.; Julander, J.G.; Jacobson, K.A. Structure activity relationship of novel antiviral nucleosides against Enterovirus A71. Bioorg. Med. Chem. Lett., 2020, 30(23), 127599.
[http://dx.doi.org/10.1016/j.bmcl.2020.127599] [PMID: 33031923]
[29]
Eletskaya, B.Z.; Gruzdev, D.A.; Krasnov, V.P.; Levit, G.L.; Kostromina, M.A.; Paramonov, A.S.; Kayushin, A.L.; Muzyka, I.S.; Muravyova, T.I.; Esipov, R.S.; Andronova, V.L.; Galegov, G.A.; Charushin, V.N.; Miroshnikov, A.I.; Konstantinova, I.D. Enzymatic synthesis of novel purine nucleosides bearing a chiral benzoxazine fragment. Chem. Biol. Drug Des., 2019, 93(4), 605-616.
[http://dx.doi.org/10.1111/cbdd.13458] [PMID: 30561886]
[30]
Savelieva, E.M.; Zenchenko, A.A.; Drenichev, M.S.; Kozlova, A.A.; Kurochkin, N.N.; Arkhipov, D.V.; Chizhov, A.O.; Oslovsky, V.E.; Romanov, G.A. In planta, in vitro and in silico studies of chiral N6-benzyladenine derivatives: Discovery of receptor-specific S-enantiomers with cytokinin or anticytokinin activities. Int. J. Mol. Sci., 2022, 23(19), 11334.
[http://dx.doi.org/10.3390/ijms231911334] [PMID: 36232653]
[31]
Joshi, B.V.; Melman, A.; Mackman, R.L.; Jacobson, K.A. Synthesis of ethyl (1S,2R,3S,4S,5S)-2,3-O-(isopropylidene)-4-hydroxy-bicyclo[3.1.0]hexane-carboxylate from L-ribose: A versatile chiral synthon for preparation of adenosine and P2 receptor ligands. Nucleosides Nucleotides Nucleic Acids, 2008, 27(3), 279-291.
[http://dx.doi.org/10.1080/15257770701845253] [PMID: 18260011]
[32]
Vorbrüggen, H.; Ruh-Pohlenz, C. Handbook of nucleoside synthesis; Wiley & Sons: New York, 2001.
[33]
Mikhailopulo, I.A.; Miroshnikov, A.I. Biologically important nucleosides: Modern trends in biotechnology and application. Mendeleev Commun., 2011, 21(2), 57-68.
[http://dx.doi.org/10.1016/j.mencom.2011.03.001]
[34]
Rabuffetti, M.; Bavaro, T.; Semproli, R.; Cattaneo, G.; Massone, M.; Morelli, C.F.; Speranza, G.; Ubiali, D. Synthesis of ribavirin, tecadenoson, and cladribine by enzymatic transglycosylation. Catalysts, 2019, 9(4), 355.
[http://dx.doi.org/10.3390/catal9040355]
[35]
Legraverend, M. Recent advances in the synthesis of purine derivatives and their precursors. Tetrahedron, 2008, 64(37), 8585-8603.
[http://dx.doi.org/10.1016/j.tet.2008.05.115]
[36]
Kore, A.; Yang, B.; Srinivasan, B. Recent developments in the synthesis of substituted purine nucleosides and nucleotides. Curr. Org. Chem., 2014, 18(16), 2072-2107.
[http://dx.doi.org/10.2174/1385272819666140714174457]
[37]
Meier, C. Nucleoside diphosphate and triphosphate prodrugs – An unsolvable task? Antivir. Chem. Chemother., 2017, 25(3), 69-82.
[http://dx.doi.org/10.1177/2040206617738656] [PMID: 29096525]
[38]
Jacobson, K.A.; Salmaso, V.; Suresh, R.R.; Tosh, D.K. Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets. RSC Medicinal Chemistry, 2021, 12(11), 1808-1825.
[http://dx.doi.org/10.1039/D1MD00167A] [PMID: 34825182]
[39]
Tosh, D.K.; Salmaso, V.; Campbell, R.G.; Rao, H.; Bitant, A.; Pottie, E.; Stove, C.P.; Liu, N.; Gavrilova, O.; Gao, Z.G.; Auchampach, J.A.; Jacobson, K.A. A3 adenosine receptor agonists containing dopamine moieties for enhanced interspecies affinity. Eur. J. Med. Chem., 2022, 228, 113983.
[http://dx.doi.org/10.1016/j.ejmech.2021.113983] [PMID: 34844790]
[40]
Tosh, D.K.; Ciancetta, A.; Mannes, P.; Warnick, E.; Janowsky, A.; Eshleman, A.J.; Gizewski, E.; Brust, T.F.; Bohn, L.M.; Auchampach, J.A.; Gao, Z.G.; Jacobson, K.A. Repurposing of a nucleoside scaffold from adenosine receptor agonists to opioid receptor antagonists. ACS Omega, 2018, 3(10), 12658-12678.
[http://dx.doi.org/10.1021/acsomega.8b01237] [PMID: 30411015]
[41]
Durante, M.; Squillace, S.; Lauro, F.; Giancotti, L.A.; Coppi, E.; Cherchi, F.; Di Cesare Mannelli, L.; Ghelardini, C.; Kolar, G.; Wahlman, C.; Opejin, A.; Xiao, C.; Reitman, M.L.; Tosh, D.K.; Hawiger, D.; Jacobson, K.A.; Salvemini, D. Adenosine A3 agonists reverse neuropathic pain via T cell–mediated production of IL-10. J. Clin. Invest., 2021, 131(7), e139299.
[http://dx.doi.org/10.1172/JCI139299] [PMID: 33621215]
[42]
Singh, A.K.; Mahalingam, R.; Squillace, S.; Jacobson, K.A.; Tosh, D.K.; Dharmaraj, S.; Farr, S.A.; Kavelaars, A.; Salvemini, D.; Heijnen, C.J. Targeting the A3 adenosine receptor to prevent and reverse chemotherapy-induced neurotoxicities in mice. Acta Neuropathol. Commun., 2022, 10(1), 11.
[http://dx.doi.org/10.1186/s40478-022-01315-w] [PMID: 35093182]
[43]
Cruz, G.; Acosta, J.; Del Arco, J.; Clemente-Suarez, V.J.; Deroncele, V.; Fernández-Lucas, J. Enzyme-mediated synthesis of Molnupiravir: Paving the way for the application of biocatalysis in pharmaceutical industry. ChemCatChem, 2022, 14(13), e202200140.
[http://dx.doi.org/10.1002/cctc.202200140]
[44]
Burke, A.J.; Birmingham, W.R.; Zhuo, Y.; Thorpe, T.W.; da Costa, Z.B.; Crawshaw, R.; Rowles, I.; Finnigan, J.D.; Young, C.; Holgate, G.M.; Muldowney, M.P.; Charnock, S.J.; Lovelock, S.L.; Turner, N.J.; Green, A.P. An engineered cytidine deaminase for biocatalytic production of a key intermediate of the Covid-19 antiviral molnupiravir. J. Am. Chem. Soc., 2022, 144(9), 3761-3765.
[http://dx.doi.org/10.1021/jacs.1c11048] [PMID: 35224970]