p-Coumaric Acid Inhibits Osteosarcoma Growth by Inhibiting PI3K/Akt Signaling Pathway

Page: [1577 - 1586] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: P-coumaric acid (p-CA) is a kind of phenylpropionic acid derived from aromatic amino acids, which is widely distributed in many plants and human diets. It has strong pharmacological and inhibitory effects on a variety of tumors. However, the role of p-CA in osteosarcoma, a tumor with a poor prognosis, is still unknown. Therefore, we aimed to evaluate the effect of p-CA on osteosarcoma and explore its potential mechanism.

Objective: This study aimed to investigate whether p-CA has an inhibitory effect on the growth of osteosarcoma cells and explore its potential mechanism.

Methods: MTT assay and clonogenic assay were used to detect the effect of p-CA on the proliferation of osteosarcoma cells. The effect of p-CA on apoptosis of osteosarcoma cells was detected by the Hoechst staining and flow cytometry. The effects of p-CA on the migration and invasion of osteosarcoma cells were detected by scratch healing assay and Transwell invasion assay. Western blot and PI3K/Akt pathway activator 740Y-P were used to detect the anti-tumor mechanism of p-CA on osteosarcoma cells. The effect of p-CA on osteosarcoma cells in vivo was verified by an orthotopic osteosarcoma tumor animal model in nude mice.

Results: MTT assay and clonogenic assay showed that p-CA inhibited the proliferation of osteosarcoma cells. Hoechst stain and flow cytometry showed that p-CA could induce apoptosis of osteosarcoma cells and lead to G2 phase arrest of osteosarcoma cells. Transwell assay and scratch healing assay found that p-CA could inhibit the migration and invasion of osteosarcoma cells. Western blot showed that p-CA could inhibit the activity of the PI3K/Akt signaling pathway in osteosarcoma cells, and 740Y-P could reverse its inhibitory effect. In vivo mouse models, p-CA has an antitumor effect on osteosarcoma cells in vivo, and at the same time, it has less toxic side effects on mice.

Conclusion: This study demonstrated that p-CA could effectively inhibit the proliferation, migration and invasion of osteosarcoma cells and promote apoptosis. p-CA may play an anti-osteosarcoma role by inhibiting PI3K/Akt signaling pathway.

Graphical Abstract

[1]
Ottaviani, G.; Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat Res, 2009, 152, 3-13.
[http://dx.doi.org/10.1007/978-1-4419-0284-9_1]
[2]
Rather, H.A.; Jhala, D.; Vasita, R. Dual functional approaches for osteogenesis coupled angiogenesis in bone tissue engineering. Mater. Sci. Eng. C, 2019, 103, 109761.
[http://dx.doi.org/10.1016/j.msec.2019.109761] [PMID: 31349418]
[3]
Hauben, E.I.; Arends, J.; Vandenbroucke, J.P.; van Asperen, C.J.; Van Marck, E.; Hogendoorn, P.C.W. Multiple primary malignancies in osteosarcoma patients. Incidence and predictive value of osteosarcoma subtype for cancer syndromes related with osteosarcoma. Eur. J. Hum. Genet., 2003, 11(8), 611-618.
[http://dx.doi.org/10.1038/sj.ejhg.5201012] [PMID: 12891382]
[4]
Hayden, J.B.; Hoang, B.H. Osteosarcoma: Basic science and clinical implications. Orthop. Clin. North Am., 2006, 37(1), 1-7.
[http://dx.doi.org/10.1016/j.ocl.2005.06.004] [PMID: 16311106]
[5]
Chen, Y.; Cao, J.; Zhang, N.; Yang, B.; He, Q.; Shao, X.; Ying, M. Advances in differentiation therapy for osteosarcoma. Drug Discov. Today, 2020, 25(3), 497-504.
[http://dx.doi.org/10.1016/j.drudis.2019.08.010] [PMID: 31499188]
[6]
Hattinger, C.M.; Fanelli, M.; Tavanti, E.; Vella, S.; Ferrari, S.; Picci, P.; Serra, M. Advances in emerging drugs for osteosarcoma. Expert Opin. Emerg. Drugs, 2015, 20(3), 495-514.
[http://dx.doi.org/10.1517/14728214.2015.1051965] [PMID: 26021401]
[7]
Yin, C.; Dai, X.; Huang, X.; Zhu, W.; Chen, X.; Zhou, Q.; Wang, C.; Zhao, C.; Zou, P.; Liang, G.; Rajamanickam, V.; Wang, O.; Zhang, X.; Cui, R. Alantolactone promotes ER stress-mediated apoptosis by inhibition of TrxR1 in triple-negative breast cancer cell lines and in a mouse model. J. Cell. Mol. Med., 2019, 23(3), 2194-2206.
[http://dx.doi.org/10.1111/jcmm.14139] [PMID: 30609207]
[8]
He, W.; Xia, Y.; Cao, P.; Hong, L.; Zhang, T.; Shen, X.; Zheng, P.; Shen, H.; Liang, G.; Zou, P. Curcuminoid WZ35 synergize with cisplatin by inducing ROS production and inhibiting TrxR1 activity in gastric cancer cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 207.
[http://dx.doi.org/10.1186/s13046-019-1215-y] [PMID: 31113439]
[9]
Pei, K.; Ou, J.; Huang, J.; Ou, S. p -Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric., 2016, 96(9), 2952-2962.
[http://dx.doi.org/10.1002/jsfa.7578] [PMID: 26692250]
[10]
Pragasam, S.J.; Venkatesan, V.; Rasool, M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation, 2013, 36(1), 169-176.
[http://dx.doi.org/10.1007/s10753-012-9532-8] [PMID: 22923003]
[11]
Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab., 2016, 13(1), 27.
[http://dx.doi.org/10.1186/s12986-016-0080-3] [PMID: 27069498]
[12]
Tehami, W.; Nani, A.; Khan, N.A.; Hichami, A. New insights into the anticancer effects of p -Coumaric Acid: Focus on colorectal cancer. Dose Response, 2023, 21(1)
[http://dx.doi.org/10.1177/15593258221150704] [PMID: 36636631]
[13]
Oliva, M.A.; Castaldo, S.; Rotondo, R.; Staffieri, S.; Sanchez, M.; Arcella, A. Inhibiting effect of p -Coumaric acid on U87MG human glioblastoma cell growth. J. Chemother., 2022, 34(3), 173-183.
[http://dx.doi.org/10.1080/1120009X.2021.1953888] [PMID: 34424147]
[14]
Kolahi, M.; Saremi, S.; Tabandeh, M.; Hashemitabar, M. Induction of apoptosis and suppression of Ras gene expression in MCF human breast cancer cells. J. Cancer Res. Ther., 2022, 18(4), 1052-1060.
[http://dx.doi.org/10.4103/jcrt.JCRT_624_20] [PMID: 36149161]
[15]
Mirabello, L.; Troisi, R.J.; Savage, S.A. Osteosarcoma incidence and survival rates from 1973 to 2004. Cancer, 2009, 115(7), 1531-1543.
[http://dx.doi.org/10.1002/cncr.24121] [PMID: 19197972]
[16]
Xiao, X.; Zhang, Y.; Pan, W.; Chen, F. miR-139-mediated NOTCH1 regulation is crucial for the inhibition of osteosarcoma progression caused by resveratrol. Life Sci., 2020, 242, 117215.
[http://dx.doi.org/10.1016/j.lfs.2019.117215] [PMID: 31881225]
[17]
Ritter, J.; Bielack, S.S. Osteosarcoma. Ann. Oncol., 2010, 21(S7), vii320-vii325.
[http://dx.doi.org/10.1093/annonc/mdq276] [PMID: 20943636]
[18]
Hattinger, C.M.; Pasello, M.; Ferrari, S.; Picci, P.; Serra, M. Emerging drugs for high-grade osteosarcoma. Expert Opin. Emerg. Drugs, 2010, 15(4), 615-634.
[http://dx.doi.org/10.1517/14728214.2010.505603] [PMID: 20690888]
[19]
Lou, Y.; Guo, Z.; Zhu, Y.; Kong, M.; Zhang, R.; Lu, L.; Wu, F.; Liu, Z.; Wu, J. Houttuynia cordata Thunb. and its bioactive compound 2-undecanone significantly suppress benzo(a)pyrene-induced lung tumorigenesis by activating the Nrf2-HO-1/NQO-1 signaling pathway. J. Exp. Clin. Cancer Res., 2019, 38(1), 242.
[http://dx.doi.org/10.1186/s13046-019-1255-3] [PMID: 31174565]
[20]
Park, S.Y.; Jeong, M.S.; Han, C.W.; Yu, H.S.; Jang, S.B. Structural and functional insight into proliferating cell nuclear antigen. J. Microbiol. Biotechnol., 2016, 26(4), 637-647.
[http://dx.doi.org/10.4014/jmb.1509.09051] [PMID: 26699741]
[21]
Strzalka, W.; Ziemienowicz, A. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Ann. Bot., 2011, 107(7), 1127-1140.
[http://dx.doi.org/10.1093/aob/mcq243] [PMID: 21169293]
[22]
Zheng, J.; Li, Q.; Wang, W.; Wang, Y.; Fu, X.; Wang, W.; Fan, L.; Yan, W. Apoptosis-related protein-1 acts as a tumor suppressor in cholangiocarcinoma cells by inducing cell cycle arrest via downregulation of cyclin-dependent kinase subunits. Oncol. Rep., 2016, 35(2), 809-816.
[http://dx.doi.org/10.3892/or.2015.4422] [PMID: 26572808]
[23]
Zhang, Z.; Zheng, Y.; Zhu, R.; Zhu, Y.; Yao, W.; Liu, W.; Gao, X. The ERK/eIF4F/Bcl-XL pathway mediates SGP-2 induced osteosarcoma cells apoptosis in vitro and in vivo. Cancer Lett., 2014, 352(2), 203-213.
[http://dx.doi.org/10.1016/j.canlet.2014.06.015] [PMID: 25025927]
[24]
Igney, F.H.; Krammer, P.H. Death and anti-death: Tumour resistance to apoptosis. Nat. Rev. Cancer, 2002, 2(4), 277-288.
[http://dx.doi.org/10.1038/nrc776] [PMID: 12001989]
[25]
Parrish, A.B.; Freel, C.D.; Kornbluth, S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol., 2013, 5(6), a008672.
[http://dx.doi.org/10.1101/cshperspect.a008672] [PMID: 23732469]
[26]
White, K.; Arama, E.; Hardwick, J.M. Controlling caspase activity in life and death. PLoS Genet., 2017, 13(2), e1006545.
[http://dx.doi.org/10.1371/journal.pgen.1006545] [PMID: 28207784]
[27]
Xu, P.; Cai, X.; Zhang, W.; Li, Y.; Qiu, P.; Lu, D.; He, X. Flavonoids of rosa roxburghii tratt exhibit radioprotection and anti-apoptosis properties via the Bcl-2(Ca2+)/Caspase-3/PARP-1 pathway. Apoptosis, 2016, 21(10), 1125-1143.
[http://dx.doi.org/10.1007/s10495-016-1270-1] [PMID: 27401922]
[28]
Mohan, V.; Agarwal, R.; Singh, R.P. A novel alkaloid, evodiamine causes nuclear localization of cytochrome-c and induces apoptosis independent of p53 in human lung cancer cells. Biochem. Biophys. Res. Commun., 2016, 477(4), 1065-1071.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.037] [PMID: 27402273]
[29]
Ehnman, M.; Chaabane, W.; Haglund, F.; Tsagkozis, P. The tumor microenvironment of pediatric sarcoma: Mesenchymal mechanisms regulating cell migration and metastasis. Curr. Oncol. Rep., 2019, 21(10), 90.
[http://dx.doi.org/10.1007/s11912-019-0839-6] [PMID: 31418125]
[30]
Pastushenko, I.; Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol., 2019, 29(3), 212-226.
[http://dx.doi.org/10.1016/j.tcb.2018.12.001] [PMID: 30594349]
[31]
Skrzypek, K.; Majka, M. Interplay among SNAIL transcription factor, microRNAs, long non-coding RNAs, and Circular RNAs in the regulation of tumor growth and metastasis. Cancers, 2020, 12(1), 209.
[http://dx.doi.org/10.3390/cancers12010209] [PMID: 31947678]
[32]
Wang, Y.; Shi, J.; Chai, K.; Ying, X.; Zhou, B. The role of snail in EMT and tumorigenesis. Curr. Cancer Drug Targets, 2013, 13(9), 963-972.
[http://dx.doi.org/10.2174/15680096113136660102] [PMID: 24168186]
[33]
Mendonsa, A.M.; Na, T.Y.; Gumbiner, B.M. E-cadherin in contact inhibition and cancer. Oncogene, 2018, 37(35), 4769-4780.
[http://dx.doi.org/10.1038/s41388-018-0304-2] [PMID: 29780167]
[34]
Satelli, A.; Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci., 2011, 68(18), 3033-3046.
[http://dx.doi.org/10.1007/s00018-011-0735-1] [PMID: 21637948]
[35]
Kapoor, C.; Vaidya, S.; Wadhwan, V. Hitesh; Kaur, G.; Pathak, A. Seesaw of matrix metalloproteinases (MMPs). J. Cancer Res. Ther., 2016, 12(1), 28-35.
[http://dx.doi.org/10.4103/0973-1482.157337] [PMID: 27072206]
[36]
Zhang, H.; Jiang, H.; Zhang, H.; Liu, J.; Hu, X.; Chen, L. Anti-tumor efficacy of phellamurin in osteosarcoma cells: Involvement of the PI3K/AKT/mTOR pathway. Eur. J. Pharmacol., 2019, 858, 172477.
[http://dx.doi.org/10.1016/j.ejphar.2019.172477] [PMID: 31228450]
[37]
Zhang, X.; Qu, P.; Zhao, H.; Zhao, T.; Cao, N. COX 2 promotes epithelial mesenchymal transition and migration in osteosarcoma MG 63 cells via PI3K/AKT/NF κB signaling. Mol. Med. Rep., 2019, 20(4), 3811-3819.
[http://dx.doi.org/10.3892/mmr.2019.10598] [PMID: 31485669]
[38]
Yang, H.L.; Thiyagarajan, V.; Shen, P.C.; Mathew, D.C.; Lin, K.Y.; Liao, J.W.; Hseu, Y.C. Anti-EMT properties of CoQ0 attributed to PI3K/AKT/NFKB/MMP-9 signaling pathway through ROS-mediated apoptosis. J. Exp. Clin. Cancer Res., 2019, 38(1), 186.
[http://dx.doi.org/10.1186/s13046-019-1196-x] [PMID: 31068208]
[39]
Yang, Q.; Jiang, W.; Hou, P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin. Cancer Biol., 2019, 59(1), 112-124.
[http://dx.doi.org/10.1016/j.semcancer.2019.04.001] [PMID: 30951826]
[40]
Revathidevi, S.; Munirajan, A.K. Akt in cancer: Mediator and more. Semin. Cancer Biol., 2019, 59(1), 80-91.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.002] [PMID: 31173856]
[41]
Huang, H.; Lu, Q.; Yuan, X.; Zhang, P.; Ye, C.; Wei, M.; Yang, C.; Zhang, L.; Huang, Y.; Luo, X.; Luo, J. Andrographolide inhibits the growth of human osteosarcoma cells by suppressing Wnt/β-catenin, PI3K/AKT and NF-κB signaling pathways. Chem. Biol. Interact., 2022, 365, 110068.
[http://dx.doi.org/10.1016/j.cbi.2022.110068] [PMID: 35917943]
[42]
Alzahrani, A.S. PI3K/Akt/MTOR inhibitors in cancer: At the bench and bedside. Semin. Cancer Biol., 2019, 59, 125-132.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.009]