Detection of Prostate Cancer using Ensemble based Bi-directional Long Short Term Memory Network

Page: [91 - 98] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Aim and Background: In recent periods, micro-array data analysis using soft computing and machine learning techniques gained more interest among researchers to detect prostate cancer. Due to the small sample size of micro-array data with a larger number of attributes, traditional machine learning techniques face difficulty detecting prostate cancer.

Methodology: The selection of relevant genes exploits useful information about micro-array data, which enhances the accuracy of detection. In this research, the samples are acquired from the gene expression omnibus database, particularly related to the prostate cancer GEO IDs such as GSE 21034, GSE 15484 and GSE 3325/GSE 3998. In addition, ensemble feature optimization technique and Bidirectional Long Short Term Memory (Bi-LSTM) network are employed for detecting prostate cancer from the microarray data of gene expression.

Results: The ensemble feature optimization technique includes 4 metaheuristic optimizers that select the top 2000 genes from each GEO IDs, which are relevant to prostate cancer. Next, the selected genes are given to the Bi-LSTM network for classifying the normal and prostate cancer subjects.

Conclusion: The simulation analysis revealed that the ensemble based Bi-LSTM network obtained 99.13%, 98.97%, and 94.12% of accuracy on the GEO IDs like GSE 3325/GSE 3998, GSE 21034, and GSE 15484.

Graphical Abstract

[1]
O. Hamzeh, A. Alkhateeb, J. Zheng, S. Kandalam, and L. Rueda, "Prediction of tumor location in prostate cancer tissue using a machine learning system on gene expression data", BMC Bioinformat,, vol. 21, no. S2, p. 78, 2020.
[http://dx.doi.org/10.1186/s12859-020-3345-9] [PMID: 32164523]
[2]
L. Liu, M. Shafiq, V.R. Sonawane, M.Y.B. Murthy, P.C.S. Reddy, and K.M.N.C. Reddy, "Spectrum trading and sharing in unmanned aerial vehicles based on distributed blockchain consortium system", Comput. Electr. Eng., vol. 103, p. 108255, 2022.
[http://dx.doi.org/10.1016/j.compeleceng.2022.108255]
[3]
R. Dhanalakshmi, N.P.G. Bhavani, S.S. Raju, P.C. Shaker Reddy, D. Mavaluru, D.P. Singh, and A. Batu, "Onboard pointing error detection and estimation of observation satellite data using extended kalman filter", Comput. Intell. Neurosci., vol. 2022, pp. 1-8, 2022.
[http://dx.doi.org/10.1155/2022/4340897] [PMID: 36248921]
[4]
L. Sujihelen, R. Boddu, S. Murugaveni, M. Arnika, A. Haldorai, P.C.S. Reddy, S. Feng, and J. Qin, "Node replication attack detection in distributed wireless sensor networks", Wirel. Commun. Mob. Comput., vol. 2022, pp. 1-11, 2022.
[http://dx.doi.org/10.1155/2022/7252791]
[5]
A. Singhal, S. Varshney, T.A. Mohanaprakash, R. Jayavadivel, K. Deepti, P.C.S. Reddy, and M.B. Mulat, "Minimization of latency using multitask scheduling in industrial autonomous systems", Wirel. Commun. Mob. Comput., vol. 2022, pp. 1-10, 2022.
[http://dx.doi.org/10.1155/2022/1671829]
[6]
D. Balamurugan, S.S. Aravinth, P.C.S. Reddy, A. Rupani, and A. Manikandan, "Multiview objects recognition using deep learning-Based Wrap-CNN with voting scheme", Neural Process. Lett., vol. 54, no. 3, pp. 1495-1521, 2022.
[http://dx.doi.org/10.1007/s11063-021-10679-4]
[7]
P.C. Shaker Reddy, and A. Sureshbabu, "An enhanced multiple linear regression model for seasonal rainfall prediction", Int. J. Sensors Wirel. Commun. Control, vol. 10, no. 4, pp. 473-483, 2020.
[http://dx.doi.org/10.2174/2210327910666191218124350]
[8]
Y. Sucharitha, Y. Vijayalata, and V.K. Prasad, "Predicting election results from twitter using machine learning algorithms", Recent Adv. Comput. Sci. Commun., vol. 14, no. 1, pp. 246-256, 2021.
[9]
PC. Reddy, Y Sucharitha, and G.S. Narayana, "Development of rainfall forecasting model using machine learning with singular spectrum analysis", Comput. Electr. Eng., vol. 23, no. 1, 2022.
[http://dx.doi.org/10.31436/iiumej.v23i1.1822]
[10]
R.P.C. Shaker, and Y. Sucharitha, "IoT-enabled energy-efficient multipath power control for underwater sensor networks", Int. J. Sensors Wirel. Commun. Control, vol. 12, no. 6, 2022.
[11]
R. Kumar, P. Bhanti, A. Marwal, and R.K. Gaur, "Gene expression-based supervised classification models for discriminating early-and late-stage prostate cancer", Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci., vol. 90, no. 3, pp. 541-565, 2020.
[http://dx.doi.org/10.1007/s40011-019-01127-4]
[12]
E. Shamsara, and J. Shamsara, "Bioinformatics analysis of the genes involved in the extension of prostate cancer to adjacent lymph nodes by supervised and unsupervised machine learning methods: The role of SPAG1 and PLEKHF2", Genomics, vol. 112, no. 6, pp. 3871-3882, 2020.
[http://dx.doi.org/10.1016/j.ygeno.2020.06.035] [PMID: 32619574]
[13]
A. Gumaei, R. Sammouda, M. Al-Rakhami, H. AlSalman, and A. El-Zaart, "Feature selection with ensemble learning for prostate cancer diagnosis from microarray gene expression", Health Informat. J.,, vol. 27, no. 1, 2021.
[http://dx.doi.org/10.1177/1460458221989402] [PMID: 33570011]
[14]
S. Iqbal, G.F. Siddiqui, A. Rehman, L. Hussain, T. Saba, U. Tariq, and A.A. Abbasi, "Prostate cancer detection using deep learning and traditional techniques", IEEE Access, vol. 9, pp. 27085-27100, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3057654]
[15]
K. Yuan, R. Zeng, P. Deng, A. Zhang, H. Liu, J. Yao, Q. Zhang, and H. Liu, "Identification and validation of immune-related biomarkers based on machine learning in patients with prostate cancer", Res Sq..
Available from: https://www.researchsquare.com/article/rs-1503908/v1 [http://dx.doi.org/10.21203/rs.3.rs-1503908/v1]
[16]
R.A. Musheer, C.K. Verma, and N. Srivastava, "Novel machine learning approach for classification of high-dimensional microarray data", Soft Comput., vol. 23, no. 24, pp. 13409-13421, 2019.
[http://dx.doi.org/10.1007/s00500-019-03879-7]
[17]
S.H. Shah, M.J. Iqbal, I. Ahmad, S. Khan, and J.J.P.C. Rodrigues, "Optimized gene selection and classification of cancer from microarray gene expression data using deep learning", Neural Comput. Appl., pp. 1-12, 2020.
[http://dx.doi.org/10.1007/s00521-020-05367-8]
[18]
A. Sohail, and F. Arif, "Supervised and unsupervised algorithms for bioinformatics and data science", Prog. Biophys. Mol. Biol., vol. 151, pp. 14-22, 2020.
[http://dx.doi.org/10.1016/j.pbiomolbio.2019.11.012] [PMID: 31816343]
[19]
R. Al-khurayji, and A. Sameh, "An effective Arabic text classification approach based on kernel Naive Bayes classifier", Int. J. Artif. Intell., vol. 8, no. 6, pp. 01-10, 2017.
[http://dx.doi.org/ 10.5121/ijaia.2017.8601]
[20]
X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A. Ng, B. Liu, P.S. Yu, Z.H. Zhou, M. Steinbach, D.J. Hand, and D. Steinberg, "Top 10 algorithms in data mining", Knowl. Inf. Syst., vol. 14, no. 1, pp. 1-37, 2008.
[http://dx.doi.org/10.1007/s10115-007-0114-2]
[21]
H. Ideo, J. Kondo, T. Nomura, N. Nonomura, M. Inoue, and J. Amano, "Study of glycosylation of prostate-specific antigen secreted by cancer tissue-originated spheroids reveals new candidates for prostate cancer detection", Sci. Rep., vol. 10, no. 1, p. 2708, 2020.
[http://dx.doi.org/10.1038/s41598-020-59622-y] [PMID: 32066783]
[22]
A. Graves, "Long short-term memory", In: Supervised Sequence Labelling With Recurrent Neural Networks., Springer-Verlag: Berlin, Germany, 2012, pp. 37-45.
[http://dx.doi.org/10.1007/978-3-642-24797-2_4]
[23]
H. Moutachaouik, and I. El Moudden, "Mining prostate cancer behavior using parsimonious factors and shrinkage methods", In: Smart Application and Data Analysis for Smart Cities (SADASC' 18)., 2018.
[http://dx.doi.org/10.2139/ssrn.3180967]
[24]
S.A. Komarudin, D. Anggraeni, A. Riski, and A.F. Hadi, "Classification of genetic expression in prostate cancer using support vector machine method", J. Phys. Conf. Ser., vol. 1613, no. 1, p. 012032, 2020.
[http://dx.doi.org/10.1088/1742-6596/1613/1/012032]
[25]
T.N. Nuklianggraita, A. Adiwijaya, and A. Aditsania, "On the feature selection of microarray data for cancer detection based on random forest classifier", J. Infotel., vol. 12, no. 3, pp. 89-96, 2020.
[http://dx.doi.org/10.20895/infotel.v12i3.485]
[26]
F. Al-Obeidat, A. Tubaishat, B. Shah, and Z. Halim, "Gene encoder: A feature selection technique through unsupervised deep learning-based clustering for large gene expression data", Neural Comput. Appl., vol. 34, no. 1, pp. 1-23, 2020.
[27]
M.V. Madhusudhan, V. Udayarani, and C. Hegde, "An intelligent deep learning LSTM-DM tool for finger vein recognition model USING DSAE classifier", Int. J. Syst. Assur. Eng. Manag., 2022.
Available from: https://link.springer.com/article/10.1007/s13198-022-01807-x [http://dx.doi.org/10.1007/s13198-022-01807-x]
[28]
P. Reddy, and A. Sureshbabu, "An adaptive model for forecasting seasonal rainfall using predictive analytics", Int. J. Knowl. -Based Intell., vol. 12, no. 5, pp. 22-32, 2019.
[http://dx.doi.org/10.22266/ijies2019.1031.03]