Co-delivery of Siape1 and Melatonin by 125I-loaded PSMA-targeted Nanoparticles for the Treatment of Prostate Cancer

Page: [503 - 515] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Both apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) inhibition and melatonin suppress prostate cancer (PCa) growth.

Objective: This study evaluated the therapeutic efficiency of self-assembled and prostate-specific membrane antigen (PSMA)-targeted nanocarrier loading 125I radioactive particles and encapsulating siRNA targeting APE1 (siAPE1) and melatonin for PCa.

Methods: The linear polyarginine R12 polypeptide was prepared using Fmoc-Arg-Pbf-OH. The PSMA-targeted polymer was synthesized by conjugating azide-modified R12 peptide to PSMA monoclonal antibody (mAb). Before experiments, the PSMA-R12 nanocarrier was installed with melatonin and siAPE1, which were subsequently labeled by 125I radioactive particles. In vitro biocompatibility and cytotoxicity of nanocomposites were examined in LNCaP cells and in vivo biodistribution and pharmacokinetics were determined using PCa tumor-bearing mice.

Results: PSMA-R12 nanocarrier was ~120 nm in size and was increased to ~150 nm by melatonin encapsulation. PSMA-R12 nanoparticles had efficient loading capacities of siAPE1, melatonin, and 125I particles. The co-delivery of melatonin and siAPE1 by PSMA-R12-125I showed synergistic effects on suppressing LNCaP cell proliferation and Bcl-2 expression and promoting cell apoptosis and caspase-3 expression. Pharmacokinetics analysis showed that Mel@PSMA-R12-125I particles had high uptake activity in the liver, spleen, kidney, intestine, and tumor, and were accumulated in the tumor sites within the first 8 h p.i., but was rapidly cleared from all the tested organs at 24 h p.i. Administration of nanoparticles to PCa tumors in vivo showed that Mel@PSMA-R12- 125I/siAPE1 had high efficiency in suppressing PCa tumor growth.

Conclusion: The PSMA-targeted nanocarrier encapsulating siAPE1 and melatonin is a promising therapeutic strategy for PCa and can provide a theoretical basis for patent applications.

[1]
Lander ES. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511(7511): 543-50.
[http://dx.doi.org/10.1038/nature13385] [PMID: 25079552]
[2]
Culp MB, Soerjomataram I, Efstathiou JA, Bray F, Jemal A. Recent global patterns in prostate cancer incidence and mortality rates. Eur Urol 2020; 77(1): 38-52.
[http://dx.doi.org/10.1016/j.eururo.2019.08.005] [PMID: 31493960]
[3]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[4]
Ahdoot M, Wilbur AR, Reese SE, et al. MRI-targeted, systematic, and combined biopsy for prostate cancer diagnosis. N Engl J Med 2020; 382(10): 917-28.
[http://dx.doi.org/10.1056/NEJMoa1910038] [PMID: 32130814]
[5]
Liu S, Zheng H, Feng Y, Li W. Eds. Prostate cancer diagnosis using deep learning with 3D multiparametric MRI Medical imaging 2017: Computer-aided diagnosis. International Society for Optics and Photonics. 2017. Available from: https://arxiv.org/abs/1703.04078
[6]
Taitt HE. Global trends and prostate cancer: A review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Men Health 2018; 12(6): 1807-23.
[http://dx.doi.org/10.1177/1557988318798279] [PMID: 30203706]
[7]
Afshar-Oromieh A, Babich JW, Kratochwil C, et al. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med 2016; 57 (Suppl. 3): 79S-89S.
[http://dx.doi.org/10.2967/jnumed.115.170720] [PMID: 27694178]
[8]
Minner S, Wittmer C, Graefen M, et al. High level PSMA expression is associated with early psa recurrence in surgically treated prostate cancer. Prostate 2011; 71(3): 281-8.
[http://dx.doi.org/10.1002/pros.21241] [PMID: 20809553]
[9]
Pereira Mestre R, Treglia G, Ferrari M, et al. Correlation between PSA kinetics and PSMA-PET in prostate cancer restaging: A meta-analysis. Eur J Clin Invest 2019; 49(3): e13063.
[http://dx.doi.org/10.1111/eci.13063] [PMID: 30580449]
[10]
Morigi JJ, Stricker PD, van Leeuwen PJ, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med 2015; 56(8): 1185-90.
[http://dx.doi.org/10.2967/jnumed.115.160382] [PMID: 26112024]
[11]
Farolfi A, Ceci F, Castellucci P, et al. 68Ga-PSMA-11 PET/CT in prostate cancer patients with biochemical recurrence after radical prostatectomy and PSA <0.5 ng/ml. Efficacy and impact on treatment strategy. Eur J Nucl Med Mol Imaging 2019; 46(1): 11-9.
[http://dx.doi.org/10.1007/s00259-018-4066-4] [PMID: 29905907]
[12]
Dai L, Shen G, Wang Y, Yang P, Wang H, Liu Z. PSMA-targeted melanin-like nanoparticles as a multifunctional nanoplatform for prostate cancer theranostics. J Mater Chem B Mater Biol Med 2021; 9(4): 1151-61.
[http://dx.doi.org/10.1039/D0TB02576C] [PMID: 33434248]
[13]
Tse BWC, Cowin GJ, Soekmadji C, et al. PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine 2015; 10(3): 375-86.
[http://dx.doi.org/10.2217/nnm.14.122] [PMID: 25407827]
[14]
Zhou D, Zhang G, Gan Z. c(RGDfK) decorated micellar drug delivery system for intravesical instilled chemotherapy of superficial bladder cancer. J Control Release 2013; 169(3): 204-10.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.025] [PMID: 23388072]
[15]
Itani R, Al Faraj A. SiRNA conjugated nanoparticles—a next generation strategy to treat lung cancer. Int J Mol Sci 2019; 20(23): 6088.
[http://dx.doi.org/10.3390/ijms20236088] [PMID: 31816851]
[16]
Zhang Y, Schwerbrock NMJ, Rogers AB, Kim WY, Huang L. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC. Mol Ther 2013; 21(8): 1559-69.
[http://dx.doi.org/10.1038/mt.2013.120] [PMID: 23774791]
[17]
Zhang C, Zhao Y, Zhang E, et al. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Deliv 2020; 27(1): 1397-411.
[http://dx.doi.org/10.1080/10717544.2020.1827085] [PMID: 33096948]
[18]
Shafabakhsh R, Reiter RJ, Mirzaei H, Teymoordash SN, Asemi Z. Melatonin: A new inhibitor agent for cervical cancer treatment. J Cell Physiol 2019; 234(12): 21670-82.
[http://dx.doi.org/10.1002/jcp.28865] [PMID: 31131897]
[19]
Moretti RM, Marelli MM, Maggi R, Dondi D, Motta M, Limonta P. Antiproliferative action of melatonin on human prostate cancer LNCaP cells. Oncol Rep 2000; 7(2): 347-51.
[http://dx.doi.org/10.3892/or.7.2.347] [PMID: 10671684]
[20]
Zharinov GM, Bogomolov OA, Chepurnaya IV, Neklasova NY, Anisimov VN. Melatonin increases overall survival of prostate cancer patients with poor prognosis after combined hormone radiation treatment. Oncotarget 2020; 11(41): 3723-9.
[http://dx.doi.org/10.18632/oncotarget.27757] [PMID: 33110479]
[21]
Liu S, Madu CO, Lu Y. The role of melatonin in cancer development. Oncomedicine 2018; 3: 37-47.
[http://dx.doi.org/10.7150/oncm.25566]
[22]
Rivara S, Pala D, Bedini A, Spadoni G. Therapeutic uses of melatonin and melatonin derivatives: A patent review (2012–2014). Expert Opin Ther Pat 2015; 25(4): 425-1.
[23]
Witt-Enderby PA, Davis VL, Lapinsky D. Anti-cancer tamoxifenmelatonin hybrid ligand. U.S. Patent 8785501B2, 2014.
[24]
Shengyi Z, Wei W. Melatonin-nano selenium preparation. C.N. Patent 1415309A, 2002.
[25]
Jingyuan X, Ruipin L, Xiaomeng L, Zhe L. Melatonin-platinum (IV)-carbon-nitrogen long chain complex, preparation method and its application in tumor drugs. C.N. Patent 114835759A, 2022.
[26]
Shiu SYW. Towards rational and evidence-based use of melatonin in prostate cancer prevention and treatment. J Pineal Res 2007; 43(1): 1-9.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00451.x] [PMID: 17614829]
[27]
Maroufi NF, Vahedian V, Hemati S, et al. Targeting cancer stem cells by melatonin: Effective therapy for cancer treatment. Pathol Res Pract 2020; 216(5): 152919.
[http://dx.doi.org/10.1016/j.prp.2020.152919] [PMID: 32171553]
[28]
Caston RA, Gampala S, Armstrong L, Messmann RA, Fishel ML, Kelley MR. The multifunctional APE1 DNA repair–redox signaling protein as a drug target in human disease. Drug Discov Today 2021; 26(1): 218-28.
[http://dx.doi.org/10.1016/j.drudis.2020.10.015] [PMID: 33148489]
[29]
Long K, Gu L, Li L, et al. Small-molecule inhibition of APE1 induces apoptosis, pyroptosis, and necroptosis in non-small cell lung cancer. Cell Death Dis 2021; 12(6): 503.
[http://dx.doi.org/10.1038/s41419-021-03804-7] [PMID: 34006852]
[30]
Sun Z, Zhu Y. Aminbuhe, Fan Q, Peng J, Zhang N. Differential expression of APE1 in hepatocellular carcinoma and the effects on proliferation and apoptosis of cancer cells. Biosci Trends 2018; 12(5): 456-62.
[http://dx.doi.org/10.5582/bst.2018.01239] [PMID: 30473552]
[31]
McIlwain DW, Fishel ML, Boos A, Kelley MR, Jerde TJ. APE1/Ref-1 redox-specific inhibition decreases survivin protein levels and induces cell cycle arrest in prostate cancer cells. Oncotarget 2018; 9(13): 10962-77.
[http://dx.doi.org/10.18632/oncotarget.23493] [PMID: 29541389]
[32]
Murata Y, Jo J, Tabata Y. Preparation of cationized gelatin nanospheres incorporating molecular beacon to visualize cell apoptosis. Sci Rep 2018; 8(1): 14839.
[http://dx.doi.org/10.1038/s41598-018-33231-2] [PMID: 30287861]
[33]
Ku SH, Kim K, Choi K, Kim SH, Kwon IC. Tumor-targeting multifunctional nanoparticles for siRNA delivery: Recent advances in cancer therapy. Adv Healthc Mater 2014; 3(8): 1182-93.
[http://dx.doi.org/10.1002/adhm.201300607] [PMID: 24577795]
[34]
Yu AYH, Fu RH, Hsu S, et al. Epidermal growth factor receptors siRNA-conjugated collagen modified gold nanoparticles for targeted imaging and therapy of lung cancer. Materials Today Advances 2021; 12: 100191.
[http://dx.doi.org/10.1016/j.mtadv.2021.100191]
[35]
Fang L, Zhao Z, Wang J, et al. Light-controllable charge-reversal nanoparticles with polyinosinic-polycytidylic acid for enhancing immunotherapy of triple negative breast cancer. Acta Pharm Sin B 2022; 12(1): 353-63.
[http://dx.doi.org/10.1016/j.apsb.2021.06.006] [PMID: 35127391]
[36]
Wang H, Wang Z, Chen W, et al. Self-assembly of photosensitive and radiotherapeutic peptide for combined photodynamic-radio cancer therapy with intracellular delivery of miRNA-139-5p. Bioorg Med Chem 2021; 44: 116305.
[http://dx.doi.org/10.1016/j.bmc.2021.116305] [PMID: 34273735]
[37]
Jin L, Wang Q, Chen J, Wang Z, Xin H, Zhang D. Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells. Pharmaceutics 2019; 11(11): 615.
[http://dx.doi.org/10.3390/pharmaceutics11110615] [PMID: 31744202]
[38]
Nagesh PKB, Johnson NR, Boya VKN, et al. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf B Biointerfaces 2016; 144: 8-20.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.071] [PMID: 27058278]
[39]
Sainz RM, Mayo JC, Tan D, León J, Manchester L, Reiter RJ. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 2005; 63(1): 29-43.
[http://dx.doi.org/10.1002/pros.20155] [PMID: 15378522]
[40]
Tai HC, Wang SW, Swain S, et al. Melatonin suppresses the metastatic potential of osteoblastic prostate cancers by inhibiting integrin α 2 β 1 expression. J Pineal Res 2022; 72(3): e12793.
[http://dx.doi.org/10.1111/jpi.12793] [PMID: 35174530]
[41]
Shiu SYW, Law IC, Lau KW, Tam PC, Yip AWC, Ng WT. Melatonin slowed the early biochemical progression of hormone-refractory prostate cancer in a patient whose prostate tumor tissue expressed MT 1 receptor subtype. J Pineal Res 2003; 35(3): 177-82.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00074.x] [PMID: 12932201]
[42]
Papantoniou K, Castaño-Vinyals G, Espinosa A, et al. Night shift work, chronotype and prostate cancer risk in the MCC-Spain case-control study. Int J Cancer 2015; 137(5): 1147-57.
[http://dx.doi.org/10.1002/ijc.29400] [PMID: 25530021]
[43]
Wendeu-Foyet MG, Bayon V, Cénée S, et al. Night work and prostate cancer risk: Results from the EPICAP Study. Occup Environ Med 2018; 75(8): 573-81.
[http://dx.doi.org/10.1136/oemed-2018-105009] [PMID: 29921728]
[44]
Rao D, Yu H, Bai Y, Zheng X, Xie L. Does night-shift work increase the risk of prostate cancer? a systematic review and meta-analysis. OncoTargets Ther 2015; 8: 2817-26.
[PMID: 26491356]
[45]
Li Y, Li S, Zhou Y, et al. Melatonin for the prevention and treatment of cancer. Oncotarget 2017; 8(24): 39896-921.
[http://dx.doi.org/10.18632/oncotarget.16379] [PMID: 28415828]