Kaempferol: Topical Applications and Nanoformulations in the Treatment of Diseases

Article ID: e180423216003 Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Kaempferol, a natural flavonoid found in numerous fruits, vegetables, and herbs, possesses many pharmacological activities such as antioxidant, anti-inflammatory and anti-cancer. Kaempferol has low aqueous solubility and hence has poor oral bioavailability. Numerous promising techniques were used to enhance its absorption and structural transformation to deliver kaempferol. Novel pharmaceutical technologies, including nanotechnology, carrier complex and cocrystals have been established. However, this review discusses how to deliver kaempferol via topical route in many diseases. This is the earliest review that aims to provide updated information on chemistry, bioavailability, biosynthesis, therapeutic effects and available nanoformulations of kaempferol. It also provides future directions so that the overall bioavailability of kaempferol might be improved, and it may show expansive applications.

Graphical Abstract

[1]
Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop., 2017, 20(August), 1-42.
[http://dx.doi.org/10.1080/10942912.2017.1354017]
[2]
Kim, J.D.; Liu, L.; Guo, W.; Meydani, M. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion. J. Nutr. Biochem., 2006, 17(3), 165-176.
[http://dx.doi.org/10.1016/j.jnutbio.2005.06.006] [PMID: 16169200]
[3]
Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control. Release, 2019, 296(296), 190-201.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.029] [PMID: 30682442]
[4]
Sharma, A.; Sharma, P.; Singh Tuli, H.; Sharma, A.K. Phytochemical and Pharmacological Properties of Flavonols; eLS. 2018, pp. 1-12.
[http://dx.doi.org/10.1002/9780470015902.a0027666]
[5]
Alam, W.; Khan, H.; Shah, M.A.; Cauli, O.; Saso, L. Kaempferol as a dietary anti-inflammatory agent: Current therapeutic standing. Molecules, 2020, 25(18), 4073.
[http://dx.doi.org/10.3390/molecules25184073] [PMID: 32906577]
[6]
Kumar, A. Phytochemistry, pharmacological activities and uses of traditional medicinal plant Kaempferia galanga L.-An overview. J. Ethnopharmacol., 2020, 253(January)112667
[http://dx.doi.org/10.1016/j.jep.2020.112667] [PMID: 32061673]
[7]
Oliveira, E.J.; Watson, D.G.; Grant, M.H. Metabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma. Xenobiotica, 2002, 32(4), 279-287.
[http://dx.doi.org/10.1080/00498250110107886] [PMID: 12028662]
[8]
Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent progress regarding kaempferol for the treatment of various diseases. Exp. Ther. Med., 2019, 18(4), 2759-2776.
[http://dx.doi.org/10.3892/etm.2019.7886] [PMID: 31572524]
[9]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[10]
Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; Guerreiro, S.G.; Martins, N.; Estevinho, L.M. Kaempferol: A key emphasis to its anticancer potential. Molecules, 2019, 24(12), 2277.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[11]
Crespy, V.; Morand, C.; Besson, C.; Cotelle, N.; Vézin, H.; Demigné, C.; Rémésy, C. The splanchnic metabolism of flavonoids highly differed according to the nature of the compound. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 284(6), G980-G988.
[http://dx.doi.org/10.1152/ajpgi.00223.2002]
[12]
Yang, Z.Y.; Qian, L.L.; Xu, Y.; Song, M.T.; Liu, C.; Han, R.M.; Zhang, J.P.; Skibsted, L.H. Kinetic studies on radical scavenging activity of kaempferol decreased by Sn(II) binding. Molecules, 2020, 25(8), 1975.
[http://dx.doi.org/10.3390/molecules25081975] [PMID: 32340303]
[13]
Wu, P.; Meng, X.; Zheng, H.; Zeng, Q.; Chen, T.; Wang, W.; Zhang, X.; Su, J. Kaempferol attenuates ros-induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules, 2018, 23(10), 2592.
[http://dx.doi.org/10.3390/molecules23102592] [PMID: 30309003]
[14]
Abo-Salem, O.M. Kaempferol attenuates the development of diabetic neuropathic pain in mice: Possible anti-inflammatory and anti-oxidant mechanisms. Open Access Maced. J. Med. Sci., 2014, 2(3), 424-430.
[http://dx.doi.org/10.3889/oamjms.2014.073]
[15]
Park, M.J.; Lee, E.K.; Heo, H.S.; Kim, M.S.; Sung, B.; Kim, M.K.; Lee, J.; Kim, N.D.; Anton, S.; Choi, J.S.; Yu, B.P.; Chung, H.Y. The anti-inflammatory effect of kaempferol in aged kidney tissues: The involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways. J. Med. Food, 2009, 12(2), 351-358.
[http://dx.doi.org/10.1089/jmf.2008.0006] [PMID: 19459737]
[16]
Romes, N.B.; Abdul Wahab, R.; Abdul Hamid, M. The role of bioactive phytoconstituents-loaded nanoemulsions for skin improvement: A review. Biotechnol. Biotechnol. Equip., 2021, 35(1), 711-730.
[http://dx.doi.org/10.1080/13102818.2021.1915869]
[17]
Yao, K.; Chen, H.; Liu, K.; Langfald, A.; Yang, G.; Zhang, Y.; Yu, D.H.; Kim, M.O.; Lee, M.H.; Li, H.; Bae, K.B.; Kim, H.G.; Ma, W.Y.; Bode, A.M.; Dong, Z.; Dong, Z. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer. Cancer Prev. Res., 2014, 7(9), 958-967.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0126] [PMID: 24994661]
[18]
Yeon, M.J.; Lee, M.H.; Kim, D.H.; Yang, J.Y.; Woo, H.J.; Kwon, H.J.; Moon, C.; Kim, S.H.; Kim, J.B. Anti-inflammatory effects of Kaempferol on Helicobacter pylori -induced inflammation. Biosci. Biotechnol. Biochem., 2019, 83(1), 166-173.
[http://dx.doi.org/10.1080/09168451.2018.1528140] [PMID: 30286691]
[19]
Kubina, R.; Iriti, M.; Kabała-Dzik, A. Anticancer potential of selected flavonols: Fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients, 2021, 13(3), 845.
[http://dx.doi.org/10.3390/nu13030845] [PMID: 33807530]
[20]
Hung, T.W.; Chen, P.N.; Wu, H.C.; Wu, S.W.; Tsai, P.Y.; Hsieh, Y.S.; Chang, H.R. Kaempferol inhibits the invasion and migration of renal cancer cells through the downregulation of AKT and FAK pathways. Int. J. Med. Sci., 2017, 14(10), 984-993.
[http://dx.doi.org/10.7150/ijms.20336] [PMID: 28924370]
[21]
Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem., 2013, 138(4), 2099-2107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[22]
Lin, C.W.; Chen, P.N.; Chen, M.K.; Yang, W.E.; Tang, C.H.; Yang, S.F.; Hsieh, Y.S. Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PLoS One, 2013, 8(11)e80883
[http://dx.doi.org/10.1371/journal.pone.0080883] [PMID: 24278338]
[23]
Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability in humans. Nutrients, 2019, 11, 2288.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]
[24]
Uchida, N.; Yanagi, M.; Shimoda, K.; Hamada, H. Extension of the scope of anionic phospholipid-based nanoformulation to kaempferol and indometacin. Nat. Prod. Commun., 2021, 16(3), 1934578X2110026.
[http://dx.doi.org/10.1177/1934578X211002654]
[25]
Ashrafizadeh, M.; Tavakol, S.; Ahmadi, Z.; Roomiani, S.; Mohammadinejad, R.; Samarghandian, S. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother. Res., 2020, 34(5), 911-923.
[http://dx.doi.org/10.1002/ptr.6577] [PMID: 31829475]
[26]
Pan, X.; Liu, X.; Zhao, H.; Wu, B.; Liu, G. Antioxidant, antiinflammatory and neuroprotective effect of kaempferol on rotenone- induced parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J. Funct. Foods, 2020, 74, 0-8.
[http://dx.doi.org/10.1016/j.jff.2020.104140]
[27]
Batra, P.; Sharma, A. K. Anti-Cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech., 2013, 3(6), 439- 459.
[http://dx.doi.org/10.1007/s13205-013-0117-5]
[28]
Lee, K.M.; Lee, K.W.; Jung, S.K.; Lee, E.J.; Heo, Y.S.; Bode, A.M.; Lubet, R.A.; Lee, H.J.; Dong, Z. Kaempferol inhibits UVB-induced COX-2 expression by suppressing Src kinase activity. Biochem. Pharmacol., 2010, 80(12), 2042-2049.
[http://dx.doi.org/10.1016/j.bcp.2010.06.042] [PMID: 20599768]
[29]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246.
[http://dx.doi.org/10.3390/nu2121231] [PMID: 22254006]
[30]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[31]
Liu, C.; Liu, H.; Lu, C.; Deng, J.; Yan, Y.; Chen, H.; Wang, Y.; Liang, C-L.; Wei, J.; Han, L.; Dai, Z. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clin. Exp. Immunol., 2019, 198(3), 403-415.
[http://dx.doi.org/10.1111/cei.13363] [PMID: 31407330]
[32]
Colombo, M.; Melchiades, G.L.; Figueiró, F.; Battastini, A.M.O.; Teixeira, H.F.; Koester, L.S. Validation of an HPLC-UV method for analysis of Kaempferol-loaded nanoemulsion and its application to in vitro and in vivo tests. J. Pharm. Biomed. Anal., 2017, 145, 831-837.
[http://dx.doi.org/10.1016/j.jpba.2017.07.046] [PMID: 28826141]
[33]
Nardini, M.; Natella, F.; Scaccini, C. Role of dietary polyphenols in platelet aggregation. A review of the supplementation studies. Platelets, 2007, 18(3), 224-243.
[http://dx.doi.org/10.1080/09537100601078083] [PMID: 17497435]
[34]
Rathee, P.; Chaudhary, H.; Rathee, S.; Rathee, D.; Kumar, V.; Kohli, K. Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm. Allergy Drug Targets, 2009, 8(3), 229-235.
[http://dx.doi.org/10.2174/187152809788681029] [PMID: 19601883]
[35]
Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science, 2001, 294(5548), 1871-1875.
[http://dx.doi.org/10.1126/science.294.5548.1871]
[36]
Moens, U.; Kostenko, S.; Sveinbjørnsson, B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes, 2013, 4(2), 101-133.
[http://dx.doi.org/10.3390/genes4020101] [PMID: 24705157]
[37]
Zhang, X.; Xu, M.; Zhang, Z.; Hu, X.; Hao, L.; Lin, Q.; Wang, S.; Jiang, W. Preparation and characterization of magnetic fluorescent microspheres for delivery of kaempferol. Mater. Technol., 2017, 32(3), 125-130.
[http://dx.doi.org/10.1080/10667857.2016.1157913]
[38]
Tang, X.; Liu, J.; Dong, W.; Li, P.; Li, L.; Hou, J.; Zheng, Y.; Lin, C.; Ren, J. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation, 2015, 38(1), 94-101.
[http://dx.doi.org/10.1007/s10753-014-0011-2] [PMID: 25189464]
[39]
Saw, C.L.L.; Guo, Y.; Yang, A.Y.; Paredes-Gonzalez, X.; Ramirez, C.; Pung, D.; Kong, A.N.T. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: Involvement of the Nrf2-ARE signaling pathway. Food Chem. Toxicol., 2014, 72(August), 303-311.
[http://dx.doi.org/10.1016/j.fct.2014.07.038] [PMID: 25111660]
[40]
Nam, S.Y.; Jeong, H.J.; Kim, H.M. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation. Chem. Biol. Interact., 2017, 274, 107-115.
[http://dx.doi.org/10.1016/j.cbi.2017.07.010] [PMID: 28711657]
[41]
Kim, J.K.; Park, S.U. Recent studies on kaempferol and its biological and pharmacological activities. EXCLI J., 2020, 19, 627-634.
[42]
Tukbocg, L.N.; Sarika, W. Western Jane Chapter 3 map. Nonsens/ Local geol cavite,
[http://dx.doi.org/10.1016/B978-0-12-804254-0.00003-X]
[43]
Adegoke, O.; Forbes, P.B.C. Challenges and advances in quantum dot fluorescent probes to detect reactive oxygen and nitrogen species: A review. Anal. Chim. Acta, 2015, 862, 1-13.
[http://dx.doi.org/10.1016/j.aca.2014.08.036] [PMID: 25682423]
[44]
Hazra, B.; Das, S.M.; Sanyal, U. Separation methods of quinonoid constituents of plants used in Oriental traditional medicines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 812(1-2), 259-275.
[http://dx.doi.org/10.1016/j.jchromb.2004.08.007]
[45]
Zhou, M.; Ren, H.; Han, J.; Wang, W.; Zheng, Q.; Wang, D. Protective effects of kaempferol against myocardial ischemia/reperfusion injury in isolated rat heart via antioxidant activity and inhibition of glycogen synthase kinase-3β. Oxid. Med. Cell. Longev., 2015, 2015481405
[46]
Melo, S.A.; Luecke, L.B.; Kahlert, C.; Fernandez, A.F.; Gammon, S.T.; Kaye, J.; LeBleu, V.S.; Mittendorf, E.A.; Weitz, J.; Rahbari, N.; Reissfelder, C.; Pilarsky, C.; Fraga, M.F.; Piwnica-Worms, D.; Kalluri, R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 2015, 523(7559), 177-182.
[http://dx.doi.org/10.1038/nature14581] [PMID: 26106858]
[47]
Gao, Z.; Huang, K.; Yang, X.; Xu, H. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim. Biophys. Acta, Gen. Subj., 1999, 1472(3), 643-650.
[http://dx.doi.org/10.1016/S0304-4165(99)00152-X] [PMID: 10564778]
[48]
Kowalski, J.; Samojedny, A.; Paul, M.; Pietsz, G.; Wilczok, T. Effect of kaempferol on the production and gene expression of monocyte chemoattractant protein-1 in J774.2 macrophages. Pharmacol. Rep., 2005, 57(1), 107-112.
[PMID: 15849384]
[49]
Choe, K.I.; Kwon, J.H.; Park, K.H.; Oh, M.H.; Kim, M.H.; Kim, H.H.; Cho, S.H.; Chung, E.K.; Ha, S.Y.; Lee, M.W. The antioxidant and anti-inflammatory effects of phenolic compounds isolated from the root of Rhodiola sachalinensis A. BOR. Molecules, 2012, 17(10), 11484-11494.
[http://dx.doi.org/10.3390/molecules171011484] [PMID: 23018923]
[50]
Wahab, A.; Tahira Begum, S.; Ayub, A.; Mahmood, I.; Mahmood, T.; Ahmad, A.; Fayyaz, N. Luteolin and kaempferol from cassia alata, antimicrobial and antioxidant activity of its methanolic extracts. FUUAST J. Biol., 2014, 4(1), 1-5.
[51]
Huang, M.; Su, E.; Zheng, F.; Tan, C. Encapsulation of flavonoids in liposomal delivery systems: The case of quercetin, kaempferol and luteolin. Food Funct., 2017, 8(9), 3198-3208.
[http://dx.doi.org/10.1039/C7FO00508C] [PMID: 28805832]
[52]
Shao, J.; Zhang, M.; Wang, T.; Li, Y.; Wang, C. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Pharm. Biol., 2016, 54(6), 984-992.
[http://dx.doi.org/10.3109/13880209.2015.1091483] [PMID: 26459663]
[53]
Wang, Y.; Tang, C.; Zhang, H. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice. J. Food Drug Anal., 2015, 23(2), 310-317.
[http://dx.doi.org/10.1016/j.jfda.2014.10.002] [PMID: 28911387]
[54]
Choi, E.M. Kaempferol protects MC3T3-E1 cells through antioxidant effect and regulation of mitochondrial function. Food Chem. Toxicol., 2011, 49(8), 1800-1805.
[http://dx.doi.org/10.1016/j.fct.2011.04.031] [PMID: 21565246]
[55]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci., 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[56]
Wu, L.Y.; Lu, H.F.; Chou, Y.C.; Shih, Y.L.; Bau, D.T.; Chen, J.C.; Hsu, S.C.; Chung, J.G. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells. Am. J. Chin. Med., 2015, 43(2), 365-382.
[http://dx.doi.org/10.1142/S0192415X1550024X] [PMID: 25779644]
[57]
Azevedo, C.; Correia-Branco, A.; Araújo, J.R.; Guimarães, J.T.; Keating, E.; Martel, F. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr. Cancer, 2015, 67(3), 504-513.
[http://dx.doi.org/10.1080/01635581.2015.1002625] [PMID: 25719685]
[58]
Zhu, G.; Liu, X.; Li, H.; Yan, Y.; Hong, X.; Lin, Z. RETRACTED: Kaempferol inhibits proliferation, migration, and invasion of liver cancer HepG2 cells by down-regulation of microRNA-21. Int. J. Immunopathol. Pharmacol., 2018, 32.
[http://dx.doi.org/10.1177/2058738418814341] [PMID: 30477356]
[59]
Lee, S.B.; Shin, J.S.; Han, S.B.; Lee, H.H.; Park, S.B.; Lee, K.T. Kaempferol 7-O-β-D-Glucoside isolated from the leaves of Cudrania tricuspidata inhibits LPS-induced expression of pro-inflammatory mediators through inactivation of NF-KB, AP-1, and JAK-STAT in raw 264.7 macrophages. Chem. Biol. Interact., 2018, 284, 101-111.
[http://dx.doi.org/10.1016/j.cbi.2018.02.022] [PMID: 29470957]
[60]
Jeong, J.C.; Kim, M.S.; Kim, T.H.; Kim, Y.K. Kaempferol induces cell death through ERK and Akt-dependent down-regulation of XIAP and survivin in human glioma cells. Neurochem. Res., 2009, 34(5), 991-1001.
[http://dx.doi.org/10.1007/s11064-008-9868-5] [PMID: 18949556]
[61]
Colombo, M.; Figueiró, F.; de Fraga Dias, A.; Teixeira, H.F.; Battastini, A.M.O.; Koester, L.S. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int. J. Pharm., 2018, 543(1-2), 214-223.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.055] [PMID: 29605695]
[62]
Moradzadeh, M.; Tabarraei, A.; Sadeghnia, H.R.; Ghorbani, A.; Mohamadkhani, A.; Erfanian, S.; Sahebkar, A. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes. J. Cell. Biochem., 2018, 119(2), 2288-2297.
[http://dx.doi.org/10.1002/jcb.26391] [PMID: 28865123]
[63]
Huang, W.W.; Chiu, Y.J.; Fan, M.J.; Lu, H.F.; Yeh, H.F.; Li, K.H.; Chen, P.Y.; Chung, J.G.; Yang, J.S. Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma U-2 OS cells. Mol. Nutr. Food Res., 2010, 54(11), 1585-1595.
[http://dx.doi.org/10.1002/mnfr.201000005] [PMID: 20564475]
[64]
Lee, G.A.; Choi, K.C.; Hwang, K.A. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells. Environ. Toxicol. Pharmacol., 2017, 49, 48-57.
[http://dx.doi.org/10.1016/j.etap.2016.11.016] [PMID: 27902959]
[65]
Kim, S.H.; Hwang, K.A.; Choi, K.C. Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J. Nutr. Biochem., 2016, 28, 70-82.
[http://dx.doi.org/10.1016/j.jnutbio.2015.09.027] [PMID: 26878784]
[66]
Sonoki, H.; Tanimae, A.; Endo, S.; Matsunaga, T.; Furuta, T.; Ichihara, K.; Ikari, A. Kaempherol and luteolin decrease claudin-2 expression mediated by inhibition of STAT3 in lung adenocarcinoma A549 cells. Nutrients, 2017, 9(6), 597.
[http://dx.doi.org/10.3390/nu9060597] [PMID: 28608828]
[67]
Han, X.; Liu, C.F.; Gao, N.; Zhao, J.; Xu, J. RETRACTED: Kaempferol suppresses proliferation but increases apoptosis and autophagy by up-regulating microRNA-340 in human lung cancer cells. Biomed. Pharmacother., 2018, 108(826), 809-816.
[http://dx.doi.org/10.1016/j.biopha.2018.09.087] [PMID: 30253373]
[68]
Qin, Y.; Cui, W.; Yang, X.; Tong, B. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo. Acta Biochim. Biophys. Sin., 2016, 48(3), 238-245.
[http://dx.doi.org/10.1093/abbs/gmv133] [PMID: 26883800]
[69]
Kuo, W.T.; Tsai, Y.C.; Wu, H.C.; Ho, Y.J.; Chen, Y.S.; Yao, C.H.; Yao, C.H. Radiosensitization of non-small cell lung cancer by kaempferol. Oncol. Rep., 2015, 34(5), 2351-2356.
[http://dx.doi.org/10.3892/or.2015.4204] [PMID: 26323894]
[70]
Song, H.; Bao, J.; Wei, Y.; Chen, Y.; Mao, X.; Li, J.; Yang, Z.; Xue, Y. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study. Oncol. Rep., 2015, 33(2), 868-874.
[http://dx.doi.org/10.3892/or.2014.3662] [PMID: 25500692]
[71]
Kim, C.J.; Shin, S.H.; Kim, B.J.; Kim, C.H.; Kim, J.H.; Kang, H.M.; Park, B.S.; Kim, I.R. The effects of kaempferol-inhibited autophagy on osteoclast formation. Int. J. Mol. Sci., 2018, 19(1), 125.
[http://dx.doi.org/10.3390/ijms19010125] [PMID: 29301320]
[72]
Li, L.C.; Kan, L.D. Traditional Chinese medicine for pulmonary fibrosis therapy: Progress and future prospects. J. Ethnopharmacol., 2017, 198, 45-63.
[http://dx.doi.org/10.1016/j.jep.2016.12.042] [PMID: 28038955]
[73]
Ochiai, A.; Miyata, S.; Iwase, M.; Shimizu, M.; Inoue, J.; Sato, R. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes. Sci. Rep., 2016, 6(1), 24940.
[http://dx.doi.org/10.1038/srep24940] [PMID: 27109240]
[74]
Suchal, K.; Malik, S.; Gamad, N.; Malhotra, R.K.; Goyal, S.N.; Chaudhary, U.; Bhatia, J.; Ojha, S.; Arya, D.S. Kaempferol attenuates myocardial ischemic injury via inhibition of MAPK signaling pathway in experimental model of myocardial ischemia-reperfusion injury. Oxid. Med. Cell. Longev., 2016, 2016, 1-10.
[http://dx.doi.org/10.1155/2016/7580731] [PMID: 27087891]
[75]
Trivedi, R.; Kumar, S.; Kumar, A.; Siddiqui, J.A.; Swarnkar, G.; Gupta, V.; Kendurker, A.; Dwivedi, A.K.; Romero, J.R.; Chattopadhyay, N. Kaempferol has osteogenic effect in ovariectomized adult Sprague–Dawley rats. Mol. Cell. Endocrinol., 2008, 289(1-2), 85-93.
[http://dx.doi.org/10.1016/j.mce.2008.02.027] [PMID: 18400372]
[76]
Park, S.H.; Gong, J.H.; Choi, Y.J.; Kang, M.K.; Kim, Y.H.; Kang, Y.H. Kaempferol inhibits endoplasmic reticulum stress-associated mucus hypersecretion in airway epithelial cells and ovalbumin-sensitized mice. PLoS One, 2015, 10(11)e0143526
[http://dx.doi.org/10.1371/journal.pone.0143526] [PMID: 26599511]
[77]
Park, S.H.; Sim, Y.B.; Han, P.L.; Lee, J.K.; Suh, H.W. Antidepressant-like effect of kaempferol and quercitirin, isolated from Opuntia ficus-indica var. saboten. Exp. Neurobiol., 2010, 19(1), 30-38.
[http://dx.doi.org/10.5607/en.2010.19.1.30] [PMID: 22110339]
[78]
Hosseinzadeh, H.; Motamedshariaty, V.; Hadizadeh, F. Antidepressant effect of kaempferol, a constituent of saffron (Crocus sativus) petal, in mice and rats. Pharmacologyonline, 2007, 2, 367-370.
[79]
Yu, L.; Chen, C.; Wang, L.F.; Kuang, X.; Liu, K.; Zhang, H.; Du, J.R. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. PLoS One, 2013, 8(2)e55839
[http://dx.doi.org/10.1371/journal.pone.0055839] [PMID: 23437066]
[80]
Zeng, Y.Q.; Liu, X.S.; Wu, S.; Zou, C.; Xie, Q.; Xu, S.M.; Jin, X.W.; Li, W.; Zhou, A.; Dai, Z. Kaempferol promotes transplant tolerance by sustaining CD4+FoxP3+ regulatory T cells in the presence of calcineurin inhibitor. Am. J. Transplant., 2015, 15(7), 1782-1792.
[http://dx.doi.org/10.1111/ajt.13261] [PMID: 25808405]
[81]
Zhang, T.; Wu, Z.; Du, J.; Hu, Y.; Liu, L.; Yang, F.; Jin, Q. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics. PLoS One, 2012, 7(1)e30259
[http://dx.doi.org/10.1371/journal.pone.0030259] [PMID: 22276167]
[82]
Barbieri, J.S.; Wanat, K.; Seykora, J. Skin: Basic structure and function. In: Pathobiology of Human Disease; Elsevier Inc., 2014, pp. 1134-1144.
[http://dx.doi.org/10.1016/B978-0-12-386456-7.03501-2]
[83]
Ng, K.W.; Lau, W.M. Skin deep: The basics of human skin structure and drug penetration. In: Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer, 2015, pp. 3-11.
[http://dx.doi.org/10.1007/978-3-662-45013-0_1]
[84]
Pal, G.; Pal, P.; Nanda, N. Structure and function of the skin. Jpn. J. Med. Electron. Biol. Eng., 2017, 21(1), 1231.
[http://dx.doi.org/10.5005/jp/books/12961_73] [PMID: 6632346]
[85]
Souyoul, S.A.; Saussy, K.P.; Lupo, M.P. Nutraceuticals: A review. Dermatol. Ther., 2018, 8(1), 5-16.
[http://dx.doi.org/10.1007/s13555-018-0221-x] [PMID: 29411317]
[86]
Sun, C. Challenges and opportunities in nanocomposites.,
[87]
Mercuri, M.; Fernandez Rivas, D. Challenges and opportunities for small volumes delivery into the skin. Biomicrofluidics, 2021, 15(1)011301
[http://dx.doi.org/10.1063/5.0030163] [PMID: 33532017]
[88]
Ajazuddin; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[89]
Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm., 2014, 40(4), 433-440.
[http://dx.doi.org/10.3109/03639045.2013.828219] [PMID: 23937582]
[90]
Chao, Y.; Huang, C.T.; Fu, L.T.; Huang, Y.B.; Tsai, Y.H.; Wu, P.C. The effect of submicron emulsion systems on transdermal delivery of kaempferol. Chem. Pharm. Bull., 2012, 60(9), 1171-1175.
[http://dx.doi.org/10.1248/cpb.c12-00372] [PMID: 22976326]
[91]
Ilk, S.; Saglam, N.; Özgen, M. Kaempferol loaded lecithin/chitosan nanoparticles: Preparation, characterization, and their potential applications as a sustainable antifungal agent. Artif. Cells Nanomed. Biotechnol., 2017, 45(5), 907-916.
[http://dx.doi.org/10.1080/21691401.2016.1192040] [PMID: 27265551]
[92]
Gebre-Mariam, T.; Asres, K.; Getie, M.; Endale, A.; Neubert, R.; Schmidt, P.C. In vitro availability of kaempferol glycosides from cream formulations of methanolic extract of the leaves of Melilotus elegans. Eur. J. Pharm. Biopharm., 2005, 60(1), 31-38.
[http://dx.doi.org/10.1016/j.ejpb.2005.01.001] [PMID: 15848053]
[93]
Lee, S.H.; Kim, Y.J.; Kwon, S.H.; Lee, Y.H.; Choi, S.Y.; Park, J.S.; Kwon, H.J. Inhibitory effects of flavonoids on TNF-α-induced IL-8 gene expression in HEK 293 cells. BMB Rep., 2009, 42(5), 265-270.
[http://dx.doi.org/10.5483/BMBRep.2009.42.5.265] [PMID: 19470239]
[94]
Li, B. Luo; Jiang, B.; Li, Z.; Jiang, B.H.; Chen, Y.C. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability. Int. J. Nanomedicine, 2012, 7, 3951-3959.
[http://dx.doi.org/10.2147/IJN.S33670] [PMID: 22866004]
[95]
Aghazadeh, T.; Bakhtiari, N.; Rad, I.A.; Ramezani, F. Formulation of kaempferol in nanostructured lipid carriers (NLCs): A delivery platform to sensitization of MDA-MB468 breast cancer cells to paclitaxel. Biointerface Res. Appl. Chem., 2021, 11(6), 14591-14601.
[http://dx.doi.org/10.33263/BRIAC116.1459114601]
[96]
Chuang, Y.L.; Fang, H.W.; Ajitsaria, A.; Chen, K.H.; Su, C.Y.; Liu, G.S.; Tseng, C.L. Development of kaempferol-loaded gelatin nanoparticles for the treatment of corneal neovascularization in mice. Pharmaceutics, 2019, 11(12), 635.
[http://dx.doi.org/10.3390/pharmaceutics11120635] [PMID: 31795237]
[97]
Ye, Y.; Zhang, X.; Deng, X.; Hao, L.; Wang, W. Modification of alginate hydrogel films for delivering hydrophobic kaempferol. J. Nanomater., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/9170732]
[98]
Bonferoni, M.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “Nose-to-Brain” drug delivery. Pharmaceutics, 2019, 11(2), 84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[99]
Zhang, F.; Li, R.; Yan, M.; Li, Q.; Li, Y.; Wu, X. Ultra-small nanocomplexes based on polyvinylpyrrolidone K-17PF: A potential nanoplatform for the ocular delivery of kaempferol. Eur. J. Pharm. Sci., 2020, 147105289
[http://dx.doi.org/10.1016/j.ejps.2020.105289] [PMID: 32145428]
[100]
Sonvico, F.; Cagnani, A.; Rossi, A.; Motta, S.; Di Bari, M.T.; Cavatorta, F.; Alonso, M.J.; Deriu, A.; Colombo, P. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction. Int. J. Pharm., 2006, 324(1), 67-73.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.036] [PMID: 16973314]
[101]
Qian, Y.S.; Ramamurthy, S.; Candasamy, M.; Shadab, M.; Kumar, R.H.; Meka, V.S. Production, characterization and evaluation of kaempferol nanosuspension for improving oral bioavailability. Curr. Pharm. Biotechnol., 2016, 17(6), 549-555.
[http://dx.doi.org/10.2174/1389201017666160127110609] [PMID: 26813303]
[102]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Punia, S.; Mukherjee, T.K. Kaempferol - A Dietary Anticancer Molecule with Multiple Mechanisms of Action: Recent Trends and Advancements. J. Funct. Foods, 2017, 30, 203-219.
[http://dx.doi.org/10.1016/j.jff.2017.01.022]