Antimicrobial Resistance Patterns of Gram-negative Bacteria in an Iranian Referral Pediatric Hospital: A Present Danger of New Delhi Metallo-β- lactamase

Article ID: e180423215994 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Antimicrobial resistance among gram-negative bacteria has been growing, particularly in developing countries, like Iran. The emergence and spread of carbapenem-resistance mechanisms is a major public health concern because no definite treatments have yet been established for this problem. This study aimed to evaluate antibiotic susceptibility of gram-negative bacteria, metallo-β-lactamases (MBLs) and carbapenemase-producing genes, including bla NDM, bla VIM, and bla IMP in patients referred to Children’s Medical Center, Tehran, Iran.

Material and Methods: In this cross-sectional study, a total of 944 gram-negative isolates were tested in the study, and antimicrobial susceptibility testing was performed. Moreover, MBL production of carbapenem-resistant isolates, as well as the presence of bla NDM, bla VIM, and bla IMP, was investigated.

Results: The most common gram-negative isolated bacteria were Escherichia coli (489 samples, 52%), followed by Klebsiella pneumoniae (167 samples, 18%), Pseudomonas aeruginosa (101 samples, 11%), Enterobacter spp. (64 samples, 7%), Pseudomonas spp. (35 samples, 4%), Acinetobacter baumannii (18 samples, 2%), and Burkholderia cepacia (17 samples, 2%). Imipenemresistant was found in 75%, 61%, and 60% of Stenotrophomonas maltophilia, Enterobacter spp., and A. baumannii isolates, respectively. Moreover, the highest resistance to meropenem was observed in S. maltophilia, A. baumannii, P. aeruginosa, and B. cepacia (100%, 96%, 83%, and 61.5%, respectively). Double disk synergy test (DDST) results showed that 112 out of 255 carbapenem- resistant isolates (44%) were MBL-producing ones. The presence of the bla NDM gene was identified in 32 (29%) of MBL-producing isolates, 13 of which were K. pneumoniae, 7 P. aeruginosa, and 7 E. coli, 3 Enterobacter spp., and 2 Klebsiella spp., respectively. The presence of the bla IMP and bla VIM genes was detected in 2 (2%) and 1 (1%) of MBL-producing isolates. These genes were detected in only MBL-producing P. aeruginosa isolates.

Conclusion: Our findings suggest the emergence of NDM-producing strains in our hospital, and bla NDM was the most frequently detected carbapenemase gene in MBL-producing P. aeruginosa, K. pneumoniae, and Klebsiella spp. Since such bacteria can easily spread among patients in the hospital, a strong infection control and prevention plan is highly recommended.

Graphical Abstract

[1]
Mamishi S, Mahmoudi S, Naserzadeh N, et al. Antibiotic resistance and genotyping of gram-negative bacteria causing hospital-acquired infection in patients referred to Children’s Medical Center. Infect Drug Resist 2019; 12: 3377-84.
[http://dx.doi.org/10.2147/IDR.S195126] [PMID: 31754307]
[2]
Mahmoudi S, Pourakbari B, Rahbarimanesh A, Abdosalehi MR, Ghadiri R, Mamishi S. An outbreak of ESBL-producing Klebsiella pneumoniae in an Iranian Referral Hospital: Epidemiology and molecular typing. Infect Disord Drug Targets 2019; 19(1): 46-54.
[3]
Mamishi S, Shalchi Z, Mahmoudi S, Hosseinpour Sadeghi R, Haghi Ashtiani MT, Pourakbari B. Antimicrobial resistance and genotyping of bacteria isolated from urinary tract infection in children in an Iranian referral hospital. Infect Drug Resist 2020; 13: 3317-23.
[http://dx.doi.org/10.2147/IDR.S260359] [PMID: 33061479]
[4]
Mahmoudi S, Mahzari M, Banar M, et al. Antimicrobial resistance patterns of Gram-negative bacteria isolated from bloodstream infections in an Iranian referral paediatric hospital: A 5.5-year study. J Glob Antimicrob Resist 2017; 11: 17-22.
[http://dx.doi.org/10.1016/j.jgar.2017.04.013] [PMID: 28729206]
[5]
Mahmoodi F, Rezatofighi SE, Akhoond MR. Antimicrobial resistance and metallo-beta-lactamase producing among commensal Escherichia coli isolates from healthy children of Khuzestan and Fars provinces; Iran. BMC Microbiol 2020; 20(1): 366.
[http://dx.doi.org/10.1186/s12866-020-02051-8] [PMID: 33256594]
[6]
Shibata N, Doi Y, Yamane K, et al. PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol 2003; 41(12): 5407-13.
[http://dx.doi.org/10.1128/JCM.41.12.5407-5413.2003] [PMID: 14662918]
[7]
Dortet L, Bernabeu S, Gonzalez C, Naas T. Evaluation of the carbapenem detection set™ for the detection and characterization of carbapenemase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 2018; 91(3): 220-5.
[http://dx.doi.org/10.1016/j.diagmicrobio.2018.02.012] [PMID: 29548525]
[8]
Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: The impact and evolution of a global menace. J Infect Dis 2017; 215 (Suppl. 1): S28-36.
[http://dx.doi.org/10.1093/infdis/jiw282] [PMID: 28375512]
[9]
Ito H, Arakawa Y, Ohsuka S, Wacharotayankun R, Kato N, Ohta M. Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob Agents Chemother 1995; 39(4): 824-9.
[http://dx.doi.org/10.1128/AAC.39.4.824] [PMID: 7785978]
[10]
Lauretti L, Riccio ML, Mazzariol A, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 1999; 43(7): 1584-90.
[http://dx.doi.org/10.1128/AAC.43.7.1584] [PMID: 10390207]
[11]
Poirel L, Naas T, Nicolas D, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 2000; 44(4): 891-7.
[http://dx.doi.org/10.1128/AAC.44.4.891-897.2000] [PMID: 10722487]
[12]
Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-β-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 2009; 53(12): 5046-54.
[http://dx.doi.org/10.1128/AAC.00774-09] [PMID: 19770275]
[13]
Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2002; 40(10): 3798-801.
[http://dx.doi.org/10.1128/JCM.40.10.3798-3801.2002] [PMID: 12354884]
[14]
Manchanda V, Rai S, Gupta S, et al. Development of TaqMan realtime polymerase chain reaction for the detection of the newly emerging form of carbapenem resistance gene in clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Indian J Med Microbiol 2011; 29(3): 249-53.
[http://dx.doi.org/10.4103/0255-0857.83907] [PMID: 21860104]
[15]
Hosseinzadeh Z, Ebrahim-Saraie HS, Sarvari J, et al. Emerge of blaNDM-1 and blaOXA-48-like harboring carbapenem-resistant Klebsiella pneumoniae isolates from hospitalized patients in Southwestern Iran. J Chin Med Assoc 2018; 81(6): 536-40.
[http://dx.doi.org/10.1016/j.jcma.2017.08.015] [PMID: 29030025]
[16]
Shokri D, Rabbani Khorasgani M, Fatemi SM, Soleimani-Delfan A. Resistotyping, phenotyping and genotyping of New Delhi metallo-β-lactamase (NDM) among Gram-negative bacilli from Iranian patients. J Med Microbiol 2017; 66(4): 402-11.
[http://dx.doi.org/10.1099/jmm.0.000444] [PMID: 28150578]
[17]
Armin S, Fallah F, Azimi L, et al. Warning: Spread of NDM-1 in two border towns of Iran. Cell Mol Biol 2018; 64(10): 125-9.
[http://dx.doi.org/10.14715/cmb/2018.64.10.20] [PMID: 30084804]
[18]
Hasani A, Soltani E, Ahangharzadeh Rezaee M, Hasani A, Gholizadeh P, Noie Oskouie A. Detection and characterization of NDM-1-producing Klebsiella pneumoniae in Iran: An incursion crisis. Infect Dis 2020; 52(4): 291-3.
[http://dx.doi.org/10.1080/23744235.2019.1705997] [PMID: 31876435]
[19]
Farajzadeh Sheikh A, Shahin M, Shokoohizadeh L, Ghanbari F, Solgi H, Shahcheraghi F. Emerge of NDM-1-producing multidrug-resistant Pseudomonas aeruginosa and co-harboring of carbapenemase genes in South of Iran. Iran J Public Health 2020; 49(5): 959-67.
[http://dx.doi.org/10.18502/ijph.v49i5.3214] [PMID: 32953684]
[20]
Rad ZR, Rad ZR, Goudarzi H, et al. Detection of New Delhi Metallo-β-lactamase-1 among Pseudomonas aeruginosa isolated from adult and Pediatric patients in Iranian hospitals. Gene Rep 2021; 23: 101152.
[http://dx.doi.org/10.1016/j.genrep.2021.101152]
[21]
Fawzy RH, Mahmoud Gad GF, Mohamed HA. Phenotypic and genotypic detection of resistance mechanisms in carbapenem-resistant Gram-negative bacteria isolated from Egyptian ICU patients with first emergence of NDM-1 producing Klebsiella oxytoca. Iran J Microbiol 2022; 14(6): 832-40.
[http://dx.doi.org/10.18502/ijm.v14i6.11258] [PMID: 36721446]
[22]
Kabic J, Fortunato G, Vaz-Moreira I, et al. Dissemination of metallo-β-lactamase-producing Pseudomonas aeruginosa in Serbian Hospital Settings: Expansion of ST235 and ST654 clones. Int J Mol Sci 2023; 24(2): 1519.
[http://dx.doi.org/10.3390/ijms24021519] [PMID: 36675030]
[23]
He Y, Wu L, Liao P, Shen L, Yang H. Phenotypic and genotypic characterization of multi-drug resistance Pseudomonas aeruginosa isolated from urinary tract infections of non-catheterized and catheterized Chinese patients: A descriptive study over 3 years. Medicine 2022; 101(47): e31373.
[http://dx.doi.org/10.1097/MD.0000000000031373] [PMID: 36451381]
[24]
Mahmoudi S, Pourakbari B, Hosseini M, Alyari AE, Ashtiani MTH, Mamishi S. Molecular analysis of Pseudomonas aeruginosa metallobeta-lactamase: A first report of an Iranian Referral Pediatric Hospital. Infect Disord Drug Targets 2018; 18(1): 46-51.
[http://dx.doi.org/10.2174/1871526516666161202153806]
[25]
Pan F, Xu Q, Zhang H. Emergence of NDM-5 Producing Carbapenem-Resistant Klebsiella aerogenes in a Pediatric Hospital in Shanghai, China. Front Public Health 2021; 9: 621527.
[http://dx.doi.org/10.3389/fpubh.2021.621527] [PMID: 33718321]
[26]
Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacteriaceae: An update on therapeutic options. Front Microbiol 2019; 10: 80.
[http://dx.doi.org/10.3389/fmicb.2019.00080] [PMID: 30761114]
[27]
Pourakbari B, Movahedi Z, Mahmoudi S, et al. Genotypic characteristics of Pseudomonas aeruginosa strains circulating in the tertiary referral Children’s Medical Hospital in Tehran, Iran. Br J Biomed Sci 2012; 69(4): 169-72.
[http://dx.doi.org/10.1080/09674845.2012.12069147] [PMID: 23304793]
[28]
Pourakbari B, Mahmoudi S, Habibi R, et al. An increasing threat in an Iranian Referral Children's Hospital: Multidrug-resistant Acinetobacter baumannii. Infect Disord Drug Targets 2018; 18(2): 129-35.
[http://dx.doi.org/10.2174/1871526517666170113144541]
[29]
Pourakbari B, Sadr A, Haghi Ashtiani MT, et al. Five-year evaluation of the antimicrobial susceptibility patterns of bacteria causing bloodstream infections in Iran. J Infect Dev Ctries 2011; 6(2): 120-5.
[http://dx.doi.org/10.3855/jidc.1517] [PMID: 22337839]