Circumventing the Gastrointestinal Barrier for Oral Delivery of Therapeutic Proteins and Peptides (PPTS): Current Trends and Future Trajectories

Page: [211 - 235] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Therapeutic proteins and peptides (PPTs) have become one of the most important biological molecules for the management of many common and complex diseases due to their high specificity and high bioactivity. However, these biomolecules are mainly given by the hypodermic injection, which often leads to poor patient compliance due to the invasive nature of this route of administration. The oral route has been considered the most convenient and patient-friendly route for drug delivery relative to hypodermic injections. Despite the ease and simplicity conferred by oral administration, this drug delivery route suffers rapid peptide degradation in gastric fluid and low intestinal uptake. In order to circumvent these issues, several strategies, such as enzyme inhibitors, permeation enhancers, chemical modification, mucoadhesive and stimuli-responsive polymers, and specialised particulate formulation have been developed. Such strategies are designed with the aim of protecting PPTs from the harsh gastrointestinal environment as well as providing a strategy to enhance the uptake of the therapeutic across the gastrointestinal tract. This review aims to provide an overview of the current development in enteral drug delivery strategies for PPTs. The design of these drug delivery systems in overcoming physical and chemical barriers along the gastrointestinal tract while improving oral bioavailability will be highlighted and discussed.

Graphical Abstract

[1]
Joseph, M.; Trinh, H.M.; Mitra, A.K. Peptide and Protein-Based Therapeutic Agents. In: Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Service; Mishra, A.K.; Cholkar, K.; Mandal, A., Eds.; Elsevier: Amsterdam, 2017; pp. 145-167.
[http://dx.doi.org/10.1016/B978-0-323-42978-8.00007-3]
[2]
Durán-Lobato, M.; Niu, Z.; Alonso, M.J. Oral delivery of biologics for precision medicine. Adv. Mater., 2020, 32(13), 1901935.
[http://dx.doi.org/10.1002/adma.201901935] [PMID: 31222910]
[3]
Jeong, J.H.; Kang, S.H.; Kim, D.K.; Lee, N.S.; Jeong, Y.G.; Han, S.Y. Protective effect of cholic acid-coated Poly Lactic-Co-Glycolic Acid (PLGA) nanoparticles loaded with erythropoietin on experimental stroke. J. Nanosci. Nanotechnol., 2019, 19(10), 6524-6533.
[http://dx.doi.org/10.1166/jnn.2019.17078] [PMID: 31026988]
[4]
Silva, B.; Marto, J.; Braz, B.S.; Delgado, E.; Almeida, A.J.; Gonçalves, L. New nanoparticles for topical ocular delivery of erythropoietin. Int. J. Pharm., 2020, 576, 119020.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119020] [PMID: 31935477]
[5]
Shi, S.; Song, S.; Liu, X.; Zhao, G.; Ding, F.; Zhao, W.; Zhang, S.; Song, Y.; Ma, W. Construction and performance of exendin-4-loaded chitosan-PLGA microspheres for enhancing implant osseointegration in type 2 diabetic rats. Drug Deliv., 2022, 29(1), 548-560.
[http://dx.doi.org/10.1080/10717544.2022.2036873] [PMID: 35156499]
[6]
Poudwal, S.; Misra, A.; Shende, P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J. Drug Target., 2021, 29(8), 834-847.
[http://dx.doi.org/10.1080/1061186X.2021.1894434] [PMID: 33620269]
[7]
Zhang, B.; He, D.; Fan, Y.; Liu, N.; Chen, Y. Oral delivery of exenatide via microspheres prepared by cross-linking of alginate and hyaluronate. PLoS One, 2014, 9(1), e86064.
[http://dx.doi.org/10.1371/journal.pone.0086064] [PMID: 24465870]
[8]
Liu, L.; Yang, H.; Lou, Y.; Wu, J.Y.; Miao, J.; Lu, X.Y.; Gao, J.Q. Enhancement of oral bioavailability of salmon calcitonin through chitosan-modified, dual drug-loaded nanoparticles. Int. J. Pharm., 2019, 557, 170-177.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.053] [PMID: 30597264]
[9]
Feng, K.; Li, C.; Wei, Y.S.; Zong, M.H.; Wu, H.; Han, S.Y. Development of a polysaccharide based multi-unit nanofiber mat for colon-targeted sustained release of salmon calcitonin. J. Colloid Interface Sci., 2019, 552, 186-195.
[http://dx.doi.org/10.1016/j.jcis.2019.05.037] [PMID: 31125829]
[10]
Mansoor, S.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Polymer-based nanoparticle strategies for insulin delivery. Polymers, 2019, 11(9), 1380.
[http://dx.doi.org/10.3390/polym11091380] [PMID: 31443473]
[11]
Zhao, R.; Lu, Z.; Yang, J.; Zhang, L.; Li, Y.; Zhang, X. Drug delivery system in the treatment of diabetes mellitus. Front. Bioeng. Biotechnol., 2020, 8(7), 880.
[http://dx.doi.org/10.3389/fbioe.2020.00880] [PMID: 32850735]
[12]
Lin, Y.J.; Mi, F.L.; Lin, P.Y.; Miao, Y.B.; Huang, T.; Chen, K.H.; Chen, C.T.; Chang, Y.; Sung, H.W. Strategies for improving diabetic therapy via alternative administration routes that involve stimuli-responsive insulin-delivering systems. Adv. Drug Deliv. Rev., 2019, 139, 71-82.
[http://dx.doi.org/10.1016/j.addr.2018.12.001] [PMID: 30529306]
[13]
Mantaj, J.; Vllasaliu, D. Recent advances in the oral delivery of biologics. Pharm. J., 2020, 304(7933)
[http://dx.doi.org/10.1211/PJ.2020.20207374]
[14]
Kulkarni, S.S.; Sayers, J.; Premdjee, B.; Payne, R.J. Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat. Rev. Chem., 2018, 2(4), 0122.
[http://dx.doi.org/10.1038/s41570-018-0122]
[15]
Pavlou, A.K.; Reichert, J.M. Recombinant protein therapeutics—success rates, market trends and values to 2010. Nat. Biotechnol., 2004, 22(12), 1513-1519.
[http://dx.doi.org/10.1038/nbt1204-1513] [PMID: 15583654]
[16]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[17]
Bruno, B.J.; Miller, G.D.; Lim, C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv., 2013, 4(11), 1443-1467.
[18]
Brown, T.D.; Whitehead, K.A.; Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater., 2019, 5(2), 127-148.
[http://dx.doi.org/10.1038/s41578-019-0156-6]
[19]
Kwatra, S.; Taneja, G.; Nasa, N. Alternative routes of drug administration-transdermal, pulmonary & parenteral. Indo Global J. Pharm. Sci., 2012, 2(4), 409-426.
[http://dx.doi.org/10.35652/IGJPS.2012.47]
[20]
Asche, C.; LaFleur, J.; Conner, C. A review of diabetes treatment adherence and the association with clinical and economic outcomes. Clin. Ther., 2011, 33(1), 74-109.
[http://dx.doi.org/10.1016/j.clinthera.2011.01.019] [PMID: 21397776]
[21]
Ridyard, C.H.; Dawoud, D.M.M.; Tuersley, L.V.; Hughes, D.A. A systematic review of patients’ perspectives on the subcutaneous route of medication administration. Patient, 2016, 9(4), 281-292.
[http://dx.doi.org/10.1007/s40271-015-0160-x] [PMID: 26792584]
[22]
Elliott, R.A.; O’Callaghan, C.J. Impact of hospitalisation on the complexity of older patients’ medication regimens and potential for regimen simplification. J. Pharm. Pract. Res., 2011, 41(1), 21-25.
[http://dx.doi.org/10.1002/j.2055-2335.2011.tb00060.x]
[23]
Talevi, A.; Quiroga, P.A.M. ADME processes in pharmaceutical sciences dosage, design, and pharmacotherapy success: Dosage, design, and pharmacotherapy success, 1st ed; Springer: Cham, 2018.
[http://dx.doi.org/10.1007/978-3-319-99593-9]
[24]
Paul, A. Drug Distribution. In: Introduction to Basics of Pharmacology and Toxicology; Raj, G.; Raveendran, R., Eds.; Springer: Singapore, 2019; pp. 89-98.
[http://dx.doi.org/10.1007/978-981-32-9779-1_6]
[25]
Gupta, H.; Bhandari, D.; Sharma, A. Recent trends in oral drug delivery: A review. Recent Pat. Drug Deliv. Formul., 2009, 3(2), 162-173.
[http://dx.doi.org/10.2174/187221109788452267] [PMID: 19519576]
[26]
Wong, C.Y.; Martinez, J.; Dass, C.R. Oral delivery of insulin for treatment of diabetes: Status quo, challenges and opportunities. J. Pharm. Pharmacol., 2016, 68(9), 1093-1108.
[http://dx.doi.org/10.1111/jphp.12607] [PMID: 27364922]
[27]
Choonara, B.F.; Choonara, Y.E.; Kumar, P.; Bijukumar, D.; du Toit, L.C.; Pillay, V. A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol. Adv., 2014, 32(7), 1269-1282.
[http://dx.doi.org/10.1016/j.biotechadv.2014.07.006] [PMID: 25099657]
[28]
Bellmann, S.; Carlander, D.; Fasano, A.; Momcilovic, D.; Scimeca, J.A.; Waldman, W.J.; Gombau, L.; Tsytsikova, L.; Canady, R.; Pereira, D.I.A.; Lefebvre, D.E. Mammalian gastrointestinal tract parameters modulating the integrity, surface properties, and absorption of food-relevant nanomaterials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 609-622.
[http://dx.doi.org/10.1002/wnan.1333] [PMID: 25641962]
[29]
Round, A.N.; Rigby, N.M.; Garcia de la Torre, A.; Macierzanka, A.; Mills, E.N.C.; Mackie, A.R. Lamellar structures of MUC2-rich mucin: A potential role in governing the barrier and lubricating functions of intestinal mucus. Biomacromolecules, 2012, 13(10), 3253-3261.
[http://dx.doi.org/10.1021/bm301024x] [PMID: 22978827]
[30]
Fröhlich, E.; Roblegg, E. Models for oral uptake of nanoparticles in consumer products. Toxicology, 2012, 291(1-3), 10-17.
[http://dx.doi.org/10.1016/j.tox.2011.11.004] [PMID: 22120540]
[31]
Kleberg, K.; Jacobsen, J.; Müllertz, A. Characterising the behaviour of poorly water soluble drugs in the intestine: application of biorelevant media for solubility, dissolution and transport studies. J. Pharm. Pharmacol., 2010, 62(11), 1656-1668.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01023.x] [PMID: 21039549]
[32]
Powell, J.J.; Faria, N.; Thomas-McKay, E.; Pele, L.C. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun., 2010, 34(3), J226-J233.
[http://dx.doi.org/10.1016/j.jaut.2009.11.006] [PMID: 20096538]
[33]
Helander, H.F.; Fändriks, L. Surface area of the digestive tract-revisited. Scand. J. Gastroenterol., 2014, 49(6), 681-689.
[http://dx.doi.org/10.3109/00365521.2014.898326] [PMID: 24694282]
[34]
Anuar, N.; Sabri, A.H.; Bustami Effendi, T.J.; Abdul Hamid, K. Development and characterisation of ibuprofen-loaded nanoemulsion with enhanced oral bioavailability. Heliyon, 2020, 6(7), e04570.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04570] [PMID: 32775730]
[35]
Kiela, P.R.; Ghishan, F.K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol., 2016, 30(2), 145-159.
[http://dx.doi.org/10.1016/j.bpg.2016.02.007] [PMID: 27086882]
[36]
Wong, C.Y.; Al-salami, H.; Dass, C.R. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J. Control. Release, 2017, 264, 247-275.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.003] [PMID: 28887133]
[37]
Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev., 2014, 43(10), 3595-3629.
[http://dx.doi.org/10.1039/c3cs60436e] [PMID: 24626293]
[38]
Ibrahim, Y.H.E.Y.; Regdon, G., Jr; Hamedelniel, E.I.; Sovány, T. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru, 2020, 28(1), 403-416.
[http://dx.doi.org/10.1007/s40199-019-00316-w] [PMID: 31811628]
[39]
Al Rubeaan, K.; Rafiullah, M.; Jayavanth, S. Oral insulin delivery systems using chitosan-based formulation: A review. Expert Opin. Drug Deliv., 2016, 13(2), 223-237.
[http://dx.doi.org/10.1517/17425247.2016.1107543] [PMID: 26549528]
[40]
Padhye, T.; Maravajjala, K.S.; Swetha, K.L.; Sharma, S.; Roy, A. A comprehensive review of the strategies to improve oral drug absorption with special emphasis on the cellular and molecular mechanisms. J. Drug Deliv. Sci. Technol., 2021, 61, 102178.
[http://dx.doi.org/10.1016/j.jddst.2020.102178]
[41]
Bannunah, A.M.; Vllasaliu, D.; Lord, J.; Stolnik, S. Mechanisms of nanoparticle internalization and transport across an intestinal epithelial cell model: effect of size and surface charge. Mol. Pharm., 2014, 11(12), 4363-4373.
[http://dx.doi.org/10.1021/mp500439c] [PMID: 25327847]
[42]
Du, X.J.; Wang, J.L.; Iqbal, S.; Li, H.J.; Cao, Z.T.; Wang, Y.C.; Du, J.Z.; Wang, J. The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater. Sci., 2018, 6(3), 642-650.
[http://dx.doi.org/10.1039/C7BM01096F] [PMID: 29412203]
[43]
Xia, F.; Fan, W.; Jiang, S.; Ma, Y.; Lu, Y.; Qi, J.; Ahmad, E.; Dong, X.; Zhao, W.; Wu, W. Size-dependent translocation of nanoemulsions via oral delivery. ACS Appl. Mater. Interfaces, 2017, 9(26), 21660-21672.
[http://dx.doi.org/10.1021/acsami.7b04916] [PMID: 28616962]
[44]
Pridgen, E.M.; Alexis, F.; Kuo, T.T.; Levy-Nissenbaum, E.; Karnik, R.; Blumberg, R.S.; Langer, R.; Farokhzad, O.C. Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci. Transl. Med., 2013, 5(213), 213ra167.
[http://dx.doi.org/10.1126/scitranslmed.3007049] [PMID: 24285486]
[45]
Zhang, N.; Ping, Q.N.; Huang, G.H.; Xu, W.F. Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int. J. Pharm., 2005, 294(1-2), 247-259.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.018] [PMID: 15814248]
[46]
Fan, T.; Chen, C.; Guo, H.; Xu, J.; Zhang, J.; Zhu, X.; Yang, Y.; Zhou, Z.; Li, L.; Huang, Y. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur. J. Pharm. Biopharm., 2014, 88(2), 518-528.
[http://dx.doi.org/10.1016/j.ejpb.2014.06.011] [PMID: 24968819]
[47]
Zhang, X.; Qi, J.; Lu, Y.; He, W.; Li, X.; Wu, W. Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomedicine, 2014, 10(1), 167-176.
[http://dx.doi.org/10.1016/j.nano.2013.07.011] [PMID: 23891617]
[48]
Reinholz, J.; Landfester, K.; Mailänder, V. The challenges of oral drug delivery via nanocarriers. Drug Deliv., 2018, 25(1), 1694-1705.
[http://dx.doi.org/10.1080/10717544.2018.1501119] [PMID: 30394120]
[49]
Wagner, A.M.; Gran, M.P.; Peppas, N.A. Designing the new generation of intelligent biocompatible carriers for protein and peptide delivery. Acta Pharm. Sin. B, 2018, 8(2), 147-164.
[http://dx.doi.org/10.1016/j.apsb.2018.01.013] [PMID: 29719776]
[50]
Conacher, M.; Alexander, J.; Brewer, J.M. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine, 2001, 19(20-22), 2965-2974.
[http://dx.doi.org/10.1016/S0264-410X(00)00537-5] [PMID: 11282208]
[51]
Liu, L.; Yao, W.; Rao, Y.; Lu, X.; Gao, J. pH-Responsive carriers for oral drug delivery: Challenges and opportunities of current platforms. Drug Deliv., 2017, 24(1), 569-581.
[http://dx.doi.org/10.1080/10717544.2017.1279238] [PMID: 28195032]
[52]
Li, S.; Schöneich, C.; Borchardt, R.T. Chemical instability of protein pharmaceuticals: Mechanisms of oxidation and strategies for stabilization. Biotechnol. Bioeng., 1995, 48(5), 490-500.
[http://dx.doi.org/10.1002/bit.260480511] [PMID: 18623513]
[53]
Reubsaet, J.L.E.; Beijnen, J.H.; Bult, A.; Hop, E.; Scholten, S.D.; Teeuwsen, J.; Underberg, W.J.M. Oxidation of recombinant methionyl human granulocyte colony stimulating factor. J. Pharm. Biomed. Anal., 1998, 17(2), 283-289.
[http://dx.doi.org/10.1016/S0731-7085(97)00199-4] [PMID: 9638581]
[54]
Waterman, K.C.; Adami, R.C.; Alsante, K.M.; Antipas, A.S.; Arenson, D.R.; Carrier, R.; Hong, J.; Landis, M.S.; Lombardo, F.; Shah, J.C.; Shalaev, E.; Smith, S.W.; Wang, H. Hydrolysis in pharmaceutical formulations. Pharm. Dev. Technol., 2002, 7(2), 113-146.
[http://dx.doi.org/10.1081/PDT-120003494] [PMID: 12066569]
[55]
Cleland, J.L.; Powell, M.F.; Shire, S.J. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst., 1993, 10(4), 307-377.
[PMID: 8124728]
[56]
Deng, W.; Xie, Q.; Wang, H.; Ma, Z.; Wu, B.; Zhang, X. Selenium nanoparticles as versatile carriers for oral delivery of insulin: Insight into the synergic antidiabetic effect and mechanism. Nanomedicine, 2017, 13(6), 1965-1974.
[http://dx.doi.org/10.1016/j.nano.2017.05.002] [PMID: 28539272]
[57]
Goodman, B.E. Insights into digestion and absorption of major nutrients in humans. Adv. Physiol. Educ., 2010, 34(2), 44-53.
[http://dx.doi.org/10.1152/advan.00094.2009] [PMID: 20522896]
[58]
Sinha, V.R.; Singh, A.; Kumar, R.V.; Singh, S.; Kumria, R.; Bhinge, J.R. Oral colon-specific drug delivery of protein and peptide drugs. Crit. Rev. Ther. Drug Carrier Syst., 2007, 24(1), 63-92.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v24.i1.30]
[59]
Triadou, N.; Bataille, J.; Schmitz, J. Longitudinal study of the human intestinal brush border membrane proteins. Distribution of the main disaccharidases and peptidases. Gastroenterology, 1983, 85(6), 1326-1332.
[http://dx.doi.org/10.1016/S0016-5085(83)80014-6] [PMID: 6414875]
[60]
Hulse, R.E.; Ralat, L.A.; Wei-Jen, T. Structure, function, and regulation of insulin-degrading enzyme. Vitam. Horm., 2009, 80, 635-648.
[http://dx.doi.org/10.1016/S0083-6729(08)00622-5]
[61]
Verma, A.; Kumar, N.; Malviya, R.; Sharma, P.K. Emerging trends in noninvasive insulin delivery. J. Pharm., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/378048] [PMID: 26556194]
[62]
Cetin, M.; Aktas, M.S.; Vural, I.; Ozturk, M. Salmon calcitonin-loaded Eudragit® and Eudragit®-PLGA nanoparticles: in vitro and in vivo evaluation. J. Microencapsul., 2012, 29(2), 156-166.
[http://dx.doi.org/10.3109/02652048.2011.635426] [PMID: 22126314]
[63]
Zhu, Q.; Chen, Z.; Paul, P.K.; Lu, Y.; Wu, W.; Qi, J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B, 2021, 11(8), 2416-2448.
[http://dx.doi.org/10.1016/j.apsb.2021.04.001] [PMID: 34522593]
[64]
Hua, S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol., 2020, 11(4), 524.
[http://dx.doi.org/10.3389/fphar.2020.00524] [PMID: 32425781]
[65]
Egelund, R.; Rodenburg, K.W.; Andreasen, P.A.; Rasmussen, M.S.; Guldberg, R.E.; Petersen, T.E. An ester bond linking a fragment of the serine proteinase u PA to its serpin inhibitor PAI-1. Fibrinolysis and Proteolysis, 1998, 12(Suppl. 1), 15.
[http://dx.doi.org/10.1016/S0268-9499(98)80066-0]
[66]
Marschütz, M.K.; Bernkop-Schnürch, A. Oral peptide drug delivery: Polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials, 2000, 21(14), 1499-1507.
[http://dx.doi.org/10.1016/S0142-9612(00)00039-9] [PMID: 10872779]
[67]
DiBella, F.P.; Liener, I.E. Soybean trypsin inhibitor. Cleavage and identification of a disulfide bridge not essential for activity. J. Biol. Chem., 1969, 244(11), 2824-2829.
[http://dx.doi.org/10.1016/S0021-9258(18)91701-1] [PMID: 5814447]
[68]
Kidron, M.; Bar-On, H.; Berry, E.M.; Ziv, E. The absorption of insulin from various regions of the rat intestine. Life Sci., 1982, 31(25), 2837-2841.
[http://dx.doi.org/10.1016/0024-3205(82)90673-7] [PMID: 6761532]
[69]
Fujii, S.; Yokoyama, T.; Ikegaya, K.; Sato, F.; Yokoo, N. Promoting effect of the new chymotrypsin inhibitor FK-448 on the intestinal absorption of insulin in rats and dogs. J. Pharm. Pharmacol., 2011, 37(8), 545-549.
[http://dx.doi.org/10.1111/j.2042-7158.1985.tb03064.x] [PMID: 2864414]
[70]
Ziv, E.; Lior, O.; Kidron, M. Absorption of protein via the intestinal wall. Biochem. Pharmacol., 1987, 36(7), 1035-1039.
[http://dx.doi.org/10.1016/0006-2952(87)90411-4] [PMID: 3551960]
[71]
Uchiyama, T.; Kotani, A.; Kishida, T.; Tatsumi, H.; Okamoto, A.; Fujita, T.; Murakami, M.; Muranishi, S.; Yamamoto, A. Effects of various protease inhibitors on the stability and permeability of [D-Ala2,D-Leu5]enkephalin in the rat intestine: comparison with leucine enkephalin. J. Pharm. Sci., 1998, 87(4), 448-452.
[http://dx.doi.org/10.1021/js970357+] [PMID: 9548897]
[72]
Yamamoto, A.; Taniguchi, T.; Rikyuu, K.; Tsuji, T.; Fujita, T.; Murakami, M.; Muranishi, S. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm. Res., 1994, 11(10), 1496-1500.
[http://dx.doi.org/10.1023/A:1018968611962] [PMID: 7855059]
[73]
Agarwal, V.; Nazzal, S.; Reddy, I.K.; Khan, M.A. Transport studies of insulin across rat jejunum in the presence of chicken and duck ovomucoids. J. Pharm. Pharmacol., 2010, 53(8), 1131-1138.
[http://dx.doi.org/10.1211/0022357011776522] [PMID: 11518023]
[74]
Muheem, A.; Shakeel, F.; Jahangir, M.A.; Anwar, M.; Mallick, N.; Jain, G.K.; Warsi, M.H.; Ahmad, F.J. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J., 2016, 24(4), 413-428.
[http://dx.doi.org/10.1016/j.jsps.2014.06.004] [PMID: 27330372]
[75]
Chen, J.; Liu, C.; Shan, W.; Xiao, Z.; Guo, H.; Huang, Y. Enhanced stability of oral insulin in targeted peptide ligand trimethyl chitosan nanoparticles against trypsin. J. Microencapsul., 2015, 32(7), 632-641.
[http://dx.doi.org/10.3109/02652048.2015.1065920] [PMID: 26401551]
[76]
Palmowski, J. A review on novel approaches for oral delivery of insulin. Ger. Hist., 2003, 19(4), 573-598.
[http://dx.doi.org/10.1191/026635501701526957]
[77]
Aungst, B.J. Absorption enhancers: Applications and advances. AAPS J., 2012, 14(1), 10-18.
[http://dx.doi.org/10.1208/s12248-011-9307-4] [PMID: 22105442]
[78]
Gedawy, A.; Martinez, J.; Al-salami, H.; Dass, C.R. Oral insulin delivery: Existing barriers and current, 2018, 70, 197-213.
[http://dx.doi.org/10.1111/jphp.12852]
[79]
Maher, S.; Mrsny, R.J.; Brayden, D.J. Intestinal permeation enhancers for oral peptide delivery. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 277-319.
[http://dx.doi.org/10.1016/j.addr.2016.06.005] [PMID: 27320643]
[80]
Brayden, D.J.; Mrsny, R.J. Oral peptide delivery: Prioritizing the leading technologies. Ther. Deliv., 2011, 2(12), 1567-1573.
[http://dx.doi.org/10.4155/tde.11.114] [PMID: 22833982]
[81]
Wu, W.; Niu, M.; Lu, Y.; Hovgaard, L. Liposomes containing glycocholate as potential oral insulin delivery systems: Preparation, in vitro characterization, and improved protection against enzymatic degradation. Int. J. Nanomedicine, 2011, 6(Jun), 1155-1166.
[http://dx.doi.org/10.2147/IJN.S19917] [PMID: 21822379]
[82]
Leonard, T.W.; Lynch, J.; McKenna, M.J.; Brayden, D.J. Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPET™. Expert Opin. Drug Deliv., 2006, 3(5), 685-692.
[http://dx.doi.org/10.1517/17425247.3.5.685] [PMID: 16948563]
[83]
Halberg, I.B.; Lyby, K.; Wassermann, K.; Heise, T.; Zijlstra, E.; Plum-Mörschel, L. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: A randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol., 2019, 7(3), 179-188.
[http://dx.doi.org/10.1016/S2213-8587(18)30372-3] [PMID: 30679095]
[84]
Amory, J.K.; Leonard, T.W.; Page, S.T.; O’Toole, E.; McKenna, M.J.; Bremner, W.J. Oral administration of the GnRH antagonist acyline, in a GIPET®-enhanced tablet form, acutely suppresses serum testosterone in normal men: Single-dose pharmacokinetics and pharmacodynamics. Cancer Chemother. Pharmacol., 2009, 64(3), 641-645.
[http://dx.doi.org/10.1007/s00280-009-1038-1] [PMID: 19479252]
[85]
Tuvia, S.; Teichman, S.L.; Pelled, D.; Bidlingmaier, M.; Strasburger, C.J.; Kleinberg, D.L.; Melmed, S.; Mamluk, R. P02-44 Oral octreotide absorption in human subjects: Comparable pharmacokinetics to parenteral octreotide and effective growth hormone suppression. Growth Horm. IGF Res., 2012, 22, S66.
[http://dx.doi.org/10.1016/S1096-6374(12)60173-7]
[86]
Berg, S.; Krause, J.; Björkbom, A.; Walter, K.; Harun, S.; Granfeldt, A.; Janzén, D.; Nunes, S.F.; Antonsson, M.; Van Zuydam, N.; Skrtic, S.; Hugerth, A.; Weitschies, W.; Davies, N.; Abrahamsson, B.; Bergström, C.A.S. In vitro and in vivo evaluation of 3D printed capsules with pressure triggered release mechanism for oral peptide delivery. J. Pharm. Sci., 2021, 110(1), 228-238.
[http://dx.doi.org/10.1016/j.xphs.2020.10.066] [PMID: 33212160]
[87]
Lindmark, T.; Schipper, N.; Lazorová, L.; De Boer, A.G.; Artursson, P. Absorption enhancement in intestinal epithelial Caco-2 monolayers by sodium caprate: assessment of molecular weight dependence and demonstration of transport routes. J. Drug Target., 1998, 5(3), 215-223.
[http://dx.doi.org/10.3109/10611869808995876] [PMID: 9606011]
[88]
Aguirre-Ramírez, M.; Silva-Jiménez, H.; Banat, I.M.; De Rienzo, M.A.D. Surfactants: Physicochemical interactions with biological macromolecules. Biotechnol. Lett., 2021, 43(3), 523-535.
[http://dx.doi.org/10.1007/s10529-020-03054-1]
[89]
Bourganis, V.; Karamanidou, T.; Kammona, O.; Kiparissides, C. Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. Eur. J. Pharm. Biopharm., 2017, 111(November), 44-60.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.005] [PMID: 27847276]
[90]
Noach, A.B.J.; Kurosaki, Y.; Blom-Roosemalen, M.C.M.; de Boer, A.G.; Breimer, D.D. Cell-polarity dependent effect of chelation on the paracellular permeability of confluent caco-2 cell monolayers. Int. J. Pharm., 1993, 90(3), 229-237.
[http://dx.doi.org/10.1016/0378-5173(93)90195-L]
[91]
Thanou, M.; Verhoef, J.C.; Marbach, P.; Junginger, H.E. Intestinal absorption of octreotide: N-Trimethyl Chitosan Chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J. Pharm. Sci., 2000, 89(7), 951-957.
[http://dx.doi.org/10.1002/1520-6017(200007)89:7<951:AID-JPS13>3.0.CO;2-1] [PMID: 10861597]
[92]
Thanou, M.; Verhoef, J.C.; Junginger, H.E. Oral drug absorption enhancement by chitosan and its derivatives. Adv. Drug Deliv. Rev., 2001, 52(2), 117-126.
[http://dx.doi.org/10.1016/S0169-409X(01)00231-9] [PMID: 11718935]
[93]
Zhang, N.; Ping, Q.; Huang, G.; Xu, W.; Cheng, Y.; Han, X. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int. J. Pharm., 2006, 327(1-2), 153-159.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.026] [PMID: 16935443]
[94]
Ahmed, A.; Bonner, C.; Desai, T.A. Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. J. Control. Release, 2002, 81(3), 291-306.
[http://dx.doi.org/10.1016/S0168-3659(02)00074-3] [PMID: 12044568]
[95]
Lee, J.H.; Sahu, A.; Choi, W.I.; Lee, J.Y.; Tae, G. ZOT-derived peptide and chitosan functionalized nanocarrier for oral delivery of protein drug. Biomaterials, 2016, 103, 160-169.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.059] [PMID: 27380442]
[96]
Fasano, A.; Uzzau, S. Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J. Clin. Invest., 1997, 99(6), 1158-1164.
[http://dx.doi.org/10.1172/JCI119271] [PMID: 9077522]
[97]
Davis, S.S.; Illum, L. Absorption enhancers for nasal drug delivery. Clin. Pharmacokinet., 2003, 42(13), 1107-1128.
[http://dx.doi.org/10.2165/00003088-200342130-00003] [PMID: 14531723]
[98]
Swenson, E.S.; Milisen, W.B.; Curatolo, W. Intestinal permeability enhancement: efficacy, acute local toxicity, and reversibility. Pharm. Res., 1994, 11(8), 1132-1142.
[http://dx.doi.org/10.1023/A:1018984731584] [PMID: 7971714]
[99]
Nakada, Y.; Awata, N.; Nakamichi, C.; Sugimoto, I. The effect of additives on the oral mucosal absorption of human calcitonin in rats. J. Pharmacobiodyn., 1988, 11(6), 395-401.
[http://dx.doi.org/10.1248/bpb1978.11.395] [PMID: 3171881]
[100]
Ukai, H.; Kawagoe, A.; Sato, E.; Morishita, M.; Katsumi, H.; Yamamoto, A. Propylene glycol caprylate as a novel potential absorption enhancer for improving the intestinal absorption of insulin: efficacy, safety, and absorption-enhancing mechanisms. J. Pharm. Sci., 2020, 109(4), 1483-1492.
[http://dx.doi.org/10.1016/j.xphs.2019.12.012] [PMID: 31884013]
[101]
Clausen, A.E.; Bernkop-Schnürch, A. In vitro evaluation of the permeation-enhancing effect of thiolated polycarbophil. J. Pharm. Sci., 2000, 89(10), 1253-1261.
[http://dx.doi.org/10.1002/1520-6017(200010)89:10<1253:AID-JPS3>3.0.CO;2-8] [PMID: 10980500]
[102]
Ismail, R.; Csóka, I. Novel strategies in the oral delivery of antidiabetic peptide drugs - Insulin, GLP 1 and its analogs. Eur. J. Pharm. Biopharm., 2017, 115, 257-267.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.015] [PMID: 28336368]
[103]
Touitou, E.; Donbrow, M.; Rubinstein, A. Effective intestinal absorption of insulin in diabetic rats using a new formulation approach. J. Pharm. Pharmacol., 2011, 32(1), 108-110.
[http://dx.doi.org/10.1111/j.2042-7158.1980.tb12863.x] [PMID: 6103029]
[104]
Yen, W.C.; Lee, V.H.L. Penetration enhancement effect of Pz-peptide, a paracellularly transported peptide, in rabbit intestinal segments and Caco-2 cell monolayers. J. Control. Release, 1995, 36(1-2), 25-37.
[http://dx.doi.org/10.1016/0168-3659(95)00055-D]
[105]
Fuhrmann, K.; Fuhrmann, G. Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Curr. Opin. Colloid Interface Sci., 2017, 31, 67-74.
[http://dx.doi.org/10.1016/j.cocis.2017.07.002]
[106]
Fuhrmann, G.; Grotzky, A. Lukić R.; Matoori, S.; Luciani, P.; Yu, H.; Zhang, B.; Walde, P.; Schlüter, A.D.; Gauthier, M.A.; Leroux, J.C. Sustained gastrointestinal activity of dendronized polymer-enzyme conjugates. Nat. Chem., 2013, 5(7), 582-589.
[http://dx.doi.org/10.1038/nchem.1675] [PMID: 23787748]
[107]
Petrus, A.K.; Vortherms, A.R.; Fairchild, T.J.; Doyle, R.P. Vitamin B12 as a carrier for the oral delivery of insulin. ChemMedChem, 2007, 2(12), 1717-1721.
[http://dx.doi.org/10.1002/cmdc.200700239] [PMID: 17896339]
[108]
Clardy-James, S.; Chepurny, O.G.; Leech, C.A.; Holz, G.G.; Doyle, R.P. Synthesis, characterization and pharmacodynamics of vitamin-B(12)-conjugated glucagon-like peptide-1. ChemMedChem, 2013, 8(4), 582-586.
[http://dx.doi.org/10.1002/cmdc.201200461] [PMID: 23203941]
[109]
Ahn, S.; Lee, I.H.; Lee, E.; Kim, H.; Kim, Y.C.; Jon, S. Oral delivery of an anti-diabetic peptide drug via conjugation and complexation with low molecular weight chitosan. J. Control. Release, 2013, 170(2), 226-232.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.031] [PMID: 23747732]
[110]
Calceti, P.; Salmaso, S.; Walker, G.; Bernkop-Schnürch, A. Development and in vivo evaluation of an oral insulin-PEG delivery system. Eur. J. Pharm. Sci., 2004, 22(4), 315-323.
[http://dx.doi.org/10.1016/j.ejps.2004.03.015] [PMID: 15196588]
[111]
Youn, Y.S.; Jung, J.Y.; Oh, S.H.; Yoo, S.D.; Lee, K.C. Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: Stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy. J. Control. Release, 2006, 114(3), 334-342.
[http://dx.doi.org/10.1016/j.jconrel.2006.06.007] [PMID: 16884808]
[112]
Sang Yoo, H.; Gwan Park, T. Biodegradable nanoparticles containing protein‐fatty acid complexes for oral delivery of salmon calcitonin. J. Pharm. Sci., 2004, 93(2), 488-495.
[http://dx.doi.org/10.1002/jps.10573] [PMID: 14705204]
[113]
Wang, J.; Chow, D.; Heiati, H.; Shen, W.C. Reversible lipidization for the oral delivery of salmon calcitonin. J. Control. Release, 2003, 88(3), 369-380.
[http://dx.doi.org/10.1016/S0168-3659(03)00008-7] [PMID: 12644363]
[114]
Verhoef, J.J.F.; Anchordoquy, T.J. Questioning the use of PEGylation for drug delivery. Drug Deliv. Transl. Res., 2013, 3(6), 499-503.
[http://dx.doi.org/10.1007/s13346-013-0176-5] [PMID: 24932437]
[115]
Tuesca, A.D.; Reiff, C.; Joseph, J.I.; Lowman, A.M. Synthesis, characterization and in vivo efficacy of PEGylated insulin for oral delivery with complexation hydrogels. Pharm. Res., 2009, 26(3), 727-739.
[http://dx.doi.org/10.1007/s11095-008-9816-8] [PMID: 19145407]
[116]
Qi, Y.; Chilkoti, A. Protein-polymer conjugation-moving beyond PEGylation. Curr. Opin. Chem. Biol., 2015, 28, 181-193.
[http://dx.doi.org/10.1016/j.cbpa.2015.08.009] [PMID: 26356631]
[117]
Kavimandan, N.; Losi, E.; Peppas, N. Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates. Biomaterials, 2006, 27(20), 3846-3854.
[http://dx.doi.org/10.1016/j.biomaterials.2006.02.026] [PMID: 16529810]
[118]
Shofner, J.P.; Phillips, M.A.; Peppas, N.A. Cellular evaluation of synthesized insulin/transferrin bioconjugates for oral insulin delivery using intelligent complexation hydrogels. Macromol. Biosci., 2010, 10(3), 299-306.
[http://dx.doi.org/10.1002/mabi.200900223] [PMID: 20034125]
[119]
Tong, T.; Wang, L.; You, X.; Wu, J. Nano and microscale delivery platforms for enhanced oral peptide/protein bioavailability. Biomater. Sci., 2020, 8(21), 5804-5823.
[http://dx.doi.org/10.1039/D0BM01151G] [PMID: 33016274]
[120]
Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.H.S.; Mitra, A.K. Approaches for enhancing oral bioavailability of peptides and proteins. Int. J. Pharm., 2013, 447(1-2), 75-93.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.030] [PMID: 23428883]
[121]
Yuan, L.; Yu, Q.; Li, D.; Chen, H. Surface modification to control protein/surface interactions. Macromol. Biosci., 2011, 11(8), 1031-1040.
[http://dx.doi.org/10.1002/mabi.201000464] [PMID: 21337519]
[122]
Kim, E.; Koo, H. Biomedical applications of copper-free click chemistry: In vitro, in vivo, and ex vivo. Chem. Sci., 2019, 10(34), 7835-7851.
[http://dx.doi.org/10.1039/C9SC03368H] [PMID: 31762967]
[123]
Law, B.; Tung, C.H. Proteolysis: a biological process adapted in drug delivery, therapy, and imaging. Bioconjug. Chem., 2009, 20(9), 1683-1695.
[http://dx.doi.org/10.1021/bc800500a] [PMID: 19754162]
[124]
Park, K.; Kwon, I.C.; Park, K. Oral protein delivery: Current status and future prospect. React. Funct. Polym., 2011, 71(3), 280-287.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2010.10.002]
[125]
Donnelly, R.F.; Shaikh, R.; Raj Singh, T.R.; Garland, M.J.; Woolfson, A.D. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci., 2011, 3(1), 89-100.
[http://dx.doi.org/10.4103/0975-7406.76478] [PMID: 21430958]
[126]
Boddupalli, B.M.; Mohammed, Z.N.K. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(4), 381-387.
[http://dx.doi.org/10.4103/0110-5558.76436]
[127]
Shaji, J.; Patole, V. Protein and peptide drug delivery: Oral approaches. Indian J. Pharm. Sci., 2008, 70(3), 269-277.
[http://dx.doi.org/10.4103/0250-474X.42967] [PMID: 20046732]
[128]
Chatterjee, B.; Amalina, N.; Mandal, U.K.; Sengupta, P. Mucoadhesive polymers and their mode of action: A recent update. J. Appl. Pharm. Sci., 2017, 7(05), 195-203.
[129]
de Lima, C.S.A.; Varca, J.P.R.O.; Alves, V.M.; Nogueira, K.M.; Cruz, C.P.C.; Rial-Hermida, M.I. Kadłubowski, S.S.; Varca, G.H.C.; Lugão, A.B. Mucoadhesive polymers and their applications in drug delivery systems for the treatment of bladder cancer. Gels, 2022, 8(9), 587.
[http://dx.doi.org/10.3390/gels8090587] [PMID: 36135300]
[130]
Lowman, A.M.; Morishita, M.; Kajita, M.; Nagai, T.; Peppas, N.A. Oral delivery of insulin using pH‐responsive complexation gels. J. Pharm. Sci., 1999, 88(9), 933-937.
[http://dx.doi.org/10.1021/js980337n] [PMID: 10479357]
[131]
Yin, L.; Ding, J.; He, C.; Cui, L.; Tang, C.; Yin, C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials, 2009, 30(29), 5691-5700.
[http://dx.doi.org/10.1016/j.biomaterials.2009.06.055] [PMID: 19615735]
[132]
Momoh, M.A.; Franklin, K.C.; Agbo, C.P.; Ugwu, C.E.; Adedokun, M.O.; Anthony, O.C.; Chidozie, O.E.; Okorie, A.N. Microemulsion-based approach for oral delivery of insulin: formulation design and characterization. Heliyon, 2020, 6(3), e03650.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03650] [PMID: 32258491]
[133]
Banerjee, A.; Lee, J.; Mitragotri, S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioeng. Transl. Med., 2016, 1(3), 338-346.
[http://dx.doi.org/10.1002/btm2.10015] [PMID: 29313019]
[134]
Chouhan, R.; Goswami, S.; Bajpai, A.K. Recent advancements in oral delivery of insulin: From challenges to solutions. In: Nanostructures for Oral Medicine; Elsevier, 2017; pp. 435-465.
[http://dx.doi.org/10.1016/B978-0-323-47720-8.00016-X]
[135]
Akbarzadeh, A.; Rezaei-sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N. Liposome  Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[136]
Ansari, M.J. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles  pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles  pharmacoki. Drug Deliv., 2016, 23(6), 1972-1979.
[http://dx.doi.org/10.3109/10717544.2015.1039666]
[137]
Al-Remawi, M.; Elsayed, A.; Maghrabi, I.; Hamaidi, M.; Jaber, N. Chitosan/lecithin liposomal nanovesicles as an oral insulin delivery system. Pharm. Dev. Technol., 2017, 22(3), 390-398.
[http://dx.doi.org/10.1080/10837450.2016.1213745] [PMID: 27470482]
[138]
Yang, Y.; Chen, Q.; Lin, J.; Cai, Z.; Liao, G.; Wang, K.; Bai, L.; Zhao, P.; Yu, Z. Recent advance in polymer based microspheric systems for controlled protein and peptide delivery. Curr. Med. Chem., 2019, 26(13), 2285-2296.
[http://dx.doi.org/10.2174/0929867326666190409130207] [PMID: 30963961]
[139]
Varde, N.K.; Pack, D.W. Microspheres for controlled release drug delivery. Expert Opin. Biol. Ther., 2004, 4(1), 35-51.
[http://dx.doi.org/10.1517/14712598.4.1.35] [PMID: 14680467]
[140]
Germershaus, O.; Lühmann, T.; Rybak, J.C.; Ritzer, J.; Meinel, L. Application of natural and semi-synthetic polymers for the delivery of sensitive drugs. Int. Mater. Rev., 2015, 60(2), 101-131.
[http://dx.doi.org/10.1179/1743280414Y.0000000045]
[141]
López, J.E.; Peppas, N.A. Effect of poly (ethylene glycol) molecular weight and microparticle size on oral insulin delivery from P(MAA-g-EG) microparticles. Drug Dev. Ind. Pharm., 2004, 30(5), 497-504.
[http://dx.doi.org/10.1081/DDC-120037480] [PMID: 15244085]
[142]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[143]
Ansari, M.J. Oral Delivery of Insulin for Treatment of Diabetes: Classical challenges and current opportunities. J. Med. Sci., 2015, 15(5), 209-220.
[http://dx.doi.org/10.3923/jms.2015.209.220]
[144]
Lundquist, P.; Artursson, P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 256-276.
[http://dx.doi.org/10.1016/j.addr.2016.07.007] [PMID: 27496705]
[145]
Chen, M.C.; Sonaje, K.; Chen, K.J.; Sung, H.W. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials, 2011, 32(36), 9826-9838.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.087] [PMID: 21925726]
[146]
Griffin, B.T.; Guo, J.; Presas, E.; Donovan, M.D.; Alonso, M.J.; O’Driscoll, C.M. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv. Drug Deliv. Rev., 2016, 106(Pt B), 367-380.
[http://dx.doi.org/10.1016/j.addr.2016.06.006] [PMID: 27320644]
[147]
Cao, S.J. Nanoparticles: Oral delivery for protein and peptide drugs. AAPS PharmSciTech, 2019, 20(5), 1-11.
[http://dx.doi.org/10.1208/s12249-019-1325-z]
[148]
Mukhopadhyay, P.; Mishra, R.; Rana, D.; Kundu, P.P. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Prog. Polym. Sci., 2012, 37(11), 1457-1475.
[http://dx.doi.org/10.1016/j.progpolymsci.2012.04.004]
[149]
Alai, M.S.; Lin, W.J.; Pingale, S.S. Application of polymeric nanoparticles and micelles in insulin oral delivery. J. Food Drug Anal., 2015, 23(3), 351-358.
[http://dx.doi.org/10.1016/j.jfda.2015.01.007] [PMID: 28911691]
[150]
Hurkat, P.; Jain, A.; Jain, A. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery. J. Nanopart. Res., 2012, 14, 1219.
[http://dx.doi.org/10.1007/s11051-012-1219-4]
[151]
Jaafar, M.H.M.; Hamid, K.A. Chitosan-coated alginate nanoparticles enhanced absorption profile of insulin via oral administration. Curr. Drug Deliv., 2019, 16(7), 672-686.
[http://dx.doi.org/10.2174/1567201816666190620110748] [PMID: 31250754]
[152]
Zuhairah Zainuddin, S.; Abdul Hamid, K. Chitosan-based oral drug delivery system for peptide, protein and vaccine delivery. In: Chitin and Chitosan - Physicochemical Properties and Industrial Applications; Intechopen, 2021.
[http://dx.doi.org/10.5772/intechopen.95771]
[153]
Song, M. Oral insulin delivery by carboxymethyl-β-cyclodextringrafted chitosan nanoparticles for improving diabetic treatment. Artif. Cells, Nanomedicine Biotechnol., 2018, 46(sup 3), S774-S782.
[http://dx.doi.org/10.1080/21691401.2018.1511575]
[154]
Vichare, R.; Garner, I.; Paulson, R.J.; Tzekov, R.; Sahiner, N.; Panguluri, S.K.; Mohapatra, S.; Mohapatra, S.S.; Ayyala, R.; Sneed, K.B.; Biswal, M.R. Biofabrication of chitosan-based nanomedicines and its potential use for translational ophthalmic applications. Appl. Sci., 2020, 10(12), 4189.
[http://dx.doi.org/10.3390/app10124189]
[155]
Ojeda-Hernández, D.D.; Canales-Aguirre, A.A.; Matias-Guiu, J.; Gomez-Pinedo, U.; Mateos-Díaz, J.C. Potential of chitosan and its derivatives for biomedical applications in the central nervous system. Front. Bioeng. Biotechnol., 2020, 8(5), 389.
[http://dx.doi.org/10.3389/fbioe.2020.00389] [PMID: 32432095]
[156]
He, Z.; Santos, J.L.; Tian, H.; Huang, H.; Hu, Y.; Liu, L.; Leong, K.W.; Chen, Y.; Mao, H.Q. Scalable fabrication of size-controlled chitosan nanoparticles for oral delivery of insulin. Biomaterials, 2017, 130, 28-41.
[http://dx.doi.org/10.1016/j.biomaterials.2017.03.028] [PMID: 28359018]
[157]
Lopes, M.; Shrestha, N.; Correia, A.; Shahbazi, M.A.; Sarmento, B.; Hirvonen, J.; Veiga, F.; Seiça, R.; Ribeiro, A.; Santos, H.A. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J. Control. Release, 2016, 232, 29-41.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.012] [PMID: 27074369]
[158]
Huang, A.; Makhlof, A.; Ping, Q.; Tozuka, Y.; Takeuchi, H. N-trimethyl chitosan-modified liposomes as carriers for oral delivery of salmon calcitonin. Drug Deliv., 2011, 18(8), 562-569.
[http://dx.doi.org/10.3109/10717544.2011.596585] [PMID: 21823926]
[159]
Greimel, A.; Werle, M.; Bernkop-Schnürch, A. Oral peptide delivery: In-vitro evaluation of thiolated alginate/poly(acrylic acid) microparticles. J. Pharm. Pharmacol., 2010, 59(9), 1191-1198.
[http://dx.doi.org/10.1211/jpp.59.9.0002] [PMID: 17883889]
[160]
Soudry-Kochavi, L.; Naraykin, N.; Di Paola, R.; Gugliandolo, E.; Peritore, A.; Cuzzocrea, S.; Ziv, E.; Nassar, T.; Benita, S. Pharmacodynamical effects of orally administered exenatide nanoparticles embedded in gastro-resistant microparticles. Eur. J. Pharm. Biopharm., 2018, 133, 214-223.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.013] [PMID: 30342089]
[161]
Vlasenkova, M.I.; Dolinina, E.S.; Parfenyuk, E.V. Preparation of mesoporous silica microparticles by sol-gel/emulsion route for protein release. Pharm. Dev. Technol., 2019, 24(2), 243-252.
[http://dx.doi.org/10.1080/10837450.2018.1457051] [PMID: 29583055]
[162]
Bulmer, C.; Margaritis, A.; Xenocostas, A. Production and characterization of novel chitosan nanoparticles for controlled release of rHu-Erythropoietin. Biochem. Eng. J., 2012, 68, 61-69.
[http://dx.doi.org/10.1016/j.bej.2012.07.007]
[163]
Tsai, L.C.; Chen, C.H.; Lin, C.W.; Ho, Y.C.; Mi, F.L. Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. Int. J. Biol. Macromol., 2019, 126, 141-150.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.182] [PMID: 30586591]
[164]
Rao, R.; Liu, X.; Li, Y.; Tan, X.; Zhou, H.; Bai, X.; Yang, X.; Liu, W. Bioinspired zwitterionic polyphosphoester modified porous silicon nanoparticles for efficient oral insulin delivery. Biomater. Sci., 2021, 9(3), 685-699.
[http://dx.doi.org/10.1039/D0BM01772H] [PMID: 33330897]
[165]
Zhou, Y.; Chen, Z.; Zhao, D.; Li, D.; He, C.; Chen, X. A pH-triggered self-unpacking capsule containing zwitterionic hydrogel-coated MOF nanoparticles for efficient oral exendin-4 delivery. Adv. Mater., 2021, 33(32), 2102044.
[http://dx.doi.org/10.1002/adma.202102044] [PMID: 34216408]
[166]
Luzio, S.D.; Dunseath, G.; Lockett, A.; New, R.R.; Owens, D.R. The glucose lowering effect of an oral insulin (Capsulin) during an isoglycaemic clamp study in persons with type 2diabetes. Diabetes Obes. Metab., 2010, 12(1), 82-87.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01146.x]
[167]
New, R.R.C.; Ramanujam, S.; Chaudhari, V.; Bogus, M.; Travers, G.N.; Namjoshi, G. Safety and efficacy of an oral insulin (CAPSULIN) in patients with early-stage type 2 diabetes: A doseranging phase 2B study. Diabetes Obes. Metab., 2022, (11), dom.14922.
[http://dx.doi.org/10.1111/dom.14922] [PMID: 36378077]
[168]
Roy Eldor, G.; Fleming, A.; Neutel, J.; Homer, K.E.; Kidron, M.; Rosenstock, J. Effects on glucose parameters in uncontrolled T2DM on OADs. Diabetes, 2020, 69(Suppl. 1), 1004.
[http://dx.doi.org/10.2337/db20-1004-P]
[169]
Eldor, R.; Kidron, M.; Arbit, E. Open-label study to assess the safety and pharmacodynamics of five oral insulin formulations in healthy subjects. Diabetes Obes. Metab., 2010, 12(3), 219-223.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01153.x] [PMID: 20151998]
[170]
Eldor, R.; Neutel, J.; Homer, K.; Kidron, M. Efficacy and safety of 28-day treatment with oral insulin (ORMD-0801) in patients with type 2 diabetes: A randomized, placebo-controlled trial. Diabetes Obes. Metab., 2021, 23(11), 2529-2538.
[http://dx.doi.org/10.1111/dom.14499] [PMID: 34310011]
[171]
Merrion Pharmaceuticals - Pharmaceutical Technology, 2021. Available from: https://www.pharmaceutical-technology.com/contractors/drug-delivery/merrion-pharma/
[172]
Karsdal, M.A.; Riis, B.J.; Mehta, N.; Stern, W.; Arbit, E.; Christiansen, C.; Henriksen, K. Lessons learned from the clinical development of oral peptides. Br. J. Clin. Pharmacol., 2015, 79(5), 720-732.
[http://dx.doi.org/10.1111/bcp.12557] [PMID: 25408230]
[173]
Walsh, E.G.; Adamczyk, B.E.; Chalasani, K.B.; Maher, S.; O’Toole, E.B.; Fox, J.S.; Leonard, T.W.; Brayden, D.J. Oral delivery of macromolecules: Rationale underpinning Gastrointestinal Permeation Enhancement Technology (GIPET®). Ther. Deliv., 2011, 2(12), 1595-1610.
[http://dx.doi.org/10.4155/tde.11.132] [PMID: 22833984]
[174]
Tuvia, S.; Salama, P.; Weinstein, I.; Marom, K.; Neumark, E.; Arama, M.L.; Mishli, N.; Levy, S.; Lapidot, T.; Kadoshi, R.; Katz, S.; Judelman, A.; Mamluk, R. OR14,80 Octreolin™, a safe oral alternative for parenteral octreotide treatment. Growth Horm. IGF Res., 2010, 20, S35-S36.
[http://dx.doi.org/10.1016/S1096-6374(10)70096-4]
[175]
Drucker, D.J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov., 2020, 19(4), 277-289.
[http://dx.doi.org/10.1038/s41573-019-0053-0] [PMID: 31848464]
[176]
Melmed, S.; Popovic, V.; Bidlingmaier, M.; Mercado, M.; van der Lely, A.J.; Biermasz, N.; Bolanowski, M.; Coculescu, M.; Schopohl, J.; Racz, K.; Glaser, B.; Goth, M.; Greenman, Y.; Trainer, P.; Mezosi, E.; Shimon, I.; Giustina, A.; Korbonits, M.; Bronstein, M.D.; Kleinberg, D.; Teichman, S.; Gliko-Kabir, I.; Mamluk, R.; Haviv, A.; Strasburger, C. Safety and efficacy of oral octreotide in acromegaly: results of a multicenter phase III trial. J. Clin. Endocrinol. Metab., 2015, 100(4), 1699-1708.
[http://dx.doi.org/10.1210/jc.2014-4113] [PMID: 25664604]
[177]
Fleseriu, M.; Dreval, A.; Bondar, I.; Vagapova, G.; Macut, D.; Pokramovich, Y.G.; Molitch, M.E.; Leonova, N.; Raverot, G.; Grineva, E.; Poteshkin, Y.E.; Gilgun-Sherki, Y.; Ludlam, W.H.; Patou, G.; Haviv, A.; Gordon, M.B.; Biermasz, N.R.; Melmed, S.; Strasburger, C.J. Maintenance of response to oral octreotide compared with injectable somatostatin receptor ligands in patients with acromegaly: A phase 3, multicentre, randomised controlled trial. Lancet Diabetes Endocrinol., 2022, 10(2), 102-111.
[http://dx.doi.org/10.1016/S2213-8587(21)00296-5] [PMID: 34953531]
[178]
Dan, N. An update on pharmaceutical strategies for oral delivery of therapeutic peptides and proteins in adults and pediatrics. Children, 2020, 7(12), 307.
[http://dx.doi.org/10.21007/etd.cghs.2019.0491]
[179]
Shields, P. NCT02807363: A study of pharmacokinetic/pharmacodynamic profile of orally administered leuprolide in healthy female volunteers. 2022. Available from: https://beta.clinicaltrials.gov/study/NCT02807363?distance=50&term=Enteris
[180]
Lebovitz, H.E.; Fleming, A.; Cherrington, A.D.; Joshi, S.; Athalye, S.N.; Loganathan, S.; Vishweswaramurthy, A.; Panda, J.; Marwah, A. Efficacy and safety of Tregopil, a novel, ultra-rapid acting oral prandial insulin analog, as part of a basal-bolus regimen in type 2 diabetes: A randomized, active-controlled phase 2/3 study. Expert Opin. Pharmacother., 2022, 23(16), 1855-1863.
[http://dx.doi.org/10.1080/14656566.2022.2141569] [PMID: 36352762]