Apoptosis-inducing Plant-based Phenolic Compounds are Effective on Leukemia Cell Lines

Page: [1092 - 1104] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Numerous natural compounds have been identified that are able to induce apoptosis in cancer cells. These compounds have various chemical properties and are found in medicinal plants, vegetables, and fruits that are commonly consumed by humans. Phenols represent important compounds, which have been demonstrated to induce apoptosis in cancer cells, and some of the involved mechanisms have also been determined. The most important and abundant phenolic compounds are tannins, caffeic acid, capsaicin, gallic acid, resveratrol, and curcumin. Induction of apoptosis with the least or no toxicity to natural tissues is one of the useful effects of many plant-based bioactive compounds. Phenols, with anticancer potency at different degrees, serve to induce apoptosis through different pathways, including both extrinsic (Fas) and intrinsic (calcium release, ROS increase, DNA degradation, and mitochondrial membrane impairment). In this review, we report these compounds and their apoptosis-inducing mechanisms. Apoptosis or programmed cell death is a precise and systematic mechanism that is aimed at removing damaged or abnormal cells and is very useful to control, treat, and prevent cancer. Apoptotic cells are characterized by specific morphological features and molecular expression. In addition to physiological stimuli, there are many external factors that can be useful for inducing apoptosis. Also, these compounds can affect the regulatory proteins of the apoptotic pathways, such as the apoptotic proteins (Bid and BAX) and antiapoptotic proteins (Bcl-2). Taking these compounds and their molecular mechanisms into account can help use them in combination with chemical drugs and develop new drugs.

[1]
Zhu JY, Lavrik IN, Mahlknecht U, et al. The traditional Chinese herbal compound rocaglamide preferentially induces apoptosis in leukemia cells by modulation of mitogen-activated protein kinase activities. Int J Cancer 2007; 121(8): 1839-46.
[http://dx.doi.org/10.1002/ijc.22883] [PMID: 17565740]
[2]
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61(2): 69-90.
[http://dx.doi.org/10.3322/caac.20107] [PMID: 21296855]
[3]
Margolin JF. Molecular diagnosis and risk-adjusted therapy in pediatric hematologic malignancies: A primer for pediatricians. Eur J Pediatr 2011; 170(4): 419-25.
[http://dx.doi.org/10.1007/s00431-011-1424-7] [PMID: 21350806]
[4]
Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med 2004; 350(15): 1535-48.
[http://dx.doi.org/10.1056/NEJMra023001] [PMID: 15071128]
[5]
Ghavami S, Hashemi M, Kadkhoda K, Alavian SM, Bay GH, Los M. Apoptosis in liver diseases-detection and therapeutic applications. Med Sci Monit 2005; 11(11): RA337-45.
[PMID: 16258409]
[6]
Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25(34): 4798-811.
[http://dx.doi.org/10.1038/sj.onc.1209608] [PMID: 16892092]
[7]
Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005; 5(11): 876-85.
[http://dx.doi.org/10.1038/nrc1736] [PMID: 16239906]
[8]
Fulda S. Apoptosis pathways and their therapeutic exploitation in pancreatic cancer. J Cell Mol Med 2009; 13(7): 1221-7.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00748.x] [PMID: 19382915]
[9]
Li-Weber M. Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett 2013; 332(2): 304-12.
[http://dx.doi.org/10.1016/j.canlet.2010.07.015] [PMID: 20685036]
[10]
Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000; 256(1): 58-66.
[http://dx.doi.org/10.1006/excr.2000.4840] [PMID: 10739652]
[11]
Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol 2007; 7(7): 532-42.
[http://dx.doi.org/10.1038/nri2115] [PMID: 17589543]
[12]
Johnstone RW, Frew AJ, Smyth MJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 2008; 8(10): 782-98.
[http://dx.doi.org/10.1038/nrc2465] [PMID: 18813321]
[13]
Van Opdenbosch N, Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity 2019; 50(6): 1352-64.
[http://dx.doi.org/10.1016/j.immuni.2019.05.020] [PMID: 31216460]
[14]
Ramirez MLG, Salvesen GS. A primer on caspase mechanisms. Semin Cell Dev Biol 2018; 82: 79-85.
[http://dx.doi.org/10.1016/j.semcdb.2018.01.002] [PMID: 29329946]
[15]
Horn S, Hughes MA, Schilling R, et al. Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in favor of NF-κB activation and cell survival. Cell Rep 2017; 19(4): 785-97.
[http://dx.doi.org/10.1016/j.celrep.2017.04.010] [PMID: 28445729]
[16]
Dorstyn L, Akey CW, Kumar S. New insights into apoptosome structure and function. Cell Death Differ 2018; 25(7): 1194-208.
[http://dx.doi.org/10.1038/s41418-017-0025-z] [PMID: 29765111]
[17]
McBride A, Houtmann S, Wilde L, et al. The role of inhibition of apoptosis in acute leukemias and myelodysplastic syndrome. Front Oncol 2019; 9: 192.
[http://dx.doi.org/10.3389/fonc.2019.00192] [PMID: 30972300]
[18]
Delbridge ARD, Strasser A. The BCL-2 protein family, BH3-mimetics and cancer therapy. Cell Death Differ 2015; 22(7): 1071-80.
[http://dx.doi.org/10.1038/cdd.2015.50] [PMID: 25952548]
[19]
Amin ARMR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol 2009; 27(16): 2712-25.
[http://dx.doi.org/10.1200/JCO.2008.20.6235] [PMID: 19414669]
[20]
Fresco P, Borges F, Diniz C, Marques MPM. New insights on the anticancer properties of dietary polyphenols. Med Res Rev 2006; 26(6): 747-66.
[http://dx.doi.org/10.1002/med.20060] [PMID: 16710860]
[21]
Chen KS, Hsiao YC, Kuo DY, et al. Tannic acid-induced apoptosis and -enhanced sensitivity to arsenic trioxide in human leukemia HL-60 cells. Leuk Res 2009; 33(2): 297-307.
[http://dx.doi.org/10.1016/j.leukres.2008.08.006] [PMID: 18790533]
[22]
Nepka C, Sivridis E, Antonoglou O, et al. Chemopreventive activity of very low dose dietary tannic acid administration in hepatoma bearing C3H male mice. Cancer Lett 1999; 141(1-2): 57-62.
[http://dx.doi.org/10.1016/S0304-3835(99)00145-7] [PMID: 10454243]
[23]
Nam S, Smith DM, Dou QP. Tannic acid potently inhibits tumor cell proteasome activity, increases p27 and Bax expression, and induces G1 arrest and apoptosis. Cancer Epidemiol Biomarkers Prev 2001; 10(10): 1083-8.
[PMID: 11588135]
[24]
Chen YJ, Shiao MS, Hsu ML, Tsai TH, Wang SY. Effect of caffeic acid phenethyl ester, an antioxidant from propolis, on inducing apoptosis in human leukemic HL-60 cells. J Agric Food Chem 2001; 49(11): 5615-9.
[http://dx.doi.org/10.1021/jf0107252] [PMID: 11714368]
[25]
Tomizawa A, Kanno SI, Osanai Y, Yomogida S, Ishikawa M. Cytotoxic effects of caffeic acid undecyl ester are involved in the inhibition of telomerase activity in NALM-6 human B-cell leukemia cells. Oncol Lett 2013; 6(4): 875-7.
[http://dx.doi.org/10.3892/ol.2013.1482] [PMID: 24137428]
[26]
Jin UH, Song KH, Motomura M, et al. Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells. Mol Cell Biochem 2008; 310(1-2): 43-8.
[http://dx.doi.org/10.1007/s11010-007-9663-7] [PMID: 18060475]
[27]
Mirzaei S, Gholami MH, Zabolian A, et al. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021; 171: 105759.
[http://dx.doi.org/10.1016/j.phrs.2021.105759] [PMID: 34245864]
[28]
Han SS, Keum YS, Chun KS, Surh YJ. Suppression of phorbol ester-induced nf-κB activation by capsaicin in cultured human promyelocytic leukemia cells. Arch Pharm Res 2002; 25(4): 475-9.
[http://dx.doi.org/10.1007/BF02976605] [PMID: 12214859]
[29]
Bozok Cetintas V, Tezcanli Kaymaz B, Aktug H, Oltulu F, Taskiran D. Capsaicin induced apoptosis and gene expression dysregulation of human acute lymphoblastic leukemia CCRF-CEM cells. J BUON 2014; 19(1): 183-90.
[PMID: 24659662]
[30]
Zhang J, Nagasaki M, Tanaka Y, Morikawa S. Capsaicin inhibits growth of adult T-cell leukemia cells. Leuk Res 2003; 27(3): 275-83.
[http://dx.doi.org/10.1016/S0145-2126(02)00164-9] [PMID: 12537981]
[31]
Madlener S, Illmer C, Horvath Z, et al. Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells. Cancer Lett 2007; 245(1-2): 156-62.
[http://dx.doi.org/10.1016/j.canlet.2006.01.001] [PMID: 16488533]
[32]
Chandramohan Reddy T, Bharat Reddy D, Aparna A, et al. Anti-leukemic effects of gallic acid on human leukemia K562 cells: Downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicol In Vitro 2012; 26(3): 396-405.
[http://dx.doi.org/10.1016/j.tiv.2011.12.018] [PMID: 22245431]
[33]
Yeh R-D, Chen J-C, Lai T-Y, et al. Gallic acid induces G₀/G₁ phase arrest and apoptosis in human leukemia HL-60 cells through inhibiting cyclin D and E, and activating mitochondria-dependent pathway. Anticancer Res 2011; 31(9): 2821-32.
[PMID: 21868525]
[34]
Ho C-C, Lin S-Y, Yang J-S, et al. Gallic acid inhibits murine leukemia WEHI-3 cells in vivo and promotes macrophage phagocytosis. In Vivo 2009; 23(3): 409-13.
[PMID: 19454506]
[35]
Ito K, Nakazato T, Yamato K, et al. Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: Implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res 2004; 64(3): 1071-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-1670] [PMID: 14871840]
[36]
Kucinska M, Piotrowska H, Luczak MW, et al. Effects of hydroxylated resveratrol analogs on oxidative stress and cancer cells death in human acute T cell leukemia cell line. Chem Biol Interact 2014; 209: 96-110.
[http://dx.doi.org/10.1016/j.cbi.2013.12.009] [PMID: 24398169]
[37]
Bernhard D, Tinhofer I, Tonko M, et al. Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death Differ 2000; 7(9): 834-42.
[http://dx.doi.org/10.1038/sj.cdd.4400719] [PMID: 11042678]
[38]
Pozo-Guisado E, Alvarez-Barrientos A, Mulero-Navarro S, Santiago-Josefat B, Fernandez-Salguero PM. The antiproliferative activity of resveratrol results in apoptosis in MCF-7 but not in MDA-MB-231 human breast cancer cells: Cell-specific alteration of the cell cycle. Biochem Pharmacol 2002; 64(9): 1375-86.
[http://dx.doi.org/10.1016/S0006-2952(02)01296-0] [PMID: 12392819]
[39]
Kuwajerwala N, Cifuentes E, Gautam S, Menon M, Barrack ER, Reddy GPV. Resveratrol induces prostate cancer cell entry into s phase and inhibits DNA synthesis. Cancer Res 2002; 62(9): 2488-92.
[PMID: 11980638]
[40]
Pesakhov S, Khanin M, Studzinski GP, Danilenko M. Distinct combinatorial effects of the plant polyphenols curcumin, carnosic acid, and silibinin on proliferation and apoptosis in acute myeloid leukemia cells. Nutr Cancer 2010; 62(6): 811-24.
[http://dx.doi.org/10.1080/01635581003693082] [PMID: 20661831]
[41]
Lichter P, Tomita M, Kawakami H, et al. Curcumin (diferuloylmethane) inhibits constitutive activeNF-kappaB, leading to suppression of cell growth of human T-cell leukemia virus type I-infected T-cell lines and primary adult T-cell leukemia cells (Retraction of vol 118, pg 765, 2006). Int J Cancer 2011; 129(11): 2762-9.
[PMID: 21960263]
[42]
Tan T-W, Tsai H-R, Lu H-F, et al. Curcumin-induced cell cycle arrest and apoptosis in human acute promyelocytic leukemia HL-60 cells via MMP changes and caspase-3 activation. Anticancer Res 2006; 26(6B): 4361-71.
[PMID: 17201156]
[43]
Kong Y, Ma W, Liu X, et al. Cytotoxic activity of curcumin towards CCRF-CEM leukemia cells and its effect on DNA damage. Molecules 2009; 14(12): 5328-38.
[http://dx.doi.org/10.3390/molecules14125328] [PMID: 20032896]
[44]
Hussain AR, Al-Rasheed M, Manogaran PS, et al. Curcumin induces apoptosis via inhibition of PI3′-kinase/AKT pathway in acute T cell leukemias. Apoptosis 2006; 11(2): 245-54.
[http://dx.doi.org/10.1007/s10495-006-3392-3] [PMID: 16502262]
[45]
Zhou H, Ning Y, Zeng G, Zhou C, Ding X. Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT. Oncol Rep 2021; 45(4): 11.
[http://dx.doi.org/10.3892/or.2021.7962] [PMID: 33649826]
[46]
Bachleitner-Hofmann T, Kees M, Gisslinger H. Arsenic trioxide: Acute promyelocytic leukemia and beyond. Leuk Lymphoma 2002; 43(8): 1535-40.
[http://dx.doi.org/10.1080/1042819021000002857] [PMID: 12400595]
[47]
Wolinsky LE, Mania S, Nachnani S, Ling S. The inhibiting effect of aqueous Azadirachta indica (Neem) extract upon bacterial properties influencing in vitro plaque formation. J Dent Res 1996; 75(2): 816-22.
[http://dx.doi.org/10.1177/00220345960750021301] [PMID: 8655780]
[48]
Ishii R, Saito K, Horie M, Shibano T, Kitanaka S, Amano F. Inhibitory effects of hydrolyzable tannins form Melastoma dodecandrum Lour. on nitric oxide production by a murine macrophage-like cell line, Raw264. 7, activated with lipopolysaccharide and interferon-γ. Biol Pharm Bull 1999; 22(6): 647-53.
[http://dx.doi.org/10.1248/bpb.22.647] [PMID: 10408242]
[49]
Gali-Muhtasib HU, Yamout SZ, Sidani MM. Tannins protect against skin tumor promotion induced by ultraviolet-B radiation in hairless mice. Nutr Cancer 2000; 37(1): 73-7.
[http://dx.doi.org/10.1207/S15327914NC3701_9] [PMID: 10965522]
[50]
Yang L, Lee C-Y, Yen K-Y. Induction of apoptosis by hydrolyzable tannins from Eugenia jambos L. on human leukemia cells. Cancer Lett 2000; 157(1): 65-75.
[http://dx.doi.org/10.1016/S0304-3835(00)00477-8] [PMID: 10893444]
[51]
Uwai K, Osanai Y, Imaizumi T, Kanno S, Takeshita M, Ishikawa M. Inhibitory effect of the alkyl side chain of caffeic acid analogues on lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophages. Bioorg Med Chem 2008; 16(16): 7795-803.
[http://dx.doi.org/10.1016/j.bmc.2008.07.006] [PMID: 18667320]
[52]
Ozturk G, Ginis Z, Akyol S, Erden G, Gurel A, Akyol O. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur Rev Med Pharmacol Sci 2012; 16(15): 2064-8.
[PMID: 23280020]
[53]
Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 1996; 93(17): 9090-5.
[http://dx.doi.org/10.1073/pnas.93.17.9090] [PMID: 8799159]
[54]
Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G. Targeting NF-κB in hematologic malignancies. Cell Death Differ 2006; 13(5): 748-58.
[http://dx.doi.org/10.1038/sj.cdd.4401874] [PMID: 16498458]
[55]
Ghosh A, Saginc G, Leow SC, et al. Telomerase directly regulates NF-κB-dependent transcription. Nat Cell Biol 2012; 14(12): 1270-81.
[http://dx.doi.org/10.1038/ncb2621] [PMID: 23159929]
[56]
Feriotto G, Tagliati F, Giriolo R, et al. Caffeic acid enhances the anti-leukemic effect of imatinib on chronic myeloid leukemia cells and triggers apoptosis in cells sensitive and resistant to imatinib. Int J Mol Sci 2021; 22(4): 1644.
[http://dx.doi.org/10.3390/ijms22041644] [PMID: 33562019]
[57]
Kuo H, Kuo W, Lee Y, Wang C, Tseng T. Enhancement of caffeic acid phenethyl ester on all-trans retinoic acid-induced differentiation in human leukemia HL-60 cells. Toxicol Appl Pharmacol 2006; 216(1): 80-8.
[http://dx.doi.org/10.1016/j.taap.2006.04.007] [PMID: 16766008]
[58]
Pan MH, Chang WL, Lin-Shiau SY, Ho CT, Lin JK. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 2001; 49(3): 1464-74.
[http://dx.doi.org/10.1021/jf001129v] [PMID: 11312881]
[59]
Bley K, Boorman G, Mohammad B, McKenzie D, Babbar S. A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaicin. Toxicol Pathol 2012; 40(6): 847-73.
[http://dx.doi.org/10.1177/0192623312444471] [PMID: 22563012]
[60]
Hail N Jr, Lotan R. Examining the role of mitochondrial respiration in vanilloid-induced apoptosis. J Natl Cancer Inst 2002; 94(17): 1281-92.
[http://dx.doi.org/10.1093/jnci/94.17.1281] [PMID: 12208893]
[61]
Lin S, Zhang J, Chen H, et al. Involvement of endoplasmic reticulum stress in capsaicin-induced apoptosis of human pancreatic cancer cells. Evid Based Complement Alternat Med 2013; 2013(2): 1-12.
[http://dx.doi.org/10.1155/2013/629750] [PMID: 23781265]
[62]
Chen X, Tan M, Xie Z, et al. Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin–induced apoptosis in human hepatocellular carcinoma cells. Free Radic Res 2016; 50(7): 744-55.
[http://dx.doi.org/10.3109/10715762.2016.1173689] [PMID: 27043357]
[63]
Pramanik KC, Boreddy SR, Srivastava SK. Role of mitochondrial electron transport chain complexes in capsaicin mediated oxidative stress leading to apoptosis in pancreatic cancer cells. PLoS One 2011; 6(5): e20151.
[http://dx.doi.org/10.1371/journal.pone.0020151] [PMID: 21647434]
[64]
Buolamwini J. Cell cycle molecular targets in novel anticancer drug discovery. Curr Pharm Des 2000; 6(4): 379-92.
[http://dx.doi.org/10.2174/1381612003400948] [PMID: 10788588]
[65]
Tsou M-F, Lu H-F, Chen S-C, et al. Involvement of Bax, Bcl-2, Ca2+ and caspase-3 in capsaicin-induced apoptosis of human leukemia HL-60 cells. Anticancer Res 2006; 26(3A): 1965-71.
[PMID: 16827131]
[66]
Kong ANT, Yu R, Chen C, Mandlekar S, Primiano T. Signal transduction events elicited by natural products: Role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch Pharm Res 2000; 23(1): 1-16.
[http://dx.doi.org/10.1007/BF02976458] [PMID: 10728649]
[67]
Shih WJ, Chang EHRL, Conney AH. Synergistic stimulatory effect of 12-0-tetradecanoylphorbol-13-acetate and capsaicin on macrophage differentiation in HL-60 and HL-525 human myeloid leukemia cells. Int J Oncol 2005; 26: 441-8.
[PMID: 15645129]
[68]
Stein A, Atanackovic D, Bokemeyer C. Current standards and new trends in the primary treatment of colorectal cancer. Eur J Cancer (Oxford, England : 1990) 2011; 47(3): 312-4.
[http://dx.doi.org/10.1016/S0959-8049(11)70183-6]
[69]
Zhang W, Hashimoto K, Yu G-Y, Sakagami H. Decline of superoxide dismutase activity during antioxidant-induced apoptosis in HL-60 cells. Anticancer Res 2002; 22(1A): 219-24.
[PMID: 12017292]
[70]
Li M, Wu X, Xu XC. Induction of apoptosis by cyclo-oxygenase-2 inhibitor NS398 through a cytochromeC-dependent pathway in esophageal cancer cells. Int J Cancer 2001; 93(2): 218-23.
[http://dx.doi.org/10.1002/ijc.1322] [PMID: 11410869]
[71]
Zhang GS, Liu DS, Dai CW, Li RJ. Antitumor effects of celecoxib on K562 leukemia cells are mediated by cell-cycle arrest, caspase-3 activation, and downregulation of Cox-2 expression and are synergistic with hydroxyurea or imatinib. Am J Hematol 2006; 81(4): 242-55.
[http://dx.doi.org/10.1002/ajh.20542] [PMID: 16550520]
[72]
Serrano A, Palacios C, Roy G, Cespón C. Villar MaL, Nocito M, González-Porqué P: Derivatives of gallic acid induce apoptosis in tumoral cell lines and inhibit lymphocyte proliferation. Arch Biochem Biophy 1998; 350(1): 49-54.
[http://dx.doi.org/10.1006/abbi.1997.0474] [PMID: 9466819]
[73]
Locatelli C, Rosso R, Santos-Silva MC, et al. Ester derivatives of gallic acid with potential toxicity toward L1210 leukemia cells. Bioorg Med Chem 2008; 16(7): 3791-9.
[http://dx.doi.org/10.1016/j.bmc.2008.01.049] [PMID: 18295493]
[74]
Meyskens FL Jr, Buckmeier JA, McNulty SE, Tohidian NB. Activation of nuclear factor-κ B in human metastatic melanomacells and the effect of oxidative stress. Clin Cancer Res 1999; 5(5): 1197-202.
[PMID: 10353757]
[75]
Bian X, McAllister-Lucas LM, Shao F, et al. NF-κ B activation mediates doxorubicin-induced cell death in N-type neuroblastoma cells. J Biol Chem 2001; 276(52): 48921-9.
[http://dx.doi.org/10.1074/jbc.M108674200] [PMID: 11679590]
[76]
Takahashi A, Taniguchi T, Ishikawa Y, Yokoyama M. Tranilast inhibits vascular smooth muscle cell growth and intimal hyperplasia by induction of p21(waf1/cip1/sdi1) and p53. Circ Res 1999; 84(5): 543-50.
[http://dx.doi.org/10.1161/01.RES.84.5.543] [PMID: 10082476]
[77]
Sausville EA, Johnson J, Alley M, Zaharevitz D, Senderowicz AM. Inhibition of CDKs as a therapeutic modality. Ann N Y Acad Sci 2000; 910(1): 207-22.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06710.x] [PMID: 10911915]
[78]
Huang PJ, Hseu YC, Lee MS, et al. In vitro and in vivo activity of gallic acid and Toona sinensis leaf extracts against HL-60 human premyelocytic leukemia. Food Chem Toxicol 2012; 50(10): 3489-97.
[http://dx.doi.org/10.1016/j.fct.2012.06.046] [PMID: 22771367]
[79]
Zeng M, Su Y, Li K, et al. Gallic acid inhibits bladder cancer T24 cell progression through mitochondrial dysfunction and PI3K/Akt/NF-κB signaling suppression. Front Pharmacol 2020; 11: 1222.
[http://dx.doi.org/10.3389/fphar.2020.01222] [PMID: 32973496]
[80]
Sottnik JL, Vanderlinden L, Joshi M, et al. Androgen receptor regulates CD44 expression in bladder cancer. Cancer Res 2021; 81(11): 2833-46.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3095] [PMID: 33687952]
[81]
Martínez-Rojo E, Berumen L, García-Alcocer G, Escobar-Cabrera J. The role of androgens and androgen receptor in human bladder cancer. Biomolecules 2021; 11(4): 594.
[http://dx.doi.org/10.3390/biom11040594] [PMID: 33919565]
[82]
Liao C-C, Chen S-C, Huang H-P, Wang C-J. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS). Yao Wu Shi Pin Fen Xi 2018; 26(2): 620-7.
[PMID: 29567231]
[83]
Horvath Z, Murias M, Saiko P, et al. Cytotoxic and biochemical effects of 3,3′4,4′5,5′-hexahydroxystilbene, a novel resveratrol analog in HL-60 human promyelocytic leukemia cells. Exp Hematol 2006; 34(10): 1377-84.
[http://dx.doi.org/10.1016/j.exphem.2006.05.018] [PMID: 16982330]
[84]
Surh YJ, Hurh YJ, Kang JY, Lee E, Kong G, Lee SJ. Resveratrol, an antioxidant present in red wine, induces apoptosis in human promyelocytic leukemia (HL-60) cells. Cancer Lett 1999; 140(1-2): 1-10.
[http://dx.doi.org/10.1016/S0304-3835(99)00039-7] [PMID: 10403535]
[85]
Locatelli GA, Savio M, Forti L, et al. Inhibition of mammalian DNA polymerases by resveratrol: Mechanism and structural determinants. Biochem J 2005; 389(2): 259-68.
[http://dx.doi.org/10.1042/BJ20050094] [PMID: 15773817]
[86]
Holmes-McNary M, Baldwin AS Jr. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkappaB kinase. Cancer Res 2000; 60(13): 3477-83.
[PMID: 10910059]
[87]
Ahmad N, Adhami VM, Afaq F, Feyes DK, Mukhtar H. Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res 2001; 7(5): 1466-73.
[PMID: 11350919]
[88]
Mnjoyan ZH, Fujise K. Profound negative regulatory effects by resveratrol on vascular smooth muscle cells: A role of p53-p21WAF1/CIP1 pathway. Biochem Biophys Res Commun 2003; 311(2): 546-52.
[http://dx.doi.org/10.1016/j.bbrc.2003.10.023] [PMID: 14592451]
[89]
Ferry-Dumazet H, Garnier O, Mamani-Matsuda M, et al. Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells. Carcinogenesis 2002; 23(8): 1327-33.
[http://dx.doi.org/10.1093/carcin/23.8.1327] [PMID: 12151351]
[90]
Lee SK, Zhang W, Sanderson BJS. Selective growth inhibition of human leukemia and human lymphoblastoid cells by resveratrol via cell cycle arrest and apoptosis induction. J Agric Food Chem 2008; 56(16): 7572-7.
[http://dx.doi.org/10.1021/jf801014p] [PMID: 18656932]
[91]
Halliwell B. Free radicals and antioxidants: Updating a personal view. Nutr Rev 2012; 70(5): 257-65.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00476.x] [PMID: 22537212]
[92]
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011; 711(1-2): 193-201.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.12.016] [PMID: 21216256]
[93]
Fruehauf JP, Meyskens FL Jr. Reactive oxygen species: A breath of life or death? Clin Cancer Res 2007; 13(3): 789-94.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2082] [PMID: 17289868]
[94]
Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 2004; 7(2): 97-110.
[http://dx.doi.org/10.1016/j.drup.2004.01.004] [PMID: 15158766]
[95]
Mertens-Talcott SU, Percival SS. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett 2005; 218(2): 141-51.
[http://dx.doi.org/10.1016/j.canlet.2004.06.007] [PMID: 15670891]
[96]
Gokbulut AA, Apohan E, Baran Y. Resveratrol and quercetin-induced apoptosis of human 232B4 chronic lymphocytic leukemia cells by activation of caspase-3 and cell cycle arrest. Hematology 2013; 18(3): 144-50.
[http://dx.doi.org/10.1179/1607845412Y.0000000042] [PMID: 23432965]
[97]
Li T, Wang W, Chen H, Li T, Ye L. Evaluation of anti-leukemia effect of resveratrol by modulating SATA3 signaling. Int Immunopharmacol 2010; 10(1): 18-25.
[http://dx.doi.org/10.1016/j.intimp.2009.09.009] [PMID: 19796711]
[98]
Li T, Fan GX, Wang W, Li T, Yuan YK. Resveratrol induces apoptosis, influences IL-6 and exerts immunomodulatory effect on mouse lymphocytic leukemia both in vitro and in vivo. Int Immunopharmacol 2007; 7(9): 1221-31.
[http://dx.doi.org/10.1016/j.intimp.2007.05.008] [PMID: 17630201]
[99]
Ozawa Y, Williams AH, Estes ML, et al. Src family kinases promote AML cell survival through activation of signal transducers and activators of transcription (STAT). Leuk Res 2008; 32(6): 893-903.
[http://dx.doi.org/10.1016/j.leukres.2007.11.032] [PMID: 18179820]
[100]
Węsierska-Gądek J, Kramer MP, Maurer M. Resveratrol modulates roscovitine-mediated cell cycle arrest of human MCF-7 breast cancer cells. Food Chem Toxicol 2008; 46(4): 1327-33.
[http://dx.doi.org/10.1016/j.fct.2007.09.004] [PMID: 17933449]
[101]
Yu LJ, Wu ML, Li H, et al. Inhibition of STAT3 expression and signaling in resveratrol-differentiated medulloblastoma cells. Neoplasia 2008; 10(7): 736-44.
[http://dx.doi.org/10.1593/neo.08304] [PMID: 18592012]
[102]
Bhardwaj A, Sethi G, Vadhan-Raj S, et al. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-κB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 2007; 109(6): 2293-302.
[http://dx.doi.org/10.1182/blood-2006-02-003988] [PMID: 17164350]
[103]
Cao Y, Wang F, Liu HY, Fu ZD, Han R. Resveratrol induces apoptosis and differentiation in acute promyelocytic leukemia (NB4) cells. J Asian Nat Prod Res 2005; 7(4): 633-41.
[http://dx.doi.org/10.1080/1028602032000169523] [PMID: 16087638]
[104]
Zunino SJ, Storms DH. Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett 2006; 240(1): 123-34.
[http://dx.doi.org/10.1016/j.canlet.2005.09.001] [PMID: 16226372]
[105]
Tang D, Wu D, Hirao A, et al. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 2002; 277(15): 12710-7.
[http://dx.doi.org/10.1074/jbc.M111598200] [PMID: 11821415]
[106]
Gottlieb TM, Leal JFM, Seger R, Taya Y, Oren M. Cross-talk between Akt, p53 and Mdm2: Possible implications for the regulation of apoptosis. Oncogene 2002; 21(8): 1299-303.
[http://dx.doi.org/10.1038/sj.onc.1205181] [PMID: 11850850]
[107]
Chakraborty PK, Mustafi SB, Ganguly S, Chatterjee M, Raha S. Resveratrol induces apoptosis in K562 (chronic myelogenous leukemia) cells by targeting a key survival protein, heat shock protein 70. Cancer Sci 2008; 99(6): 1109-16.
[http://dx.doi.org/10.1111/j.1349-7006.2008.00809.x] [PMID: 18429957]
[108]
Wu X, Xiong M, Xu C, et al. Resveratrol induces apoptosis of human chronic myelogenous leukemia cells in vitro through p38 and JNK-regulated H2AX phosphorylation. Acta Pharmacol Sin 2015; 36(3): 353-61.
[http://dx.doi.org/10.1038/aps.2014.132] [PMID: 25619392]
[109]
Kartal M, Saydam G, Sahin F, Baran Y. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr Cancer 2011; 63(4): 637-44.
[http://dx.doi.org/10.1080/01635581.2011.538485] [PMID: 21500096]
[110]
Cakir Z, Saydam G, Sahin F, Baran Y. The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60 acute myeloid leukemia cells. J Cancer Res Clin Oncol 2011; 137(2): 279-86.
[http://dx.doi.org/10.1007/s00432-010-0884-x] [PMID: 20401667]
[111]
Shaito A, Posadino AM, Younes N, et al. Potential adverse effects of resveratrol: A literature review. Int J Mol Sci 2020; 21(6): 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[112]
Nwachukwu JC, Srinivasan S, Bruno NE, et al. Resveratrol modulates the inflammatory response via an estrogen receptor-signal integration network. eLife 2014; 3: e02057.
[http://dx.doi.org/10.7554/eLife.02057] [PMID: 24771768]
[113]
Vignozzi L, Filippi S, Luconi M, et al. Oxytocin receptor is expressed in the penis and mediates an estrogen-dependent smooth muscle contractility. Endocrinology 2004; 145(4): 1823-34.
[http://dx.doi.org/10.1210/en.2003-0962] [PMID: 14691010]
[114]
Teimouri M, Homayouni-Tabrizi M, Rajabian A, Amiri H, Hosseini H. Anti-inflammatory effects of resveratrol in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Complement Ther Med 2022; 70: 102863.
[http://dx.doi.org/10.1016/j.ctim.2022.102863] [PMID: 35905799]
[115]
Hsu YA, Chen CS, Wang YC, et al. Anti-inflammatory effects of resveratrol on human retinal pigment cells and a myopia animal model. Curr Issues Mol Biol 2021; 43(2): 716-27.
[http://dx.doi.org/10.3390/cimb43020052] [PMID: 34287272]
[116]
Xu D, Li Y, Zhang B, et al. Resveratrol alleviate hypoxic pulmonary hypertension via anti-inflammation and anti-oxidant pathways in rats. Int J Med Sci 2016; 13(12): 942-54.
[http://dx.doi.org/10.7150/ijms.16810] [PMID: 27994500]
[117]
Bostanci Y, Kazzazi A, Momtahen S, Laze J, Djavan B. Correlation between benign prostatic hyperplasia and inflammation. Curr Opin Urol 2013; 23(1): 5-10.
[http://dx.doi.org/10.1097/MOU.0b013e32835abd4a] [PMID: 23159991]
[118]
Cao D, Sun R, Peng L, et al. Immune cell proinflammatory microenvironment and androgen-related metabolic regulation during benign prostatic hyperplasia in aging. Front Immunol 2022; 13: 842008.
[http://dx.doi.org/10.3389/fimmu.2022.842008] [PMID: 35386711]
[119]
Ammon H, Wahl M. Pharmacology of Curcuma longa. Planta Med 1991; 57(1): 1-7.
[http://dx.doi.org/10.1055/s-2006-960004] [PMID: 2062949]
[120]
Nahar PP, Slitt AL, Seeram NP. Anti-inflammatory effects of novel standardized solid lipid curcumin formulations. J Med Food 2015; 18(7): 786-92.
[http://dx.doi.org/10.1089/jmf.2014.0053] [PMID: 25490740]
[121]
Chen J, Tang XQ, Zhi JL, et al. Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 2006; 11(6): 943-53.
[http://dx.doi.org/10.1007/s10495-006-6715-5] [PMID: 16547587]
[122]
Chen A, Xu J, Johnson AC. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 2006; 25(2): 278-87.
[http://dx.doi.org/10.1038/sj.onc.1209019] [PMID: 16170359]
[123]
Piwocka K, Zabłocki K, Więckowski MR, et al. A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells. Exp Cell Res 1999; 249(2): 299-307.
[http://dx.doi.org/10.1006/excr.1999.4480] [PMID: 10366429]
[124]
Liao YF, Hung HC, Hour TC, et al. Curcumin induces apoptosis through an ornithine decarboxylase-dependent pathway in human promyelocytic leukemia HL-60 cells. Life Sci 2008; 82(7-8): 367-75.
[http://dx.doi.org/10.1016/j.lfs.2007.11.022] [PMID: 18187158]
[125]
Yu J, Peng Y, Wu LC, et al. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoS One 2013; 8(2): e55934.
[http://dx.doi.org/10.1371/journal.pone.0055934] [PMID: 23457487]
[126]
Yang CW, Chang CL, Lee HC, Chi CW, Pan JP, Yang WC. Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK pathways. BMC Complement Altern Med 2012; 12(1): 22-9.
[http://dx.doi.org/10.1186/1472-6882-12-22] [PMID: 22443687]