Self-nano-emulsifying Drug Delivery Systems of Atorvastatin Calcium Liquid Filled in Hard Shell Capsules for Improved Oral Bioavailability in Rabbits

Page: [554 - 563] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Aims and Objectives: Atorvastatin calcium (ATR) is a BCS class II drug showing poor bioavailability due to limited aqueous solubility. In the present study, a self-nano-emulsifying drug delivery system (SNEDDS) was developed and formulated as a liquid filled in a hard shell capsule to improve the bioavailability of ATR.

Methods: Different oils were screened through the saturated stability method, and the amount of ATR solubilized in the respective oils was analysed through HPLC at 245nm. A ternary phase diagram was plotted to obtain the optimized ratio of oil, surfactant, and co-surfactant to formulate SNEDDS. The prepared ATR SNEDDS was filled into hard shell capsules, band sealed, and subjected to various evaluations like disintegration time, self-emulsification time, precipitation time assessment, globule size analysis and zeta potential. Then the in vitro dissolution studies were carried out. The optimized SNEDDS formulation was filled in a hard shell capsule, and in vivo studies were performed on rabbits to compare the pharmacokinetic parameters with the marketed formulation and pure ATR.

Results: Capmul MCM as the oil component showed five-fold solubility of ATR and was selected for the preparation of ATR-SNEDDS. The SNEDDS formulation showed an entrapment efficiency of 89.76±4.1% ATR with a globule size of 385±1.9 nm and an emulsification time of 5 seconds. It was established from the study that liquid ATR-SNEDDS had relative bioavailability enhanced by 1.7 times in comparison to the marketed formulations (Lipvas) and 4.8 times with respect to pure ATR.

Conclusion: From the study, it was concluded that the bioavailability of ATR was enhanced by formulating ATR as Liquid SNEDDS filled in hard shell capsules.

Graphical Abstract

[1]
AboulFotouh K. Self-emulsifying drug delivery systems: Easy to prepare multifunctional vectors for efficient oral delivery. In: Current and Future Aspects of Nanomedicine; IntechOpen Limited, 2020.
[http://dx.doi.org/10.5772/intechopen.88412]
[2]
M, A.; Ks, Y. Pathogenesis of atherosclerosis a review. Med. Clin. Rev., 2016, 2(3), 1-6.
[http://dx.doi.org/10.21767/2471-299X.1000031]
[3]
Shattat, G.F. A review article on hyperlipidemia: Types, treatments and new drug targets. Biomed. Pharmacol. J., 2014, 7(2), 399-409.
[http://dx.doi.org/10.13005/bpj/504]
[4]
Kwon, J.; Giri, B.R.; Song, E.S.; Bae, J.; Lee, J.; Kim, D.W. Spray-dried amorphous solid dispersions of atorvastatin calcium for improved supersaturation and oral bioavailability. Pharmaceutics, 2019, 11(9), 461.
[http://dx.doi.org/10.3390/pharmaceutics11090461] [PMID: 31500147]
[5]
Alagga, A.A.; Gupta, V. Drug Absorption. In: StatPearls; , 2023.
[6]
Bhakay, A.; Rahman, M.; Dave, R.N.; Bilgili, E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: Formulation⁻processing aspects and challenges. Pharmaceutics, 2018, 10(3), 86.
[http://dx.doi.org/10.3390/pharmaceutics10030086]
[7]
Maji, I.; Mahajan, S.; Sriram, A.; Medtiya, P.; Vasave, R.; Khatri, D.K.; Kumar, R.; Singh, S.B.; Madan, J.; Singh, P.K. Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J. Control. Release, 2021, 337, 646-660.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.013] [PMID: 34384795]
[8]
Park, H.; Ha, E.S.; Kim, M.S. Current status of supersaturable self-emulsifying drug delivery systems. Pharmaceutics, 2020, 12(4), 365.
[http://dx.doi.org/10.3390/pharmaceutics12040365] [PMID: 32316199]
[9]
Al-Tabakha, M.M. HPMC capsules: Current status and future prospects. J. Pharm. Pharm. Sci., 2010, 13(3), 428-442.
[http://dx.doi.org/10.18433/J3K881] [PMID: 21092714]
[10]
Singh, B.; Bandopadhyay, S.; Kapil, R.; Singh, R. katare, O. Self-emulsifying drug delivery systems (SEDDS): Formulation development, characterization, and applications. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(5), 427-451.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i5.10] [PMID: 20136631]
[11]
Kommuru, T.R.; Gurley, B.; Khan, M.A.; Reddy, I.K. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: Formulation development and bioavailability assessment. Int. J. Pharm., 2001, 212(2), 233-246.
[http://dx.doi.org/10.1016/S0378-5173(00)00614-1] [PMID: 11165081]
[12]
Jahangiri, A.; Barzegar-Jalali, M.; Javadzadeh, Y.; Hamishehkar, H.; Adibkia, K. Physicochemical characterization of atorvastatin calcium/ezetimibe amorphous nano-solid dispersions prepared by electrospraying method. Artif. Cells Nanomed. Biotechnol., 2017, 45(6), 1138-1145.
[http://dx.doi.org/10.1080/21691401.2016.1202262] [PMID: 27406894]
[13]
Wu, W.; Wang, Y.; Que, L.; Wang, Y.; Que, L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur. J. Pharm. Biopharm., 2006, 63(3), 288-294.
[http://dx.doi.org/10.1016/j.ejpb.2005.12.005] [PMID: 16527467]
[14]
Patil, P.; Patil, V.; Paradkar, A. Formulation of a self-emulsifying system for oral delivery of simvastatin: In vitro and in vivo evaluation. Acta Pharm., 2007, 57(1), 111-122.
[http://dx.doi.org/10.2478/v10007-007-0009-5] [PMID: 19839411]
[15]
Khoo, S.M.; Humberstone, A.J.; Porter, C.J.H.; Edwards, G.A.; Charman, W.N. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int. J. Pharm., 1998, 167(1-2), 155-164.
[http://dx.doi.org/10.1016/S0378-5173(98)00054-4]
[16]
Stanisz, B.; Kania, L. Validation of HPLC method for determination of atorvastatin in tablets and for monitoring stability in solid phase. Acta Pol. Pharm., 2006, 63(6), 471-476.
[PMID: 17438862]
[17]
Charbe, N.; Baldelli, S.; Cozzi, V.; Castoldi, S.; Cattaneo, D.; Clementi, E. Development of an HPLC–UV assay method for the simultaneous quantification of nine antiretroviral agents in the plasma of HIV-infected patients. J. Pharm. Anal., 2016, 6(6), 396-403.
[http://dx.doi.org/10.1016/j.jpha.2016.05.008] [PMID: 29404009]
[18]
Ertürk, S. Sevinç Aktaş E.; Ersoy, L.; Fıçıcıoğlu, S. An HPLC method for the determination of atorvastatin and its impurities in bulk drug and tablets. J. Pharm. Biomed. Anal., 2003, 33(5), 1017-1023.
[http://dx.doi.org/10.1016/S0731-7085(03)00408-4] [PMID: 14656592]
[19]
Markl, D.; Zeitler, J.A. A review of disintegration mechanisms and measurement techniques. Pharm. Res., 2017, 34(5), 890-917.
[http://dx.doi.org/10.1007/s11095-017-2129-z] [PMID: 28251425]
[20]
AboulFotouh K.; Allam, A.A.; El-Badry, M.; El-Sayed, A.M. Development and in vitro/in vivo performance of self-nanoemulsifying drug delivery systems loaded with candesartan cilexetil. Eur. J. Pharm. Sci., 2017, 109, 503-513.
[http://dx.doi.org/10.1016/j.ejps.2017.09.001] [PMID: 28889028]
[21]
Panghal, D.; Nagpal, M.; Thakur, G.S.; Arora, S. Dissolution improvement of atorvastatin calcium using modified locust bean gum by the solid dispersion technique. Sci. Pharm., 2014, 82(1), 177-191.
[http://dx.doi.org/10.3797/scipharm.1301-23] [PMID: 24634850]
[22]
Kale, A.A.; Patravale, V.B. Design and evaluation of self-emulsifying drug delivery systems (SEDDS) of nimodipine. AAPS PharmSciTech, 2008, 9(1), 191-196.
[http://dx.doi.org/10.1208/s12249-008-9037-9] [PMID: 18446481]
[23]
Bandivadeka, M.M.; Pancholi, S.S.; Kaul-Ghanekar, R.; Choudhari, A.; Koppikar, S. Self-microemulsifying smaller molecular volume oil (Capmul MCM) using non-ionic surfactants: A delivery system for poorly water-soluble drug. Drug Dev. Ind. Pharm., 2012, 38(7), 883-892.
[http://dx.doi.org/10.3109/03639045.2011.631548] [PMID: 22087760]
[24]
Choosing Capsules: A Primer. Available from: https://www.pharmtech.com/view/choosing-capsules-primer (Accessed on: Oct. 24, 2021)
[25]
Cho, H.Y.; Kang, J.H.; Ngo, L.; Tran, P.; Lee, Y.B. Preparation and evaluation of solid-self-emulsifying drug delivery system containing paclitaxel for lymphatic delivery. J. Nanomater., 2016, 2016, 1-14.
[http://dx.doi.org/10.1155/2016/3642418]
[26]
Chatterjee, B.; Hamed Almurisi, S.; Ahmed Mahdi Dukhan, A.; Mandal, U.K.; Sengupta, P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv., 2016, 23(9), 3639-3652.
[http://dx.doi.org/10.1080/10717544.2016.1214990] [PMID: 27685505]
[27]
Selvamani, V. Stability studies on nanomaterials used in drugs. Charact. Biol. Nanomater. Drug Deliv. Nanosci. Nanotechnol. Drug Deliv., 2019, (1), 425-444.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00015-5]
[28]
Barakat, N.S. Enhanced oral bioavailability of etodolac by self-emulsifying systems: in vitro and in vivo evaluation. J. Pharm. Pharmacol., 2010, 62(2), 173-180.
[http://dx.doi.org/10.1211/jpp.62.02.0004] [PMID: 20487196]
[29]
Ahmed, M.G. An approach to enhance the solubility and bioavailability of poorly water soluble drug aceclofenac by self-emulsifying technique using natural oil. MCN Am. J. Matern. Child Nurs., 2016, 6(2), 229.
[30]
Majee, S.B.; Avlani, D.; Biswas, G.R. Hpmc as capsule shell material: Physicochemical, pharmaceutical and biopharmaceutical properties. Int. J. Pharm. Pharm. Sci., 2017, 9(10), 1.
[http://dx.doi.org/10.22159/ijpps.2017v9i10.20707]
[31]
Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67(3), 217-223.
[PMID: 20524422]
[32]
Baishya, H. Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J. Dev. Drugs, 2017, 6(2), 1-8.
[http://dx.doi.org/10.4172/2329-6631.1000171]
[33]
Paarakh, M.P.; Jose, P.A.N.I.; Setty, C.M.; Peter, G.V. Release kinetics-concepts and applications. Int. J. Pharm. Res. Technol., 2019, 8(1), 12-20.
[http://dx.doi.org/10.31838/ijprt/08.01.02]
[34]
Soni, G.; Yadav, K.S.; Gupta, M.K. Design of Experiments (DoE) approach to optimize the sustained release microparticles of gefitinib. Curr. Drug Deliv., 2019, 16(4), 364-374.
[http://dx.doi.org/10.2174/1567201816666181227114109] [PMID: 30588883]
[35]
Mistry, R.B.; Sheth, N.S. A review: Self emulsifying drug delivery system. Int. J. Pharm. Pharm. Sci., 2011, 3(Suppl. 2), 23-28.
[36]
Wu, I.Y.; Bala, S.; Škalko-Basnet, N.; di Cagno, M.P. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur. J. Pharm. Sci., 2019, 138, 105026.
[http://dx.doi.org/10.1016/j.ejps.2019.105026] [PMID: 31374254]
[37]
Permanadewi, I.; Kumoro, A.C.; Wardhani, D.H.; Aryanti, N. Modelling of controlled drug release in gastrointestinal tract simulation. J. Phys. Conf. Ser., 2019, 1295(1), 012063.
[http://dx.doi.org/10.1088/1742-6596/1295/1/012063]
[38]
Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine, 2019, 14(1), 93-126.
[39]
Joyce, P.; Dening, T.J.; Meola, T.R.; Schultz, H.B.; Holm, R.; Thomas, N.; Prestidge, C.A. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv. Drug Deliv. Rev., 2019, 142, 102-117.
[http://dx.doi.org/10.1016/j.addr.2018.11.006] [PMID: 30529138]
[40]
Neslihan Gursoy, R.; Benita, S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother., 2004, 58(3), 173-182.
[http://dx.doi.org/10.1016/j.biopha.2004.02.001] [PMID: 15082340]
[41]
Gupta, S.; Kesarla, R.; Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm., 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/848043] [PMID: 24459591]
[42]
Dokania, S.; Joshi, A.K. Self-microemulsifying drug delivery system (SMEDDS)-challenges and road ahead. Drug Deliv., 2015, 22(6), 675-690.
[http://dx.doi.org/10.3109/10717544.2014.896058] [PMID: 24670091]
[43]
Quan, G.; Niu, B.; Singh, V.; Zhou, Y.; Wu, C.Y.; Pan, X.; Wu, C. Supersaturable solid self-microemulsifying drug delivery system: Precipitation inhibition and bioavailability enhancement. Int. J. Nanomedicine, 2017, 12, 8801-8811.
[http://dx.doi.org/10.2147/IJN.S149717] [PMID: 29263669]