Cholinesterase Inhibitory and In Silico Toxicity Assessment of Thirty-Four Isoquinoline Alkaloids - Berberine as the Lead Compound

Page: [773 - 783] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Cholinesterase (ChE) inhibitors used currently in clinics for the treatment of Alzheimer’s disease (AD) are the most prescribed drug class with nitrogen-containing chemical formula. Galanthamine, the latest generation anti-ChE drug, contains an isoquinoline structure.

Objective: The aim of the current study was to investigate the inhibitory potential of thirty-four isoquinoline alkaloids, e.g. (-)-adlumidine, β-allocryptopine, berberine, (+)-bicuculline, (-)-bicuculline, (+)-bulbocapnine, (-)-canadine, (±)-chelidimerine, corydaldine, (±)-corydalidzine, (-)-corydalmine, (+)-cularicine, dehydrocavidine, (+)-fumariline, (-)-fumarophycine, (+)-α-hydrastine, (+)-isoboldine, 13-methylcolumbamine, (-)-norjuziphine, norsanguinarine, (-)-ophiocarpine, (-)-ophiocarpine-Noxide, oxocularine, oxosarcocapnine, palmatine, (+)-parfumine, protopine, (+)-reticuline, sanguinarine, (+)-scoulerine, (±)-sibiricine, (±)-sibiricine acetate, (-)-sinactine, and (-)-stylopine isolated from several Fumaria (fumitory) and Corydalis species towards acetyl- (AChE) and butyrylcholinesterase (BChE) by microtiter plate assays. The alkaloids with strong ChE inhibition were proceeded to molecular docking simulations as well as in silico toxicity screening for their mutagenic capacity through VEGA QSAR (AMES test) consensus model and VEGA platform as statistical approaches. The inputs were evaluated in a simplified molecular input-line entry system (SMILES).

Methods: ChE inhibition assays indicated that the highest AChE inhibition was caused by berberine (IC50: 0.72 ± 0.04 μg/mL), palmatine (IC50: 6.29 ± 0.61 μg/mL), β-allocryptopine (IC50: 10.62 ± 0.45 μg/mL), (-)-sinactine (IC50: 11.94 ± 0.44 μg/mL), and dehydrocavidine (IC50: 15.01 ± 1.87 μg/mL) as compared to that of galanthamine (IC50: 0.74 ± 0.01 μg/mL), the reference drug with isoquinoline skeleton. Less number of the tested alkaloids exhibited notable BChE inhibition. Among them, berberine (IC50: 7.67 ± 0.36 μg/mL) and (-)-corydalmine (IC50: 7.78 ± 0.38 μg/mL) displayed a stronger inhibition than that of galanthamine (IC50: 12.02 ± 0.25 μg/mL). The mutagenic activity was shown for β-allocryptopine, (+)- and (-)-bicuculline, (±)-corydalidzine, (-)-corydalmine, (+)-cularicine, (-)- fumarophycine, (-)-norjuziphine, (-)-ophiocarpine-N-oxide, (+)-scoulerine, (-)-sinactine, and (-)- stylopine by means of in silico experiments.

Results: The results obtained by molecular docking simulations of berberine, palmatine, and (-)- corydalmine suggested that the estimated free ligand-binding energies of these compounds inside the binding domains of their targets are reasonable to make them capable of establishing strong polar and nonpolar bonds with the atoms of the active site amino acids.

Conclusion: Our findings revealed that berberine, palmatin, and (-)-corydalmine stand out as the most promising isoquinoline alkaloids in terms of ChE inhibition. Among them, berberine has displayed a robust dual inhibition against both ChEs and could be evaluated further as a lead compound for AD.

[1]
Soria Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol 2019; 167: 231-55.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00013-3] [PMID: 31753135]
[2]
Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018; 141(7): 1917-33.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[3]
Saxena M, Dubey R. Target enzyme in Alzheimer’s disease: Acetylcholinesterase inhibitors. Curr Top Med Chem 2019; 19(4): 264-75.
[http://dx.doi.org/10.2174/1568026619666190128125912] [PMID: 30706815]
[4]
Sharma K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol Med Rep 2019; 20(2): 1479-87.
[PMID: 31257471]
[5]
Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2020; 19(2): 147-57.
[http://dx.doi.org/10.1080/14740338.2020.1721456] [PMID: 31976781]
[6]
Cahlíková L, Macáková K, Kuneš J, et al. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Eschscholzia californica (Papaveraceae). Nat Prod Commun 2010; 5(7): 1934578X1000500.
[http://dx.doi.org/10.1177/1934578X1000500710] [PMID: 20734935]
[7]
Cometa MF, Fortuna S, Palazzino G, et al. New cholinesterase inhibiting bisbenzylisoquinoline alkaloids from Abuta grandifolia. Fitoterapia 2012; 83(3): 476-80.
[http://dx.doi.org/10.1016/j.fitote.2011.12.015] [PMID: 22230193]
[8]
Wan Othman WNN, Liew SY, Khaw KY, Murugaiyah V, Litaudon M, Awang K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg Med Chem 2016; 24(18): 4464-9.
[http://dx.doi.org/10.1016/j.bmc.2016.07.043] [PMID: 27492195]
[9]
Wangchuk P, Sastraruji T, Taweechotipatr M, Keller PA, Pyne SG. Anti-inflammatory, anti-bacterial and anti-acetylcholinesterase activities of two isoquinoline alkaloids scoulerine and cheilanthifoline. Nat Prod Commun 2016; 11(12): 1934578X1601101.
[http://dx.doi.org/10.1177/1934578X1601101207] [PMID: 30508337]
[10]
Kostelnik A, Pohanka M. Inhibition of acetylcholinesterase and butyrylcholinesterase by a plant secondary metabolite boldine. Biomed Res Int 2018; 2018: 9634349.
[http://dx.doi.org/10.1155/2018/9634349]
[11]
Plazas E, Hagenow S, Avila Murillo M, Stark H, Cuca LE. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ1-42 aggregation. Bioorg Chem 2020; 98: 103722.
[http://dx.doi.org/10.1016/j.bioorg.2020.103722] [PMID: 32155491]
[12]
Tuzimski T, Petruczynik A, Szultka-Młyńska M, Sugajski M, Buszewski B. Isoquinoline alkaloid contents in Macleaya cordata extracts and their acetylcholinesterase and butyrylcholinesterase inhibition. Molecules 2022; 27(11): 3606.
[http://dx.doi.org/10.3390/molecules27113606] [PMID: 35684539]
[13]
Orhan I, Sener B. Bioactivity-directed fractionation of alkaloids from some Amaryllidaceae plants and their anticholinesterase activity. Chem Nat Compd 2003; 39(4): 383-6.
[http://dx.doi.org/10.1023/B:CONC.0000003421.65467.9c]
[14]
Orhan IE, Senol Deniz FS, Eren G, Sener B. Molecular approach to promising cholinesterase inhibitory effect of several amaryllidaceae alkaloids: Further re-investigation. S Afr J Bot 2021; 136: 175-81.
[http://dx.doi.org/10.1016/j.sajb.2020.03.017]
[15]
Blaskó G, Murugesan N, Hussain SF, et al. Revised structure for fumarofine, an indenobenzazepine type alkaloid. Tetrahedron Lett 1981; 22(33): 3135-8.
[http://dx.doi.org/10.1016/S0040-4039(01)81846-3]
[16]
Sener B, Gozler B, Minard R, Shamma M. Alkaloids of Fumaria vaillantii. Phytochemistry 1983; 22(9): 2073-5.
[http://dx.doi.org/10.1016/0031-9422(83)80048-X]
[17]
Şener B. Turkish species of Fumaria L. and their alkaloids. II. Alkaloids of Fumaria gaillardotii Boiss. Int J Crude Drug Res 1983; 21(3): 135-9.
[http://dx.doi.org/10.3109/13880208309070626]
[18]
Şener B. Turkish species of Fumaria L. and their alkaloids IV. Alkaloids of Fumaria macrocarpa Parlatore. Int J Crude Drug Res 1984; 22(4): 185-7.
[http://dx.doi.org/10.3109/13880208409070675]
[19]
Sener B. Turkish species of Fumaria L. and their alkaloids III. Alkaloids of Fumaria judaica Boiss. GUEDE – J. FacPharm Gazi 1984; 1(1): 15-20.
[20]
Sener B. Turkish species of Fumaria L. and their alkaloids V. Alkaloids of Fumaria capreolata L. and F. asepala Boiss. J Nat Prod 1985; 48(4): 670.
[http://dx.doi.org/10.1021/np50040a034]
[21]
Şener B. Turkish species of Fumaria L. and their alkaloids VI. Alkaloids of Fumaria capreolata L. Int J Crude Drug Res 1985; 23(4): 161-3.
[http://dx.doi.org/10.3109/13880208509069024]
[22]
Sener B. Turkish species of Fumaria L. and their alkaloids VII. Alkaloids of Fumaria officinalis L. and F. cilicica Hausskn. GUEDE – J Fac Pharm Gazi 1985; 2(1): 45-9.
[23]
Sener B. Turkish species of Fumaria L. and their alkaloids VIII. Alkaloids of F. asepala Boiss. Int J Crude Drug Res 1986; 24(2): 105-6.
[http://dx.doi.org/10.3109/13880208609083314]
[24]
Şener B. Turkish species of Fumaria L. their alkaloids IX. Alkaloids of F. parviflora Lam., F. petteri Reichb. subsp. thuretii (Boiss.) Pugsley and F. kralikii Jordan. Int J Crude Drug Res 1988; 26(1): 61-2.
[http://dx.doi.org/10.3109/13880208809053890]
[25]
Kucukboyaci N, Bingol F, Sener B, Kutney JP, Nikolay S. Isoquinoline alkaloids from Fumaria bastardii. Nat Prod Sci 1988; 4(4): 257-62.
[26]
Davis PH. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press 1965; 1: pp. 238-42.
[27]
Guner A, Ozhatay N, Ekim T, Baser KHC. Flora of Turkey and the East Aegean Islands. Edinburgh: Edinburgh University Press 2000; p. 11.
[28]
Hao H, Qicheng F. Compilation of Chinese Herb Medicine Part A, B. Beijing: People's Publishing House 1973.
[29]
Temizer H. Pharmacognosic researches on the alkaloids of Corydalis solida L. Swartz. subsp. brachyloba (Boiss.) Cullen & Davis. 1987.
[30]
Sener B, Temizer H. Chemical studies on the minor isoquinoline alkaloids from Corydalis-solida subsp. brachyloba. J Chem Soc Pak 1991; 13(1): 63-6.
[31]
Sener B. Alkaloids from Turkish Corydalis Species. In: Rahman A, Le Quesne PW, Eds. Perspectives in Natural Products Chemistry, Proceedings of the Third Int Symp and Pakistan-US Binational Workshop on Nat Prod Chem. Karachi: Shamim Printing Press 1988; pp. 569-75.
[32]
Sener B, Temizer H, Koyuncu M. Benzophenanthridine alkaloids from Corydalis-rutifolia (Sibth and Sm) DC subsp. erdelii (Zucc) Cullen and Davis. J Chem Soc Pak 1992; 14(3): 228-9.
[33]
Sener B, Temizer H, Koyuncu M. Cularine-type alkaloids from Corydalis rutifolia subsp. erdelii. Pak J Pharm Sci 1992; 5(2): 111-3.
[PMID: 16414709]
[34]
Şener B. Minor alkaloids of Corydalis rutifolia (Sibth. and Sm.) DC subsp. kurdica Cullen and Davis of Turkish origin. Int J Crude Drug Res 1988; 26(3): 155-9.
[http://dx.doi.org/10.3109/13880208809053911]
[35]
Şener B. Spirobenzylisoquinoline alkaloids from Corydalis caucasica DC. Int J Crude Drug Res 1989; 27(3): 161-6.
[http://dx.doi.org/10.3109/13880208909053957]
[36]
Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7(2): 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[37]
Polumackanycz M, Konieczynski P, Orhan IE, Abaci N, Viapiana A. Chemical composition, antioxidant and anti-enzymatic activity of golden root (Rhodiola rosea L.) commercial samples. Antioxidants 2022; 11(5): 919.
[http://dx.doi.org/10.3390/antiox11050919] [PMID: 35624783]
[38]
Benigni R, Bossa C. Mechanisms of chemical carcinogenicity and mutagenicity: A review with implications for predictive toxicology. Chem Rev 2011; 111(4): 2507-36.
[http://dx.doi.org/10.1021/cr100222q] [PMID: 21265518]
[39]
Benigni R, Bossa C, Tcheremenskaia O. In vitro cell transformation assays for an integrated, alternative assessment of carcinogenicity: a data-based analysis. Mutagenesis 2013; 28(1): 107-16.
[http://dx.doi.org/10.1093/mutage/ges059] [PMID: 23132285]
[40]
Cheung J, Rudolph MJ, Burshteyn F, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 2012; 55(22): 10282-6.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[41]
Kosak U, Brus B, Knez D, et al. Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Sci. Rep-Uk 2016; p. 6.
[42]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[43]
Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 2013; 27(3): 221-34.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[44]
Schrödinger Release 2021-2: Maestro. New York: Schrödinger 2021.
[45]
Rostkowski M, Olsson MHM, Søndergaard CR, Jensen JH. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct Biol 2011; 11(1): 6.
[http://dx.doi.org/10.1186/1472-6807-11-6] [PMID: 21269479]
[46]
Farid R, Day T, Friesner RA, Pearlstein RA. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies. Bioorg Med Chem 2006; 14(9): 3160-73.
[http://dx.doi.org/10.1016/j.bmc.2005.12.032] [PMID: 16413785]
[47]
Sherman W, Day T, Jacobson MP, Friesner RA, Farid R. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 2006; 49(2): 534-53.
[http://dx.doi.org/10.1021/jm050540c] [PMID: 16420040]
[48]
Sherman W, Beard HS, Farid R. Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 2006; 67(1): 83-4.
[http://dx.doi.org/10.1111/j.1747-0285.2005.00327.x] [PMID: 16492153]
[49]
Ingkaninan K, Phengpa P, Yuenyongsawad S, Khorana N. Acetylcholinesterase inhibitors from Stephania venosa tuber. J Pharm Pharmacol 2010; 58(5): 695-700.
[http://dx.doi.org/10.1211/jpp.58.5.0015] [PMID: 16640839]
[50]
Adsersen A, Kjølbye A, Dall O, Jäger AK. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava Schweigg. & Kort. J Ethnopharmacol 2007; 113(1): 179-82.
[http://dx.doi.org/10.1016/j.jep.2007.05.006] [PMID: 17574358]
[51]
Xiao HT, Peng J, Liang Y, et al. Acetylcholinesterase inhibitors from Corydalis yanhusuo. Nat Prod Res 2011; 25(15): 1418-22.
[http://dx.doi.org/10.1080/14786410802496911] [PMID: 20234973]
[52]
Abd El-Wahab AE, Ghareeb DA, Sarhan EEM, Abu-Serie MM, El Demellawy MA. In vitro biological assessment of berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects. BMC Complement Altern Med 2013; 13(1): 218.
[http://dx.doi.org/10.1186/1472-6882-13-218] [PMID: 24007270]
[53]
Kim Y, Lim HS, Kim Y, Lee J, Kim BY, Jeong SJ. Phytochemical quantification and the in vitro acetylcholinesterase inhibitory activity of Phellodendron chinense and its components. Molecules 2017; 22(6): 925.
[http://dx.doi.org/10.3390/molecules22060925] [PMID: 28574473]
[54]
Cao TQ, Ngo QMT, Seong SH, et al. Cholinesterase inhibitory alkaloids from the rhizomes of Coptis chinensis. Bioorg Chem 2018; 77: 625-32.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.038] [PMID: 29502023]
[55]
Fang J, Pang X, Wu P, et al. Molecular modeling on berberine derivatives toward BuChE: an integrated study with quantitative structure-activity relationships models, molecular docking, and molecular dynamics simulations. Chem Biol Drug Des 2016; 87(5): 649-63.
[http://dx.doi.org/10.1111/cbdd.12700] [PMID: 26648584]
[56]
Tuzimski T, Petruczynik A. Application of HPLC-DAD for in vitro investigation of acetylcholinesterase inhibition activity of selected isoquinoline alkaloids from Sanguinaria canadensis extracts. Molecules 2021; 26(1): 230.
[http://dx.doi.org/10.3390/molecules26010230] [PMID: 33466254]
[57]
Huang L, Luo Z, He F, Shi A, Qin F, Li X. Berberine derivatives, with substituted amino groups linked at the 9-position, as inhibitors of acetylcholinesterase/butyrylcholinesterase. Bioorg Med Chem Lett 2010; 20(22): 6649-52.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.013] [PMID: 20880702]
[58]
Li P, Liu S, Liu Q, et al. Screening of acetylcholinesterase inhibitors and characterizing of phytochemical constituents from Dichocarpum auriculatum (Franch.) W.T. Wang & P. K. Hsiao through UPLC-MS combined with an acetylcholinesterase inhibition assay in vitro. J Ethnopharmacol 2019; 245: 112185.
[http://dx.doi.org/10.1016/j.jep.2019.112185] [PMID: 31446073]
[59]
Zhao H, Zhou S, Zhang M, et al. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch. J Pharm Biomed Anal 2016; 120: 235-40.
[http://dx.doi.org/10.1016/j.jpba.2015.12.025] [PMID: 26760241]
[60]
Mak S, Luk WWK, Cui W, Hu S, Tsim KWK, Han Y. Synergistic inhibition on acetylcholinesterase by the combination of berberine and palmatine originally isolated from Chinese medicinal herbs. J Mol Neurosci 2014; 53(3): 511-6.
[http://dx.doi.org/10.1007/s12031-014-0288-5] [PMID: 24793543]
[61]
Siatka T, Adamcová M, Opletal L, et al. Cholinesterase and prolyl oligopeptidase inhibitory activities of alkaloids from Argemone platyceras (Papaveraceae). Molecules 2017; 22(7): 1181.
[http://dx.doi.org/10.3390/molecules22071181] [PMID: 28708094]
[62]
Hošt’álková A, Opletal L, Kuneš J, et al. Alkaloids from Peumus boldus and their acetylcholinesterase, butyrylcholinesterase and prolyl oligopeptidase inhibition activity. Nat Prod Commun 2015; 10(4): 1934578X1501000.
[http://dx.doi.org/10.1177/1934578X1501000410] [PMID: 25973480]
[63]
Huang QQ, Bi JL, Sun QY, et al. Bioactive isoquinoline alkaloids from Corydalis saxicola. Planta Med 2012; 78(1): 65-70.
[http://dx.doi.org/10.1055/s-0031-1280126] [PMID: 21858757]
[64]
Thunuguntla VBSC, Chandra Sekbar B, Kala Kumar B, Bondili JS. Screening and in silico analysis of Hyptis suaveolens metabolites for acetylcholinesterase inhibition. Asian J Pharm Clin Res 2016; 9(3): 148-53.
[65]
Svenneby G, Roberts E. Bicuculline and N-methylbicucullinem competitive inhibitors of brain acetylcholinesterase. J Neurochem 1973; 21(4): 1025-6.
[http://dx.doi.org/10.1111/j.1471-4159.1973.tb07551.x] [PMID: 4754853]
[66]
Nistri A, DeBellis AM, Cammelli E, Pepeu G. Effect of bicuculline, leptazol and strychnine on the acetylcholinesterase activity of the frog spinal cord in vivo. J Neurochem 1974; 23(2): 453-4.
[http://dx.doi.org/10.1111/j.1471-4159.1974.tb04381.x] [PMID: 4547393]
[67]
Breuker E, Johnston GAR. Inhibition of acetylcholinesterase by bicuculline and related alkaloids. J Neurochem 1975; 25(6): 903-4.
[http://dx.doi.org/10.1111/j.1471-4159.1975.tb04427.x] [PMID: 1206408]
[68]
Wangchuk P, Keller PA, Pyne SG, et al. Phytochemical and biological activity studies of the Bhutanese medicinal plant Corydalis crispa. Nat Prod Commun 2012; 7(5): 1934578X1200700.
[http://dx.doi.org/10.1177/1934578X1200700507] [PMID: 22799079]
[69]
Chlebek J, Macáková K, Cahlíková L, Kurfürst M, Kuneš J, Opletal L. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae). Nat Prod Commun 2011; 6(5): 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600507] [PMID: 21615017]
[70]
Chlebek J, Korábečný J, Doležal R, et al. In vitro and in silico acetylcholinesterase inhibitory activity of thalictricavine and canadine and their predicted penetration across the blood-brain barrier. Molecules 2019; 24(7): 1340.
[http://dx.doi.org/10.3390/molecules24071340] [PMID: 30959739]
[71]
Sener B. Researches on the alkaloids of Fumaria L. species growing in Turkey 1981.
[72]
Vrancheva RZ, Ivanov IG, Aneva IY, Dincheva IN, Badjakov IK, Pavlov AI. Alkaloid profiles and acetylcholinesterase inhibitory activities of Fumaria species from Bulgaria. Z Naturforsch C J Biosci 2016; 71(1-2): 9-14.
[http://dx.doi.org/10.1515/znc-2014-4179] [PMID: 26756091]
[73]
Chlebek J, Novák Z, Kassemová D, et al. Isoquinoline alkaloids from Fumaria officinalis L. and their biological activities related to Alzheimer’s disease. Chem Biodivers 2016; 13(1): 91-9.
[http://dx.doi.org/10.1002/cbdv.201500033] [PMID: 26765356]
[74]
Hu X, Wu X, Huang Y, Tong Q, Takeda S, Qing Y. Berberine induces double-strand DNA breaks in Rev3 deficient cells. Mol Med Rep 2014; 9(5): 1883-8.
[http://dx.doi.org/10.3892/mmr.2014.1999] [PMID: 24584584]
[75]
Chen S, Wan L, Couch L, et al. Mechanism study of goldenseal-associated DNA damage. Toxicol Lett 2013; 221(1): 64-72.
[http://dx.doi.org/10.1016/j.toxlet.2013.05.641] [PMID: 23747414]
[76]
Xu CB, Wang L, Hui XJ, Ma XP, Bi X, Zhao Q. Genetic toxicity of berberine on mouse heart. Adv. Mater. Res-Switz 2014; 884-885: 634-7.
[77]
European Chemicals Agency (ECHA) Substance Info Card. Available from: https://www.echa.europa.eu/et/web/guest/substance-information/-/substanceinfo/100.005.511
[78]
National Toxicology Program. Toxicology and carcinogenesis studies of goldenseal root powder (Hydrastis Canadensis) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser 2010; (562): 1-188.
[PMID: 21372858]
[79]
Jiangbo Z, Xuying W, Yuping Z, Xili M, Tianbao Z. Evaluation of genotoxicity of Yanhuanglian dehydrocavidine (YHL-DC) in vitro and in vivo. Drug Chem Toxicol 2010; 33(1): 103-10.
[http://dx.doi.org/10.3109/01480540903196808] [PMID: 20001664]
[80]
Ali D, Ali H. Assessment of DNA damage and cytotoxicity of palmatine on human skin epithelial carcinoma cells. Toxicol Environ Chem 2014; 96(6): 941-50.
[http://dx.doi.org/10.1080/02772248.2014.987510]
[81]
Dumont É, Monari A. Interaction of palmatine with DNA: An environmentally controlled phototherapy drug. J Phys Chem B 2015; 119(2): 410-9.
[http://dx.doi.org/10.1021/jp5088515] [PMID: 25526561]