Plant-mediated Synthesis of Silver Nanoparticles using Mangosteen Pericarp Extract and their Antimicrobial Potential

Article ID: e160423215828 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Silver nanoparticles (AgNPs) were synthesized using mangosteen pericarp ethanolic extract (MPEE) as a source of bioreductants and their antimicrobial activity against common foodborne pathogens was evaluated.

Methods: Characterization of MPEE was conducted using phytochemical screening, total phenolic content analysis, and DPPH (antioxidant) assay. Synthesis AgNPs and optimization studies were monitored using UV-Vis spectrophotometry. Transmission electron microscopy was used to characterize the AgNPs, and resazurin microtiter assay was used for antimicrobial testing.

Results: Alkaloids, flavonoids, saponins, quinones, anthraquinones, and tannins were confirmed present in the extract. TPC and IC50 of MPEE were 0.192 mg GAE/mg extract and 0.277 mg/mL, respectively. A surface plasmon resonance (SPR) peak within 450-403 nm confirmed the formation of AgNPs. At pH 7, the optimum reaction conditions were 45°C and 3 h. Meanwhile, at pH 9, the optimum reaction conditions were 27°C and 0.5 h. The sizes of nanoparticles synthesized at pH 7 and pH 9 were 13-35 nm and 7- 38 nm, respectively. The minimum inhibitory concentration (MIC90) of AgNPs produced at pH 7 were 1.45, 2.81, and 2.93 ug/mL for S. aureus, E.coli, and B. cereus, respectively. For AgNPs synthesized at pH 9, the MIC90 were 2.93, 3.02, and 5.24 ug/mL, for the same microorganisms, respectively.

Conclusion: MPEE was able to successfully synthesize AgNPs. Compared to chloramphenicol, AgNPs exhibited better antimicrobial activity, which can address the growing concern of drug resistance in certain pathogenic microorganisms. Furthermore, the use of MPEE provides a green and sustainable alternative to synthesizing AgNPs.

Graphical Abstract

[1]
Benelmekki, M. An introduction to nanoparticles and nanotechnology. In: Designing Hybrid Nanoparticles; Morgan & Claypool Publishers, 2015; pp. 1-14.
[2]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[3]
Nasrollahzadeh, M.; Sajadi, S.; Sajjadi, M.; Issaabadi, Z. An Introduction to Green Nanotechnology, 1st ed; Elsevier, 2019, pp. 1-27.
[4]
Fu, P.P.; Xia, Q.; Hwang, H-M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. Yao Wu Shi Pin Fen Xi, 2014, 22(1), 64-75.
[PMID: 24673904]
[5]
Nalwade, A.R.; Jadhav, A. Biosynthesis of silver nanoparticles using leaf extract of Daturaalba Nees. and evaluation of their antibacterial activity. Arch. Appl. Sci. Res., 2013, 5, 45-49.
[6]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[7]
Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 2006, 5(4), 916-924.
[http://dx.doi.org/10.1021/pr0504079] [PMID: 16602699]
[8]
McQuillan, J.S.; Groenaga Infante, H.; Stokes, E.; Shaw, A.M. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology, 2012, 6(8), 857-866.
[http://dx.doi.org/10.3109/17435390.2011.626532] [PMID: 22007647]
[9]
Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 2016, 12(3), 789-799.
[http://dx.doi.org/10.1016/j.nano.2015.11.016] [PMID: 26724539]
[10]
Azanza, M.P.; Membrebe, B.N.; Sanchez, R.G.; Estilo, E.E.; Dollete, U.G.; Feliciano, R.J.; Garcia, N.K. Foodborne disease outbreaks in the philippines (2005-2018). Philipp. J. Sci., 2019, 148, 317-336.
[11]
Antimicrobial Resistance Surveillance Program. 2021. Available from: https://arsp.com.ph/publications/
[12]
Upadhyay, A.; Karumathil, D.P.; Upadhyaya, I.; Bhattaram, V.; Venkitanarayanan, K. Controlling bacterial antibiotic resistance using plant-derived antimicrobials. In: Antibiotic Resistance; Kon, K.; Mahendra, R., Eds.; Elsevier, 2016; pp. 205-226.
[http://dx.doi.org/10.1016/B978-0-12-803642-6.00010-1]
[13]
Kumari, S.C.; Dhand, V.; Padma, P.N. Green synthesis of metallic nanoparticles: A review. Nanomaterials; Elsevier, 2021, pp. 259-281.
[14]
Legaspi, D.; Fundador, N.G. Green synthesis of silver nanoparticles using calabash (Crescentia cujete) fruit extract and their antimicrobial properties. Philipp. J. Sci., 2020, 149(1), 239-246.
[http://dx.doi.org/10.56899/149.01.21]
[15]
Kanniah, P.; Chelliah, P.; Thangapandi, J.R.; Gnanadhas, G.; Mahendran, V.; Robert, M. Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. Int. J. Biol. Macromol., 2021, 189, 18-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.056] [PMID: 34389391]
[16]
Melkamu, W.W.; Bitew, L.T. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon, 2021, 7(11), e08459.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08459] [PMID: 34901505]
[17]
Moodley, J.S.; Krishna, S.B.N.; Pillay, K. Sershen,; Govender, P. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2018, 9(1), 015011.
[http://dx.doi.org/10.1088/2043-6254/aaabb2]
[18]
Niluxsshun, M.C.D.; Masilamani, K.; Mathiventhan, U. Green synthesis of silver nanoparticles from the extracts of fruit peel of citrus tangerina, citrus sinensis, and citrus limon for antibacterial activities. Bioinorg. Chem. Appl., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/6695734] [PMID: 33623527]
[19]
Lambré, C.; Barat Baviera, J.M.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mengelers, M.; Mortensen, A.; Steffensen, I.L.; Tlustos, C.; Van Loveren, H.; Vernis, L.; Zorn, H.; Castle, L.; Di Consiglio, E.; Franz, R.; Hellwig, N.; Merkel, S.; Milana, M.R.; Barthélémy, E.; Rivière, G. Safety assessment of the substance silver nanoparticles for use in food contact materials. EFSA J., 2021, 19(8), e06790.
[PMID: 34400977]
[20]
Philippine Statistics Authority. Crops Statistics of the Philippines; , 2015. Available from: https://psa.gov.ph/
[21]
Palakawong, C.; Sophanodora, P.; Pisuchpen, S.; Phongpaichit, S. Antioxidant and antimicrobial activities of crude extracts from mangosteen (Garcinia mangostana L.) parts and some essential oils. Int. Food Res. J., 2010, 17, 583-589.
[22]
Park, J.S.; Ahn, E.Y.; Park, Y. Asymmetric dumbbell-shaped silver nanoparticles and spherical gold nanoparticles green-synthesized by mangosteen (Garcinia mangostana) pericarp waste extracts. Int. J. Nanomedicine, 2017, 12, 6895-6908.
[http://dx.doi.org/10.2147/IJN.S140190] [PMID: 29066885]
[23]
Rajakannu, S.; Shankar, S.; Perumal, S.; Subramanian, S.; Dhakshinamoorthy, G.P. Biosynthesis of silver nanoparticles using garcinia mangostana fruit extract and their antibacterial, antioxidant activity. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4, 944-952.
[24]
Lee, K.X.; Shameli, K.; Mohamad, S.E.; Yew, Y.P.; Mohamed Isa, E.D.; Yap, H.Y.; Lim, W.L.; Teow, S.Y. Bio-mediated synthesis and characterisation of silver nanocarrier, and its potent anticancer action. Nanomaterials, 2019, 9(10), 1423.
[http://dx.doi.org/10.3390/nano9101423] [PMID: 31597260]
[25]
Jarimopas, B.; Pushpariksha, P.; Singh, S.P. Postharvest damage of mangosteen and quality grading using mechanical and optical properties as indicators. Int. J. Food Prop., 2009, 12(2), 414-426.
[http://dx.doi.org/10.1080/10942910701837262]
[26]
Das, B.; Dash, S.K.; Mandal, D.; Ghosh, T.; Chattopadhyay, S.; Tripathy, S.; Das, S.; Dey, S.K.; Das, D.; Roy, S. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem., 2017, 10(6), 862-876.
[http://dx.doi.org/10.1016/j.arabjc.2015.08.008]
[27]
Trease, G.E.; Evans, W.C. Pharmacognosy, 15th ed; Saunders Publishers, 2022.
[28]
Raaman, N. Phytochemical techniques; New India Publishing, 2006.
[29]
Njoku, V.O.; Obi, C.; Onyema, O.M. Phytochemical constituents of some selected medicinal plants. Afr. J. Biotechnol., 2011, 10(66), 15020-15024.
[http://dx.doi.org/10.5897/AJB11.1948]
[30]
Jayapriya, G.; Shoba, F.G. Screening for phytochemical activity of Urechites lutea plant. Asian J. Plant Sci., 2014, 4, 20-24.
[31]
Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 2007, 42(4), 321-324.
[http://dx.doi.org/10.1016/j.ymeth.2007.01.006] [PMID: 17560319]
[32]
Sood, S.; Singhal, R.; Bhat, S.; Kumar, A. 2.19 - Inoculum Preparation. In: Comprehensive Biotechnology, 3rd ed; Moo-Young, M., Ed.; Pergamon: Oxford, 2011; pp. 230-243.
[http://dx.doi.org/10.1016/B978-0-444-64046-8.00076-8]
[33]
Hasan, A.E.; Nashrianto, H.; Juhaeni, R.N.; Artika, I.M. Optimization of conditions for flavonoids extraction from mangosteen (Garcinia mangostana L.). Pharm. Lett., 2016, 8(18), 114-120.
[34]
Mosquera-Martínez, O.M.; Obando-Cabrera, M.A.; Ortega-Cano, N. Chemistry characterization and antioxidant activity of mangosteen (Garcinia mangostana L., clusiaceae) cultivated in Colombia. Bol. Latinoam. Caribe Plantas Med. Aromat., 2020, 19, 167-178.
[35]
Manasathien, J.; Khanema, P. Antioxidant and cytotoxic activities of mangosteen garcinia mangostana pericarp extracts. Asia-Pac. J. Sci. Technol., 2015, 20(4), 381-392.
[36]
Jacob, D.R.; Vigasini, N. Radical scavenging activity and in vitro nnticarcinogenic potential of dried and powdered mangosteen (Garcinia mangostana) pericarp. Int. J. Sci. Res., 2016, 5, 255-258.
[37]
Kusmayadi, A.; Adriani, L.; Abun, A.; Muchtaridi, M.; Tanuwiria, U.H. The effect of solvents and extraction time on total xanthone and antioxidant yields of mangosteen peel (Garcinia mangostana L.) extract. Drug Invent. Today, 2018, 10(12), 2572-2576.
[38]
Palapol, Y.; Ketsa, S.; Stevenson, D.; Cooney, J.M.; Allan, A.C.; Ferguson, I.B. Colour development and quality of mangosteen (Garcinia mangostana L.) fruit during ripening and after harvest. Postharvest Biol. Technol., 2009, 51(3), 349-353.
[http://dx.doi.org/10.1016/j.postharvbio.2008.08.003]
[39]
Zarena, Z.; Kadimi, U. A study of antioxidant properties from Garcinia mangostana L. pericarp extract. Acta Sci. Pol. Technol. Aliment., 2009, 8, 1.
[40]
Palafox-Carlos, H.; Gil-Chávez, J.; Sotelo-Mundo, R.; Namiesnik, J.; Gorinstein, S.; González-Aguilar, G. Antioxidant interactions between major phenolic compounds found in ‘Ataulfo’ mango pulp: chlorogenic, gallic, protocatechuic and vanillic acids. Molecules, 2012, 17(11), 12657-12664.
[http://dx.doi.org/10.3390/molecules171112657] [PMID: 23103532]
[41]
Azizi, S.; Namvar, F.; Mahdavi, M.; Ahmad, M.; Mohamad, R. Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Materials, 2013, 6(12), 5942-5950.
[http://dx.doi.org/10.3390/ma6125942] [PMID: 28788431]
[42]
Eya’ane Meva, F.; Segnou, M.L.; Okalla Ebongue, C.; Ntoumba, A.A.; Belle, E.K.P.; Deli, V.; Etoh, M.A.; Mpondo Mpondo, E. Spectroscopic synthetic optimizations monitoring of silver nanoparticles formation from Megaphrynium macrostachyum leaf extract. Rev. Bras. Farmacogn., 2016, 26(5), 640-646.
[http://dx.doi.org/10.1016/j.bjp.2016.06.002]
[43]
Fernando, I.; Zhou, Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 2019, 216, 297-305.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.122] [PMID: 30384298]
[44]
Handayani, W.; Ningrum, A.S.; Imawan, C. The Role of pH in synthesis silver nanoparticles using Pometia pinnata (Matoa) leaves extract as bioreductor. J. Phys. Conf. Ser., 2020, 1428(1), 012021.
[http://dx.doi.org/10.1088/1742-6596/1428/1/012021]
[45]
Alqadi, M.K.; Abo Noqtah, O.A.; Alzoubi, F.Y.; Alzouby, J.; Aljarrah, K. pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater. Sci. Pol., 2014, 32(1), 107-111.
[http://dx.doi.org/10.2478/s13536-013-0166-9]
[46]
Piñero, S.; Camero, S.; Blanco, S. Silver nanoparticles: Influence of the temperature synthesis on the particles’ morphology. J. Phys. Conf. Ser., 2017, 786, 012020.
[http://dx.doi.org/10.1088/1742-6596/786/1/012020]
[47]
Liu, H.; Zhang, H.; Wang, J.; Wei, J. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arab. J. Chem., 2020, 13(1), 1011-1019.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.004]
[48]
Jiang, X.C.; Chen, W.M.; Chen, C.Y.; Xiong, S.X.; Yu, A.B. Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett., 2011, 6(1), 32.
[PMID: 27502655]
[49]
Balavandy, S.K.; Shameli, K.; Biak, D.R.B.A.; Abidin, Z.Z. Stirring time effect of silver nanoparticles prepared in glutathione mediated by green method. Chem. Cent. J., 2014, 8(1), 11.
[http://dx.doi.org/10.1186/1752-153X-8-11] [PMID: 24524329]
[50]
Rautela, A.; Rani, J. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of anti-microbial action on different microorganisms. J. Anal. Sci. Technol., 2019, 10(1), 1-10.
[http://dx.doi.org/10.1186/s40543-018-0163-z]
[51]
Das, B.; Patra, S. Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology. In: Nanostructures for antimicrobial therapy; Ficai, A.; Grumezescu, A.M., Eds.; Elsevier, 2017; pp. 1-22.
[http://dx.doi.org/10.1016/B978-0-323-46152-8.00001-9]
[52]
Zhou, T.; Wu, Z.; Das, S.; Eslami, H.; Müller-Plathe, F. How ethanolic disinfectants disintegrate coronavirus model membranes: A dissipative particle dynamics simulation study. J. Chem. Theory Comput., 2022, 18(4), 2597-2615.
[http://dx.doi.org/10.1021/acs.jctc.1c01120] [PMID: 35286098]
[53]
Eslami, H.; Das, S.; Zhou, T.; Müller-Plathe, F. How alcoholic disinfectants affect coronavirus model membranes: Membrane fluidity, permeability, and disintegration. J. Phys. Chem. B, 2020, 124(46), 10374-10385.
[http://dx.doi.org/10.1021/acs.jpcb.0c08296] [PMID: 33172260]
[54]
Naqvi, Q.A.; Kanwal, A.; Qaseem, S.; Naeem, M.; Ali, S.R.; Shaffique, M.; Maqbool, M. Size-dependent inhibition of bacterial growth by chemically engineered spherical ZnO nanoparticles. J. Biol. Phys., 2019, 45(2), 147-159.
[http://dx.doi.org/10.1007/s10867-019-9520-4] [PMID: 30721424]
[55]
Osonga, F.J.; Akgul, A.; Yazgan, I.; Akgul, A.; Eshun, G.B.; Sakhaee, L.; Sadik, O.A. Size and shape-dependent antimicrobial activities of silver and gold nanoparticles: A model study as potential fungicides. Molecules, 2020, 25(11), 2682.
[http://dx.doi.org/10.3390/molecules25112682] [PMID: 32527041]
[56]
Xue, S.; Chen, S.L.; Ling, Q.; Yuan, Q.; Gan, W. Photocatalytic redox on the surface of colloidal silver nanoparticles revealed by second harmonic generation and two-photon luminescence. Phys. Chem. Chem. Phys., 2021, 23(35), 19752-19759.
[http://dx.doi.org/10.1039/D1CP02722K] [PMID: 34524302]
[57]
Szilagyi, I.; Trefalt, G.; Tiraferri, A.; Maroni, P.; Borkovec, M. Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter, 2014, 10(15), 2479-2502.
[http://dx.doi.org/10.1039/c3sm52132j] [PMID: 24647366]
[58]
Zeeb, B.; Thongkaew, C.; Weiss, J. Theoretical and practical considerations in electrostatic depositioning of charged polymers. J. Appl. Polym. Sci., 2014, 131(7), 40099.
[http://dx.doi.org/10.1002/app.40099]
[59]
Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys., 2009, 53(2), 75-100.
[http://dx.doi.org/10.1007/s12013-009-9043-x] [PMID: 19184542]
[60]
Rojas, O.J.; Ernstsson, M.; Neuman, R.D.; Claesson, P.M. Effect of polyelectrolyte charge density on the adsorption and desorption behavior on mica. Langmuir, 2002, 18(5), 1604-1612.
[http://dx.doi.org/10.1021/la0155698]
[61]
Sinclair, T.R.; van den Hengel, S.K.; Raza, B.G.; Rutjes, S.A.; de Roda Husman, A.M.; Peijnenburg, W.J.G.M.; Roesink, H.E.D.W.; de Vos, W.M. Surface chemistry-dependent antiviral activity of silver nanoparticles. Nanotechnology, 2021, 32(36), 365101.
[http://dx.doi.org/10.1088/1361-6528/ac03d6] [PMID: 34020439]
[62]
Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J. Nanomater., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/720654]
[63]
Gomaa, E.Z. Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. J. Gen. Appl. Microbiol., 2017, 63(1), 36-43.
[http://dx.doi.org/10.2323/jgam.2016.07.004] [PMID: 28123131]
[64]
Bowler, P.; Murphy, C.; Wolcott, R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob. Resist. Infect. Control, 2020, 9(1), 162.
[http://dx.doi.org/10.1186/s13756-020-00830-6] [PMID: 33081846]