The Sojourn of Polymeric Micelles for Effective Brain Drug Delivery System

Page: [65 - 79] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

The brain is a delicate organ and targeting neurological diseases with conventional approaches is still a daunting task. This is due to the presence of necessary physiological barriers, mainly the blood-brain barrier, that blocks the entry of dangerous and poisonous substances from the bloodstream, thus helping in maintaining homeostasis. Furthermore, the presence of multidrug resistance transporters which act by prohibiting the entry of drugs across the cell membrane and by channelizing them to the outside environment is another defense mechanism. Despite the advancements in the understanding of disease pathology, only a restricted number of drugs and drug therapies can treat and target neurological diseases. To overcome this shortcoming, the therapeutic approach using amphiphilic block copolymers - using polymeric micelles has gained momentum because of its wide applications like drug targeting, delivery, and imaging. Polymeric micelles are nanocarriers that arise when amphiphilic block copolymers spontaneously assemble in aqueous solutions. The hydrophobic core–hydrophilic shell configuration of these nanoparticles makes it easier to load hydrophobic drugs into the core and as a result, the solubility of these medications is improved. Micelle-based drug delivery carriers can target the brain with reticuloendothelial system uptake and produce a long-circulating effect. PMs can also be combined with targeting ligands that increase their uptake by specific cells and thus decreasing off-target effects. In the present review, we primarily focused on polymeric micelles for brain delivery along with the method of preparation, mechanism of micelle formulation, and the ongoing formulations under clinical trials for brain delivery.

Graphical Abstract

[1]
Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S.P. Drug delivery to the central nervous system: A review. J. Pharm. Pharm. Sci., 2003, 6(2), 252-273.
[PMID: 12935438]
[2]
Löscher, W.; Potschka, H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx, 2005, 2(1), 86-98.
[http://dx.doi.org/10.1602/neurorx.2.1.86] [PMID: 15717060]
[3]
Kaur, I.P.; Bhandari, R.; Bhandari, S.; Kakkar, V. Potential of solid lipid nanoparticles in brain targeting. J. Control. Release, 2008, 127(2), 97-109.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.018] [PMID: 18313785]
[4]
Jena, L.; McErlean, E.; McCarthy, H. Delivery across the blood-brain barrier: Nanomedicine for glioblastoma multiforme. Drug Deliv. Transl. Res., 2020, 10(2), 304-318.
[http://dx.doi.org/10.1007/s13346-019-00679-2] [PMID: 31728942]
[5]
Patel, A.; Patel, M.; Yang, X.; Mitra, A. Recent advances in protein and Peptide drug delivery: A special emphasis on polymeric nanoparticles. Protein Pept. Lett., 2014, 21(11), 1102-1120.
[http://dx.doi.org/10.2174/0929866521666140807114240] [PMID: 25106908]
[6]
Mi, P.; Cabral, H.; Kataoka, K. Ligand-installed nanocarriers toward precision therapy. Adv. Mater., 2020, 32(13), 1902604.
[http://dx.doi.org/10.1002/adma.201902604] [PMID: 31353770]
[7]
Lim, C.; Ramsey, J.D.; Hwang, D.; Teixeira, S.C.M.; Poon, C.D.; Strauss, J.D.; Rosen, E.P.; Sokolsky-Papkov, M.; Kabanov, A.V. Drug-dependent morphological transitions in spherical and worm-like polymeric micelles define stability and pharmacological performance of micellar drugs. Small, 2022, 18(4), 2103552.
[http://dx.doi.org/10.1002/smll.202103552] [PMID: 34841670]
[8]
Cagel, M.; Tesan, F.C.; Bernabeu, E.; Salgueiro, M.J.; Zubillaga, M.B.; Moretton, M.A.; Chiappetta, D.A. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur. J. Pharm. Biopharm., 2017, 113, 211-228.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.019] [PMID: 28087380]
[9]
Patil, S.; Ujalambkar, V.; Rathore, A.; Rojatkar, S.; Pokharkar, V. Galangin loaded galactosylated pluronic F68 polymeric micelles for liver targeting. Biomed. Pharmacother., 2019, 112, 108691.
[http://dx.doi.org/10.1016/j.biopha.2019.108691] [PMID: 30798131]
[10]
Schwieger, C.; Blaffert, J.; Li, Z.; Kressler, J.; Blume, A. Perfluorinated moieties increase the interaction of amphiphilic block copolymers with lipid monolayers. Langmuir, 2016, 32(32), 8102-8115.
[http://dx.doi.org/10.1021/acs.langmuir.6b01574] [PMID: 27442444]
[11]
Chen, C.; Liu, G.; Liu, X.; Pang, S.; Zhu, C.; Lv, L.; Ji, J. Photo-responsive, biocompatible polymeric micelles self-assembled from hyperbranched polyphosphate-based polymers. Polym. Chem., 2011, 2(6), 1389-1397.
[http://dx.doi.org/10.1039/c1py00094b]
[12]
Lim, S.B.; Banerjee, A.; Önyüksel, H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release, 2012, 163(1), 34-45.
[http://dx.doi.org/10.1016/j.jconrel.2012.06.002] [PMID: 22698939]
[13]
Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release, 2021, 332, 312-336.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[14]
Pardridge, W.M. Molecular biology of the blood-brain barrier. Mol. Biotechnol., 2005 May;30(1), 57-70.
[15]
Pakkenberg, B.; Gundersen, H.J.G. Neocortical neuron number in humans: Effect of sex and age. J. Comp. Neurol., 1997, 384(2), 312-320.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19970728)384:2<312:AID-CNE10>3.0.CO;2-K] [PMID: 9215725]
[16]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci., 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[17]
Banks, W.A. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol., 2009, 9(S1), 1-5.
[http://dx.doi.org/10.1186/1471-2377-9-S1-S3] [PMID: 19534732]
[18]
Krol, S. Challenges in drug delivery to the brain: Nature is against us. J. Control. Release, 2012, 164(2), 145-155.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.044] [PMID: 22609350]
[19]
Iadecola, C.; Nedergaard, M. Glial regulation of the cerebral microvasculature. Nat. Neurosci., 2007, 10(11), 1369-1376.
[http://dx.doi.org/10.1038/nn2003] [PMID: 17965657]
[20]
Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis., 2010, 37(1), 13-25.
[http://dx.doi.org/10.1016/j.nbd.2009.07.030] [PMID: 19664713]
[21]
Neuwelt, E.A. Mechanisms of disease: The blood-brain barrier. Neurosurgery, 2004, 54(1), 131-142.
[http://dx.doi.org/10.1227/01.NEU.0000097715.11966.8E] [PMID: 14683550]
[22]
Neuwelt, E.A.; Bauer, B.; Fahlke, C.; Fricker, G.; Iadecola, C.; Janigro, D.; Leybaert, L.; Molnár, Z.; O’Donnell, M.E.; Povlishock, J.T.; Saunders, N.R.; Sharp, F.; Stanimirovic, D.; Watts, R.J.; Drewes, L.R. Engaging neuroscience to advance translational research in brain barrier biology. Nat. Rev. Neurosci., 2011, 12(3), 169-182.
[http://dx.doi.org/10.1038/nrn2995] [PMID: 21331083]
[23]
Haqqani, AS.; Stanimirovic, DB. Intercellular interactomics of human brain endothelial cells and th17 lymphocytes: A novel strategy for identifying therapeutic targets of CNS inflammation. Cardiovasc. Psychiatry Neurol., 2011, 2011, 175364.
[http://dx.doi.org/10.1155/2011/175364]
[24]
Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; Johansson, B.R.; Betsholtz, C. Pericytes regulate the blood–brain barrier. Nature, 2010, 468(7323), 557-561.
[http://dx.doi.org/10.1038/nature09522] [PMID: 20944627]
[25]
Bell, R.D.; Winkler, E.A.; Sagare, A.P.; Singh, I.; LaRue, B.; Deane, R.; Zlokovic, B.V. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron, 2010, 68(3), 409-427.
[http://dx.doi.org/10.1016/j.neuron.2010.09.043] [PMID: 21040844]
[26]
Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature, 2010, 468(7323), 562-566.
[http://dx.doi.org/10.1038/nature09513] [PMID: 20944625]
[27]
Armulik, A.; Genové, G.; Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell, 2011, 21(2), 193-215.
[http://dx.doi.org/10.1016/j.devcel.2011.07.001] [PMID: 21839917]
[28]
Sengillo, J.D.; Winkler, E.A.; Walker, C.T.; Sullivan, J.S.; Johnson, M.; Zlokovic, B.V. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol., 2013, 23(3), 303-310.
[http://dx.doi.org/10.1111/bpa.12004] [PMID: 23126372]
[29]
Winkler, E.A.; Bell, R.D.; Zlokovic, B.V. Central nervous system pericytes in health and disease. Nat. Neurosci., 2011, 14(11), 1398-1405.
[http://dx.doi.org/10.1038/nn.2946] [PMID: 22030551]
[30]
Winkler, E.A.; Sengillo, J.D.; Bell, R.D.; Wang, J.; Zlokovic, B.V. Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability. J. Cereb. Blood Flow Metab., 2012, 32(10), 1841-1852.
[http://dx.doi.org/10.1038/jcbfm.2012.113] [PMID: 22850407]
[31]
Winkler, E.A.; Sengillo, J.D.; Sullivan, J.S.; Henkel, J.S.; Appel, S.H.; Zlokovic, B.V. Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol., 2013, 125(1), 111-120.
[http://dx.doi.org/10.1007/s00401-012-1039-8] [PMID: 22941226]
[32]
Hamilton, N.B.; Attwell, D.; Hall, C.N. Pericyte-mediated regulation of capillary diameter: A component of neurovascular coupling in health and disease. Front. Neuroenergetics, 2010, 2, 5.
[http://dx.doi.org/10.3389/fnene.2010.00005] [PMID: 20725515]
[33]
Pardridge, W.M. Drug targeting, drug discovery, and brain drug development. Brain Drug Targeting, 2001, 1, 1-2.
[http://dx.doi.org/10.1017/CBO9780511549571.002]
[34]
Fellner, S.; Bauer, B.; Miller, D.S.; Schaffrik, M.; Fankhänel, M.; Spruß, T.; Bernhardt, G.; Graeff, C.; Färber, L.; Gschaidmeier, H.; Buschauer, A.; Fricker, G. Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J. Clin. Invest., 2002, 110(9), 1309-1318.
[http://dx.doi.org/10.1172/JCI0215451] [PMID: 12417570]
[35]
Huynh, G.H.; Deen, D.F.; Szoka, F.C., Jr Barriers to carrier mediated drug and gene delivery to brain tumors. J. Control. Release, 2006, 110(2), 236-259.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.053] [PMID: 16318895]
[36]
Pardridge, W.M. . Blood-brain barrier drug targeting: The future ofbrain drug development. Mol. Interv., 2003, 3(2), 90-105.51.
[http://dx.doi.org/ 10.1124/mi.3.2.90] [PMID: 14993430]
[37]
Patel, M.; McCully, C.; Godwin, K.; Balis, F.M. Plasma and cerebrospinal fluid pharmacokinetics of intravenous temozolomide in non-human primates. J. Neurooncol., 2003, 61(3), 203-207.
[http://dx.doi.org/10.1023/A:1022592913323] [PMID: 12675312]
[38]
Carpentier, A.F. Neuro-oncology: The growing role of chemotherapy in glioma. Lancet Neurol., 2005, 4(1), 4-5.
[http://dx.doi.org/10.1016/S1474-4422(04)00944-5] [PMID: 15620846]
[39]
Zhang, Y.; Pardridge, W.M. Conjugation of brain-derived neurotrophic factor to a blood–brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res., 2001, 889(1-2), 49-56.
[http://dx.doi.org/10.1016/S0006-8993(00)03108-5] [PMID: 11166685]
[40]
Amawi, H.; Sim, H.M.; Tiwari, A.K.; Ambudkar, S.V.; Shukla, S. ABC transporter-mediated multidrug-resistant cancer; Drug Transporters in Drug Disposition, Effects and Toxicity, 2019, pp. 549-580.
[41]
Pilotto Heming, C.; Muriithi, W.; Wanjiku Macharia, L.; Niemeyer Filho, P.; Moura-Neto, V.; Aran, V. P-glycoprotein and cancer: What do we currently know? Heliyon, 2022, 8(10), e11171.
[http://dx.doi.org/10.1016/j.heliyon.2022.e11171] [PMID: 36325145]
[42]
Guberović, I.; Marjanović, M.; Mioč, M.; Ester, K.; Martin-Kleiner, I.; Šumanovac Ramljak, T.; Mlinarić,-Majerski, K.; Kralj, M. Crown ethers reverse P-glycoprotein-mediated multidrug resistance in cancer cells. Sci. Rep., 2018, 8(1), 14467.
[http://dx.doi.org/10.1038/s41598-018-32770-y] [PMID: 30262858]
[43]
Karthika, C.; Sureshkumar, R.; Zehravi, M.; Akter, R.; Ali, F.; Ramproshad, S.; Mondal, B.; Tagde, P.; Ahmed, Z.; Khan, F.S.; Rahman, M.H.; Cavalu, S. Multidrug resistance of cancer cells and the vital role of p-glycoprotein. Life, 2022, 12(6), 897.
[http://dx.doi.org/10.3390/life12060897] [PMID: 35743927]
[44]
Tews, D.S.; Nissen, A.; Külgen, C.; Gaumann, A.K.A. Drug resistance-associated factors in primary and secondary glioblastomas and their precursor tumors. J. Neurooncol., 2000, 50(3), 227-237.
[http://dx.doi.org/10.1023/A:1006491405010] [PMID: 11263502]
[45]
Jia, L.; Gao, X.; Fang, Y.; Zhang, H.; Wang, L.; Tang, X.; Yang, J.; Wu, C. TM2, a novel semi-synthetic taxoid, exerts anti-MDR activity in NSCLC by inhibiting P-gp function and stabilizing microtubule polymerization. Apoptosis, 2022, 27(11-12), 1015-1030.
[http://dx.doi.org/10.1007/s10495-022-01767-4] [PMID: 36107354]
[46]
Ulldemolins, A.; Seras-Franzoso, J.; Andrade, F.; Rafael, D.; Abasolo, I.; Gener, P.; Schwartz, S., Jr Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resist., 2021, 4(1), 44-68.
[http://dx.doi.org/10.20517/cdr.2020.59] [PMID: 35582007]
[47]
Kodan, A.; Futamata, R.; Kimura, Y.; Kioka, N.; Nakatsu, T.; Kato, H.; Ueda, K. ABCB1/MDR1/P-gp employs an ATP-dependent twist-and-squeeze mechanism to export hydrophobic drugs. FEBS Lett., 2021, 595(6), 707-716.
[http://dx.doi.org/10.1002/1873-3468.14018] [PMID: 33275773]
[48]
Rosenberg, M.F.; Mao, Q.; Holzenburg, A.; Ford, R.C.; Deeley, R.G.; Cole, S.P.C. The structure of the multidrug resistance protein 1 (MRP1/ABCC1). crystallization and single-particle analysis. J. Biol. Chem., 2001, 276(19), 16076-16082.
[http://dx.doi.org/10.1074/jbc.M100176200] [PMID: 11279022]
[49]
Leslie, E.M.; Deeley, R.G.; Cole, S.P.C. Bioflavonoid stimulation of glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). Drug Metab. Dispos., 2003, 31(1), 11-15.
[http://dx.doi.org/10.1124/dmd.31.1.11] [PMID: 12485947]
[50]
Munoz, M.; Henderson, M.; Haber, M.; Norris, M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life, 2007, 59(12), 752-757.
[http://dx.doi.org/10.1080/15216540701736285] [PMID: 18085475]
[51]
Tong, W.Y.; Alnakhli, M.; Bhardwaj, R.; Apostolou, S.; Sinha, S.; Fraser, C.; Kuchel, T.; Kuss, B.; Voelcker, N.H. Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J. Nanobiotechnology, 2018, 16(1), 38.
[http://dx.doi.org/10.1186/s12951-018-0365-y] [PMID: 29653579]
[52]
Mohanraj, V.J.; Chen, Y. Nanoparticles-a review. Trop. J. Pharm. Res., 2006, 5(1), 561-573.
[53]
Smiley, S.B.; Yun, Y.; Ayyagari, P.; Shannon, H.E.; Pollok, K.E.; Vannier, M.W.; Das, S.K.; Veronesi, M.C. Development of CD133 targeting multi-drug polymer micellar nanoparticles for glioblastoma - in vitro evaluation in glioblastoma stem cells. Pharm. Res., 2021, 38(6), 1067-1079.
[http://dx.doi.org/10.1007/s11095-021-03050-8] [PMID: 34100216]
[54]
Black, K.L.; Cloughesy, T.; Huang, S.C.; Gobin, Y.P.; Zhou, Y.; Grous, J.; Nelson, G.; Farahani, K.; Hoh, C.K.; Phelps, M. Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas. J. Neurosurg., 1997, 86(4), 603-609.
[http://dx.doi.org/10.3171/jns.1997.86.4.0603] [PMID: 9120622]
[55]
Hashizume, K.; Black, K.L. Increased endothelial vesicular transport correlates with increased blood-tumor barrier permeability induced by bradykinin and leukotriene C4. J. Neuropathol. Exp. Neurol., 2002, 61(8), 725-735.
[http://dx.doi.org/10.1093/jnen/61.8.725] [PMID: 12152787]
[56]
Warren, K.; Gervais, A.; Aikin, A.; Egorin, M.; Balis, F. Pharmacokinetics of carboplatin administered with lobradimil to pediatric patients with brain tumors. Cancer Chemother. Pharmacol., 2004, 54(3), 206-212.
[http://dx.doi.org/10.1007/s00280-004-0791-4] [PMID: 15156345]
[57]
Lee, G.; Bendayan, R. Functional expression and localization of P-glycoprotein in the central nervous system: relevance to the pathogenesis and treatment of neurological disorders. Pharm. Res., 2004, 21(8), 1313-1330.
[http://dx.doi.org/10.1023/B:PHAM.0000036905.82914.8e] [PMID: 15359566]
[58]
Yankeelov, T.E.; Kasisomayajula, K.; Ningaraj, N.; Price, R.R.; Gore, J.C. Correlation between quantitative autoradiography and the reference region model of DCE-MRI; InProc. Intl. Soc. Mag. Reson. Med, 2005, Vol. 13, 2746.
[59]
Couvreur, P.; Puisieux, F. Nano- and microparticles for the delivery of polypeptides and proteins. Adv. Drug Deliv. Rev., 1993, 10(2-3), 141-162.
[http://dx.doi.org/10.1016/0169-409X(93)90046-7]
[60]
Lasic, D.D. Doxorubicin in sterically stabilized liposomes. Nature, 1996, 380(6574), 561-562.
[http://dx.doi.org/10.1038/380561a0] [PMID: 8606781]
[61]
Yokoyama, M. Novel passive targetable drug delivery with polymeric micelles.Biorelated polymers and gels: Controlled release and applications in biomedical engineering; Academic Press: San Diego, 1998.
[62]
Abbott, N.J.; Romero, I.A. Transporting therapeutics across the blood-brain barrier. Mol. Med. Today, 1996, 2(3), 106-113.
[http://dx.doi.org/10.1016/1357-4310(96)88720-X] [PMID: 8796867]
[63]
Lee, G.; Dallas, S.; Hong, M.; Bendayan, R. Drug transporters in the central nervous system: Brain barriers and brain parenchyma considerations. Pharmacol. Rev., 2001, 53(4), 569-596.
[http://dx.doi.org/10.1146/annurev.pharmtox.41.1.569] [PMID: 11734619]
[64]
Willingham, M.C.; Pastan, I. The receptosome: An intermediate organelle of receptor-mediated endocytosis in cultured fibroblasts. Cell, 1980, 21(1), 67-77.
[http://dx.doi.org/10.1016/0092-8674(80)90115-4] [PMID: 6157480]
[65]
Hervé, F.; Ghinea, N.; Scherrmann, J.M. CNS delivery via adsorptive transcytosis. AAPS J., 2008, 10(3), 455-472.
[http://dx.doi.org/10.1208/s12248-008-9055-2] [PMID: 18726697]
[66]
Zorko, M.; Langel, Ü. Cell-penetrating peptides: Mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev., 2005, 57(4), 529-545.
[http://dx.doi.org/10.1016/j.addr.2004.10.010] [PMID: 15722162]
[67]
Drin, G.; Cottin, S.; Blanc, E.; Rees, A.R.; Temsamani, J. Studies on the internalization mechanism of cationic cell-penetrating peptides. J. Biol. Chem., 2003, 278(33), 31192-31201.
[http://dx.doi.org/10.1074/jbc.M303938200] [PMID: 12783857]
[68]
Saar, K.; Lindgren, M.; Hansen, M.; Eiríksdóttir, E.; Jiang, Y.; Rosenthal-Aizman, K.; Sassian, M.; Langel, Ü. Cell-penetrating peptides: A comparative membrane toxicity study. Anal. Biochem., 2005, 345(1), 55-65.
[http://dx.doi.org/10.1016/j.ab.2005.07.033] [PMID: 16137634]
[69]
Cardozo, A.K.; Buchillier, V.; Mathieu, M.; Chen, J.; Ortis, F.; Ladrière, L. Cell-permeable peptides induce dose-and length-dependent cytotoxic effects. Biochimica et Biophysica Acta (BBA)-. Biomembranes, 2007, 1768(9), 2222-2234.
[http://dx.doi.org/10.1016/j.bbamem.2007.06.003] [PMID: 17626783]
[70]
Lindgren, M.; Hällbrink, M.; Prochiantz, A.; Langel, Ü. Cell-penetrating peptides. Trends Pharmacol. Sci., 2000, 21(3), 99-103.
[http://dx.doi.org/10.1016/S0165-6147(00)01447-4] [PMID: 10689363]
[71]
Snyder, E.L.; Dowdy, S.F. Cell penetrating peptides in drug delivery. Pharm. Res., 2004, 21(3), 389-393.
[http://dx.doi.org/10.1023/B:PHAM.0000019289.61978.f5] [PMID: 15070086]
[72]
Temsamani, J.; Vidal, P. The use of cell-penetrating peptides for drug delivery. Drug Discov. Today, 2004, 9(23), 1012-1019.
[http://dx.doi.org/10.1016/S1359-6446(04)03279-9] [PMID: 15574317]
[73]
Chrétien, F.; Lortholary, O.; Kansau, I.; Neuville, S.; Gray, F.; Dromer, F. Pathogenesis of cerebral Cryptococcus neoformans infection after fungemia. J. Infect. Dis., 2002, 186(4), 522-530.
[http://dx.doi.org/10.1086/341564] [PMID: 12195380]
[74]
González-Scarano, F.; Martín-García, J. The neuropathogenesis of AIDS. Nat. Rev. Immunol., 2005, 5(1), 69-81.
[http://dx.doi.org/10.1038/nri1527] [PMID: 15630430]
[75]
Park, K. Trojan monocytes for improved drug delivery to the brain. J. Control. Release, 2008, 132(2), 75.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.009] [PMID: 18955092]
[76]
López, O.; de la Maza, A.; Coderch, L.; López-Iglesias, C.; Wehrli, E.; Parra, J.L. Direct formation of mixed micelles in the solubilization of phospholipid liposomes by Triton X-100. FEBS Lett., 1998, 426(3), 314-318.
[http://dx.doi.org/10.1016/S0014-5793(98)00363-9] [PMID: 9600258]
[77]
Sutherland, E.; Mercer, S.M.; Everist, M.; Leaist, D.G. Diffusion in solutions of micelles. What does dynamic light scattering measure? J. Chem. Eng. Data, 2009, 54(2), 272-278.
[http://dx.doi.org/10.1021/je800284g]
[78]
Manzo, G.; Carboni, M.; Rinaldi, A.C.; Casu, M.; Scorciapino, M.A. Characterization of sodium dodecylsulphate and dodecylphosphocholine mixed micelles through NMR and dynamic light scattering. Magn. Reson. Chem., 2013, 51(3), 176-183.
[http://dx.doi.org/10.1002/mrc.3930] [PMID: 23364831]
[79]
Long, M.A.; Kaler, E.W.; Lee, S.P.; Wignall, G.D. Characterization of lecithin-taurodeoxycholate mixed micelles using small-angle neutron scattering and static and dynamic light scattering. J. Phys. Chem., 1994, 98(16), 4402-4410.
[http://dx.doi.org/10.1021/j100067a031]
[80]
Puig-Rigall, J.; Blanco-Prieto, M.J.; Radulescu, A.; Dreiss, C.A.; González-Gaitano, G. Morphology, gelation and cytotoxicity evaluation of D-α-tocopheryl polyethylene glycol succinate (TPGS) - tetronic mixed micelles J. Colloid Interface Sci.,, 2021, 582(Pt A), 353-363.
[http://dx.doi.org/10.1016/j.jcis.2020.08.004] [PMID: 32858401]
[81]
Nitti, A.; Carfora, R.; Assanelli, G.; Notari, M.; Pasini, D. Single-chain polymer nanoparticles for addressing morphologies and functions at the nanoscale: A review. ACS Appl. Nano Mater., 2022, 5(10), 13985-13997.
[http://dx.doi.org/10.1021/acsanm.2c02313]
[82]
Haider, M.S.; Lübtow, M.M.; Endres, S.; Forster, S.; Flegler, V.J.; Böttcher, B.; Aseyev, V.; Pöppler, A.C.; Luxenhofer, R. Think beyond the core: Impact of the hydrophilic corona on drug solubilization using polymer micelles. ACS Appl. Mater. Interfaces, 2020, 12(22), 24531-24543.
[http://dx.doi.org/10.1021/acsami.9b22495] [PMID: 32378873]
[83]
Figueiras, A.; Domingues, C.; Jarak, I.; Santos, A.I.; Parra, A.; Pais, A.; Alvarez-Lorenzo, C.; Concheiro, A.; Kabanov, A.; Cabral, H.; Veiga, F. New advances in biomedical application of polymeric micelles. Pharmaceutics, 2022, 14(8), 1700.
[http://dx.doi.org/10.3390/pharmaceutics14081700] [PMID: 36015325]
[84]
Hawthorne, D.; Pannala, A.; Sandeman, S.; Lloyd, A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J. Drug Deliv. Sci. Technol., 2022, 78, 103936.
[http://dx.doi.org/10.1016/j.jddst.2022.103936]
[85]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[86]
Kancharla, S.; Bedrov, D.; Tsianou, M.; Alexandridis, P. Structure and composition of mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined by small-angle neutron scattering with contrast variation. J. Colloid Interface Sci., 2022, 609, 456-468.
[http://dx.doi.org/10.1016/j.jcis.2021.10.176] [PMID: 34815085]
[87]
Prasanthan, P.; Kishore, N. Self-assemblies of pluronic micelles in partitioning of anticancer drugs and effectiveness of this system towards target protein. RSC Advances, 2021, 11(36), 22057-22069.
[http://dx.doi.org/10.1039/D1RA03770F] [PMID: 35480822]
[88]
He, Z.; Ma, Y.; Alexandridis, P. Comparison of ionic liquid and salt effects on the thermodynamics of amphiphile micellization in water. Colloids Surf. A Physicochem. Eng. Asp., 2018, 559, 159-168.
[http://dx.doi.org/10.1016/j.colsurfa.2018.09.061]
[89]
Naharros-Molinero, A.; Caballo-González, M.Á.; de la Mata, F.J.; García-Gallego, S. Direct and reverse pluronic micelles: Design and characterization of promising drug delivery nanosystems. Pharmaceutics, 2022, 14(12), 2628.
[http://dx.doi.org/10.3390/pharmaceutics14122628] [PMID: 36559122]
[90]
Patel, D.; Bhojani, A.K.; Ray, D.; Singh, D.K.; Bhattacharjee, S.; Seth, D.; Aswal, V.K.; Kuperkar, K.; Bahadur, P. Glucose-induced self-assembly and phase separation in hydrophilic triblock copolymers and the governing mechanism. Phys. Chem. Chem. Phys., 2022, 24(35), 21141-21156.
[http://dx.doi.org/10.1039/D2CP01909D] [PMID: 36039741]
[91]
Linse, P. Micellization of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solution. Macromolecules, 1993, 26(17), 4437-4449.
[http://dx.doi.org/10.1021/ma00069a007]
[92]
Fieber, W.; Scheklaukov, A.; Kunz, W.; Pleines, M.; Benczédi, D.; Zemb, T. Towards a general understanding of the effects of hydrophobic additives on the viscosity of surfactant solutions. J. Mol. Liq., 2021, 329, 115523.
[http://dx.doi.org/10.1016/j.molliq.2021.115523]
[93]
Liu, Y.C.; Chen, S.H.; Huang, J.S. Small-angle neutron scattering studies of the structure and interaction of tri-block co-polymer micelles in aqueous solution. Physica B, 1997, 241-243, 1019-1021.
[http://dx.doi.org/10.1016/S0921-4526(97)00786-2]
[94]
Kianfar, E.; Hajimirzaee, S.; Faghih, S.M. Akhgar, S Polyvinyl chloride+ nanoparticles titanium oxide Membrane for Separation of O2/N2.Advances in nanotechnology; Nova Science Publishers, Inc.: NY, USA, 2020.
[95]
Mignani, S.; Shi, X.; Karpus, A.; Majoral, J.P. Non-invasive intranasal administration route directly to the brain using dendrimer nanoplatforms: An opportunity to develop new CNS drugs. Eur. J. Med. Chem., 2021, 209, 112905.
[http://dx.doi.org/10.1016/j.ejmech.2020.112905] [PMID: 33069435]
[96]
Da Silva, F.L.O.; Marques, M.B.D.F.; Kato, K.C.; Carneiro, G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin. Drug Discov., 2020, 15(7), 853-864.
[http://dx.doi.org/10.1080/17460441.2020.1750591] [PMID: 32290727]
[97]
Elsana, H.; Olusanya, T.O.B.; Carr-wilkinson, J.; Darby, S.; Faheem, A.; Elkordy, A.A. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems. Sci. Rep., 2019, 9(1), 15120.
[http://dx.doi.org/10.1038/s41598-019-51065-4] [PMID: 31641141]
[98]
Yushkin, A.; Balynin, A.; Efimov, M.; Pochivalov, K.; Petrova, I.; Volkov, A. Fabrication of polyacrylonitrile UF membranes by VIPS method with acetone as co-solvent. Membranes, 2022, 12(5), 523.
[http://dx.doi.org/10.3390/membranes12050523] [PMID: 35629849]
[99]
Devi, S.; Bhatt, S.; Saini, V.; Kumar, M.; Deep, A. A review on polymeric nano micelles based delivery to the posterior segment of the eye. Nanosci. Nanotechnol. Asia, 2020, 10(5), 591-601.
[http://dx.doi.org/10.2174/2210681209666190717162913]
[100]
Singh, A.; Thotakura, N.; Singh, B.; Lohan, S.; Negi, P.; Chitkara, D.; Raza, K. Delivery of docetaxel to brain employing piperine-tagged PLGA-aspartic acid polymeric micelles: Improved cytotoxic and pharmacokinetic profiles. AAPS PharmSciTech, 2019, 20(6), 220.
[http://dx.doi.org/10.1208/s12249-019-1426-8] [PMID: 31201588]
[101]
Karami, Z.; Sadighian, S.; Rostamizadeh, K.; Hosseini, S.H.; Rezaee, S.; Hamidi, M. Magnetic brain targeting of naproxen-loaded polymeric micelles: Pharmacokinetics and biodistribution study. Mater. Sci. Eng. C, 2019, 100, 771-780.
[http://dx.doi.org/10.1016/j.msec.2019.03.004] [PMID: 30948114]
[102]
Batrakova, E.V.; Bronich, T.K.; Vetro, J.A.; Kabanov, A.V. Polymer micelles as drug carriers. Nanoparticulates as Drug Carriers;; , 2006, pp. 57-93.
[http://dx.doi.org/10.1142/9781860949074_0005]
[103]
Nishiyama, N.; Matsumura, Y.; Kataoka, K. Development of polymeric micelles for targeting intractable cancers. Cancer Sci., 2016, 107(7), 867-874.
[http://dx.doi.org/10.1111/cas.12960] [PMID: 27116635]
[104]
Arranja, A.G.; Pathak, V.; Lammers, T.; Shi, Y. Tumor-targeted nanomedicines for cancer theranostics. Pharmacol. Res., 2017, 115, 87-95.
[http://dx.doi.org/10.1016/j.phrs.2016.11.014] [PMID: 27865762]
[105]
Yokoyama, M. Polymeric micelles as drug carriers: Their lights and shadows. J. Drug Target., 2014, 22(7), 576-583.
[http://dx.doi.org/10.3109/1061186X.2014.934688] [PMID: 25012065]
[106]
Bader, H.; Ringsdorf, H.; Schmidt, B. Watersoluble polymers in medicine. Angew. Makromol. Chem., 1984, 123(1), 457-485.
[http://dx.doi.org/10.1002/apmc.1984.051230121]
[107]
Pratten, M.K.; Lloyd, J.B.; Hörpel, G.; Ringsdorf, H. Micelle-forming block copolymers: Pinocytosis by macrophages and interaction with model membranes. Makromol. Chem., 1985, 186(4), 725-733.
[http://dx.doi.org/10.1002/macp.1985.021860406]
[108]
Kabanov, A.V.; Chekhonin, V.P.; Alakhov, V.Y.; Batrakova, E.V.; Lebedev, A.S.; Melik-Nubarov, N.S.; Arzhakov, S.A.; Levashov, A.V.; Morozov, G.V.; Severin, E.S.; Kabanov, V.A. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. FEBS Lett., 1989, 258(2), 343-345.
[http://dx.doi.org/10.1016/0014-5793(89)81689-8] [PMID: 2599097]
[109]
Khatun, S.; Bonala, S.; Pogu, S.V.; Rengan, A.K. Functional Biomaterials: Drug Delivery and Biomedical Applications Polymeric Micelle in Drug Delivery Applications.Functional Biomaterials; Springer: Singapore, 2022, pp. 1-36.
[110]
Li, Y.; Zhang, H.; Zhai, G.X. Intelligent polymeric micelles: Development and application as drug delivery for docetaxel. J. Drug Target., 2017, 25(4), 285-295.
[http://dx.doi.org/10.1080/1061186X.2016.1245309] [PMID: 27701892]
[111]
Kabanov, A.; Batrakova, E. New technologies for drug delivery across the blood brain barrier. Curr. Pharm. Des., 2004, 10(12), 1355-1363.
[http://dx.doi.org/10.2174/1381612043384826] [PMID: 15134486]
[112]
Agrawal, N.; Rowe, J.; Lan, J.; Yu, Q.; Hrycyna, C.A.; Chmielewski, J. Potential tools for eradicating HIV reservoirs in the brain: Development of trojan horse prodrugs for the inhibition of P-glycoprotein with anti-HIV-1 activity. J. Med. Chem., 2020, 63(5), 2131-2138.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00779] [PMID: 31505928]
[113]
Abourehab, M.; Ahmed, O.; Balata, G.; Almalki, W. Self-assembled biodegradable polymeric micelles to improve dapoxetine delivery across the blood–brain barrier. Int. J. Nanomedicine, 2018, 13, 3679-3687.
[http://dx.doi.org/10.2147/IJN.S168148] [PMID: 29983562]
[114]
Pokharkar, V.; Suryawanshi, S.; Dhapte-Pawar, V. Exploring micellar-based polymeric systems for effective nose-to-brain drug delivery as potential neurotherapeutics. Drug Deliv. Transl. Res., 2020, 10(4), 1019-1031.
[http://dx.doi.org/10.1007/s13346-019-00702-6] [PMID: 31858442]
[115]
Rashed, H.M.; Shamma, R.N.; Basalious, E.B. Contribution of both olfactory and systemic pathways for brain targeting of nimodipine-loaded lipo-pluronics micelles: In vitro characterization and in vivo biodistribution study after intranasal and intravenous delivery. Drug Deliv., 2017, 24(1), 181-187.
[http://dx.doi.org/10.1080/10717544.2016.1236848] [PMID: 28156162]
[116]
Hockel, K.; Diedler, J.; Steiner, J.; Birkenhauer, U.; Danz, S.; Ernemann, U.; Schuhmann, M.U. Long-term, continuous intra-arterial nimodipine treatment of severe vasospasm after aneurysmal subarachnoid hemorrhage. World Neurosurg., 2016, 88, 104-112.
[http://dx.doi.org/10.1016/j.wneu.2015.11.081] [PMID: 26732964]
[117]
Basalious, E.B.; Shamma, R.N. Novel self-assembled nano-tubular mixed micelles of Pluronics P123, Pluronic F127 and phosphatidylcholine for oral delivery of nimodipine: in vitro characterization, ex vivo transport and in vivopharmacokinetic studies. Int. J. Pharm., 2015, 493(1-2), 347-356.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.075] [PMID: 26241752]
[118]
Shao, K.; Wu, J.; Chen, Z.; Huang, S.; Li, J.; Ye, L.; Lou, J.; Zhu, L.; Jiang, C. A brain-vectored angiopep-2 based polymeric micelles for the treatment of intracranial fungal infection. Biomaterials, 2012, 33(28), 6898-6907.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.050] [PMID: 22789719]
[119]
Abdelbary, G.A.; Tadros, M.I. Brain targeting of olanzapine via intranasal delivery of core–shell difunctional block copolymer mixed nanomicellar carriers: In vitro characterization, ex vivo estimation of nasal toxicity and in vivo biodistribution studies. Int. J. Pharm., 2013, 452(1-2), 300-310.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.084] [PMID: 23684658]
[120]
Nour, S.A.; Abdelmalak, N.S.; Naguib, M.J.; Rashed, H.M.; Ibrahim, A.B. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: In vitro optimization, ex vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv., 2016, 23(9), 3681-3695.
[http://dx.doi.org/10.1080/10717544.2016.1223216] [PMID: 27648847]
[121]
Lu, L.; Zhao, X.; Fu, T.; Li, K.; He, Y.; Luo, Z.; Dai, L.; Zeng, R.; Cai, K. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. Biomaterials, 2020, 230, 119666.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119666] [PMID: 31831222]
[122]
Ran, D.; Mao, J.; Zhan, C.; Xie, C.; Ruan, H.; Ying, M.; Zhou, J.; Lu, W.L.; Lu, W. d-Retroenantiomer of quorum-sensing peptide-modified polymeric micelles for brain tumor-targeted drug delivery. ACS Appl. Mater. Interfaces, 2017, 9(31), 25672-25682.
[http://dx.doi.org/10.1021/acsami.7b03518] [PMID: 28548480]
[123]
Gong, J.; Chen, M.; Zheng, Y.; Wang, S.; Wang, Y. Polymeric micelles drug delivery system in oncology. J. Control. Release, 2012, 159(3), 312-323.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.012] [PMID: 22285551]
[124]
Kim, D.W.; Kim, S.Y.; Kim, H.K.; Kim, S.W.; Shin, S.W.; Kim, J.S.; Park, K.; Lee, M.Y.; Heo, D.S. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann. Oncol., 2007, 18(12), 2009-2014.
[http://dx.doi.org/10.1093/annonc/mdm374] [PMID: 17785767]
[125]
Kim, Y.; Lee, S.; Kim, Y.; Kim, B.; Kang, S. Multi-institutional Phase I clinical trial of cremophor-free, polymeric micelle formulation of paclitaxel (Genexol-PM) with carboplatin for patients with advanced epithelial ovarian cancer. Gynecol. Oncol., 2012, 125, S32.
[http://dx.doi.org/10.1016/j.ygyno.2011.12.072]
[126]
Lee, J.L.; Ahn, J.H.; Park, S.H.; Lim, H.Y.; Kwon, J.H.; Ahn, S.; Song, C.; Hong, J.H.; Kim, C.S.; Ahn, H. Phase II study of a cremophor-free, polymeric micelle formulation of paclitaxel for patients with advanced urothelial cancer previously treated with gemcitabine and platinum. Invest. New Drugs, 2012, 30(5), 1984-1990.
[http://dx.doi.org/10.1007/s10637-011-9757-7] [PMID: 22012004]
[127]
Saif, M.W.; Podoltsev, N.A.; Rubin, M.S.; Figueroa, J.A.; Lee, M.Y.; Kwon, J.; Rowen, E.; Yu, J.; Kerr, R.O. Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer. Cancer Invest., 2009, 28(2), 186-194.
[http://dx.doi.org/10.3109/07357900903179591] [PMID: 19968498]
[128]
Hamaguchi, T.; Matsumura, Y.; Suzuki, M.; Shimizu, K.; Goda, R.; Nakamura, I.; Nakatomi, I.; Yokoyama, M.; Kataoka, K.; Kakizoe, T. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br. J. Cancer, 2005, 92(7), 1240-1246.
[http://dx.doi.org/10.1038/sj.bjc.6602479] [PMID: 15785749]
[129]
Hamaguchi, T.; Kato, K.; Yasui, H.; Morizane, C.; Ikeda, M.; Ueno, H.; Muro, K.; Yamada, Y.; Okusaka, T.; Shirao, K.; Shimada, Y.; Nakahama, H.; Matsumura, Y. A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br. J. Cancer, 2007, 97(2), 170-176.
[http://dx.doi.org/10.1038/sj.bjc.6603855] [PMID: 17595665]