Artificial Intelligence: An Emerging Intellectual Sword for Battling Carcinomas

Page: [1784 - 1794] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Artificial Intelligence (AI) is a branch of computer science that deals with mathematical algorithms to mimic the abilities and intellectual work performed by the human brain. Nowadays, AI is being effectively utilized in addressing difficult healthcare challenges, including complex biological abnormalities, diagnosis, treatment, and clinical prognosis of various life-threatening diseases, like cancer. Deep neural networking (DNN), a subset of AI, is prominently being applied in clinical research programs on cancer. AI acts as a promising tool in radiotherapy, mammography, imaging, cancer prognosis, cancer genomics and molecular signaling, pathology, drug discovery, chemotherapy, immunotherapy, and clinical decision support system. This article provides an elaborative view concerning the application of AI in cancer, an explorative review that how AI has been used as a trenchant tool in the past, present and future of cancer. This review article provides a new prospective that how the mimic of human intellectual (AI technology) has put forward an unprecedented accuracy in the field of clinical research of cancer.

Graphical Abstract

[1]
Basu, K.; Sinha, R.; Ong, A.; Basu, T. Artificial intelligence: How is it changing medical sciences and its future? Indian J. Dermatol., 2020, 65(5), 365-370.
[http://dx.doi.org/10.4103/ijd.IJD_421_20] [PMID: 33165420]
[2]
Ekins, S. The next era: Deep learning in pharmaceutical research. Pharm. Res., 2016, 33(11), 2594-2603.
[http://dx.doi.org/10.1007/s11095-016-2029-7] [PMID: 27599991]
[3]
Jing, Y.; Bian, Y.; Hu, Z.; Wang, L.; Xie, X.Q.S. Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era. AAPS J., 2018, 20(3), 58.
[http://dx.doi.org/10.1208/s12248-018-0210-0] [PMID: 29603063]
[4]
Tseng, H.H.; Luo, Y.; Cui, S.; Chien, J.T.; Ten Haken, R.K.; Naqa, I.E. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med. Phys., 2017, 44(12), 6690-6705.
[http://dx.doi.org/10.1002/mp.12625] [PMID: 29034482]
[5]
Muehlematter, U.J.; Daniore, P.; Vokinger, K.N. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015–20): A comparative analysis. Lancet Digit. Health, 2021, 3(3), e195-e203.
[http://dx.doi.org/10.1016/S2589-7500(20)30292-2] [PMID: 33478929]
[6]
Mak, K.K.; Pichika, MR. Artificial intelligence in drug development: Present status and future prospects. Drug discovery today., 2019, 24(3), 773-780.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014]
[7]
Hekler, A.; Utikal, J.S.; Enk, A.H.; Hauschild, A.; Weichenthal, M.; Maron, R.C.; Berking, C.; Haferkamp, S.; Klode, J.; Schadendorf, D.; Schilling, B.; Holland-Letz, T.; Izar, B.; von Kalle, C.; Fröhling, S.; Brinker, T.J.; Schmitt, L.; Peitsch, W.K.; Hoffmann, F.; Becker, J.C.; Drusio, C.; Jansen, P.; Klode, J.; Lodde, G.; Sammet, S.; Schadendorf, D.; Sondermann, W.; Ugurel, S.; Zader, J.; Enk, A.; Salzmann, M.; Schäfer, S.; Schäkel, K.; Winkler, J.; Wölbing, P.; Asper, H.; Bohne, A-S.; Brown, V.; Burba, B.; Deffaa, S.; Dietrich, C.; Dietrich, M.; Drerup, K.A.; Egberts, F.; Erkens, A-S.; Greven, S.; Harde, V.; Jost, M.; Kaeding, M.; Kosova, K.; Lischner, S.; Maagk, M.; Messinger, A.L.; Metzner, M.; Motamedi, R.; Rosenthal, A-C.; Seidl, U.; Stemmermann, J.; Torz, K.; Velez, J.G.; Haiduk, J.; Alter, M.; Bär, C.; Bergenthal, P.; Gerlach, A.; Holtorf, C.; Karoglan, A.; Kindermann, S.; Kraas, L.; Felcht, M.; Gaiser, M.R.; Klemke, C-D.; Kurzen, H.; Leibing, T.; Müller, V.; Reinhard, R.R.; Utikal, J.; Winter, F.; Berking, C.; Eicher, L.; Hartmann, D.; Heppt, M.; Kilian, K.; Krammer, S.; Lill, D.; Niesert, A-C.; Oppel, E.; Sattler, E.; Senner, S.; Wallmichrath, J.; Wolff, H.; Gesierich, A.; Giner, T.; Glutsch, V.; Kerstan, A.; Presser, D.; Schrüfer, P.; Schummer, P.; Stolze, I.; Weber, J.; Drexler, K.; Haferkamp, S.; Mickler, M.; Stauner, C.T.; Thiem, A. Superior skin cancer classification by the combination of human and artificial intelligence. Eur. J. Cancer, 2019, 120, 114-121.
[http://dx.doi.org/10.1016/j.ejca.2019.07.019] [PMID: 31518967]
[8]
Peng, Y.; Zhang, Y.; Wang, L. Artificial intelligence in biomedical engineering and informatics: An introduction and review. Artif. Intell. Med., 2010, 48(2-3), 71-73.
[http://dx.doi.org/10.1016/j.artmed.2009.07.007] [PMID: 20045299]
[9]
Wang, M.; Chen, J.Y. A GMM-IG framework for selecting genes as expression panel biomarkers. Artif. Intell. Med., 2010, 48(2-3), 75-82.
[http://dx.doi.org/10.1016/j.artmed.2009.07.006] [PMID: 20004087]
[10]
Mayr, A.; Klambauer, G.; Unterthiner, T.; Steijaert, M.; Wegner, J.K.; Ceulemans, H.; Clevert, D.A.; Hochreiter, S. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci., 2018, 9(24), 5441-5451.
[http://dx.doi.org/10.1039/C8SC00148K] [PMID: 30155234]
[11]
Wang, L.; Ding, J.; Pan, L.; Cao, D.; Jiang, H.; Ding, X. Artificial intelligence facilitates drug design in the big data era. Chemom. Intell. Lab. Syst., 2019, 194, 103850.
[http://dx.doi.org/10.1016/j.chemolab.2019.103850]
[12]
Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn., 2002, 46(1/3), 389-422.
[http://dx.doi.org/10.1023/A:1012487302797]
[13]
Zhou, X.; Chen, S.; Liu, B.; Zhang, R.; Wang, Y.; Li, P.; Guo, Y.; Zhang, H.; Gao, Z.; Yan, X. Development of traditional Chinese medicine clinical data warehouse for medical knowledge discovery and decision support. Artif. Intell. Med., 2010, 48(2-3), 139-152.
[http://dx.doi.org/10.1016/j.artmed.2009.07.012] [PMID: 20122820]
[14]
Dsouza, N.D.R.; Murthy, N.S.; Aras, R.Y. Projection of cancer incident cases for India -till 2026. Asian Pac. J. Cancer Prev., 2013, 14(7), 4379-4386.
[http://dx.doi.org/10.7314/APJCP.2013.14.7.4379] [PMID: 23992007]
[15]
Simmons, C.P.L.; McMillan, D.C.; McWilliams, K.; Sande, T.A.; Fearon, K.C.; Tuck, S.; Fallon, M.T.; Laird, B.J. Prognostic tools in patients with advanced cancer: A systematic review. J. Pain Symptom Manage., 2017, 53(5), 962-970.e10.
[http://dx.doi.org/10.1016/j.jpainsymman.2016.12.330] [PMID: 28062344]
[16]
Cheng, J.Z.; Ni, D.; Chou, Y.H.; Qin, J.; Tiu, C.M.; Chang, Y.C.; Huang, C.S.; Shen, D.; Chen, C.M. Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep., 2016, 6(1), 24454.
[http://dx.doi.org/10.1038/srep24454] [PMID: 27079888]
[17]
Stephens, Z.D.; Lee, S.Y.; Faghri, F.; Campbell, R.H.; Zhai, C.; Efron, M.J.; Iyer, R.; Schatz, M.C.; Sinha, S.; Robinson, G.E. Big data: Astronomical or genomical? PLoS Biol., 2015, 13(7), e1002195.
[http://dx.doi.org/10.1371/journal.pbio.1002195] [PMID: 26151137]
[18]
Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Graepel, T.; Hassabis, D. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587), 484-489.
[http://dx.doi.org/10.1038/nature16961] [PMID: 26819042]
[19]
McCulloch, W.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol., 1990, 52(1-2), 99-115.
[http://dx.doi.org/10.1016/S0092-8240(05)80006-0] [PMID: 2185863]
[20]
Zeng, H.; Wang, S.; Zhou, T.; Zhao, F.; Li, X.; Wu, Q.; Xu, J. ComplexContact: A web server for inter-protein contact prediction using deep learning. Nucleic Acids Res., 2018, 46(W1), W432-W437.
[http://dx.doi.org/10.1093/nar/gky420] [PMID: 29790960]
[21]
Xie, Z.; Deng, X.; Shu, K. Prediction of protein-protein interaction sites using convolutional neural network and improved data sets. Int. J. Mol. Sci., 2020, 21(2), 467.
[http://dx.doi.org/10.3390/ijms21020467] [PMID: 31940793]
[22]
Goodfellow, I.; Bengio, Y.; Courville, A. Deep learning; MIT press: Massachusetts, 2016.
[23]
Ehteshami Bejnordi, B.; Veta, M.; Johannes van Diest, P.; van Ginneken, B.; Karssemeijer, N.; Litjens, G.; van der Laak, J.A.W.M.; Hermsen, M.; Manson, Q.F.; Balkenhol, M.; Geessink, O.; Stathonikos, N.; van Dijk, M.C.R.F.; Bult, P.; Beca, F.; Beck, A.H.; Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Zhong, A.; Dou, Q.; Li, Q.; Chen, H.; Lin, H.J.; Heng, P.A.; Haß, C.; Bruni, E.; Wong, Q.; Halici, U.; Öner, M.Ü.; Cetin-Atalay, R.; Berseth, M.; Khvatkov, V.; Vylegzhanin, A.; Kraus, O.; Shaban, M.; Rajpoot, N.; Awan, R.; Sirinukunwattana, K.; Qaiser, T.; Tsang, Y.W.; Tellez, D.; Annuscheit, J.; Hufnagl, P.; Valkonen, M.; Kartasalo, K.; Latonen, L.; Ruusuvuori, P.; Liimatainen, K.; Albarqouni, S.; Mungal, B.; George, A.; Demirci, S.; Navab, N.; Watanabe, S.; Seno, S.; Takenaka, Y.; Matsuda, H.; Ahmady Phoulady, H.; Kovalev, V.; Kalinovsky, A.; Liauchuk, V.; Bueno, G.; Fernandez-Carrobles, M.M.; Serrano, I.; Deniz, O.; Racoceanu, D.; Venâncio, R. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA, 2017, 318(22), 2199-2210.
[http://dx.doi.org/10.1001/jama.2017.14585] [PMID: 29234806]
[24]
Wang, S.; Yang, D.M.; Rong, R.; Zhan, X.; Xiao, G. Pathology image analysis using segmentation deep learning algorithms. Am. J. Pathol., 2019, 189(9), 1686-1698.
[http://dx.doi.org/10.1016/j.ajpath.2019.05.007] [PMID: 31199919]
[25]
Goshisht, M.K.; Moudgil, L.; Khullar, P.; Singh, G.; Kaura, A.; Kumar, H.; Kaur, G.; Bakshi, M.S. Surface adsorption and molecular modeling of biofunctional gold nanoparticles for systemic circulation and biological sustainability. ACS Sustain. Chem.& Eng., 2015, 3(12), 3175-3187.
[http://dx.doi.org/10.1021/acssuschemeng.5b00747]
[26]
Haehn, D.; Tompkin, J.; Pfister, H. Evaluating ‘graphical perception’with CNNs. IEEE Trans. Vis. Comput. Graph., 2019, 25(1), 641-650.
[http://dx.doi.org/10.1109/TVCG.2018.2865138] [PMID: 30136985]
[27]
Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett., 2020, 471, 61-71.
[http://dx.doi.org/10.1016/j.canlet.2019.12.007] [PMID: 31830558]
[28]
Obermeyer, Z.; Emanuel, E.J. Predicting the future-big data, machine learning, and clinical medicine. N. Engl. J. Med., 2016, 375(13), 1216-1219.
[http://dx.doi.org/10.1056/NEJMp1606181] [PMID: 27682033]
[29]
Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology, 2016, 278(2), 563-577.
[http://dx.doi.org/10.1148/radiol.2015151169] [PMID: 26579733]
[30]
Li, Q.; Xu, Y.; Chen, Z.; Liu, D.; Feng, S.T.; Law, M.; Ye, Y.; Huang, B. Tumor segmentation in contrast-enhanced magnetic resonance imaging for nasopharyngeal carcinoma: Deep learning with convolutional neural network. BioMed Res. Int., 2018, 2018, 1-7.
[http://dx.doi.org/10.1155/2018/9128527] [PMID: 30417017]
[31]
Tong, N.; Gou, S.; Yang, S.; Ruan, D.; Sheng, K. Fully automatic multi‐organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med. Phys., 2018, 45(10), 4558-4567.
[http://dx.doi.org/10.1002/mp.13147] [PMID: 30136285]
[32]
Allahyar, A.; Ubels, J.; de Ridder, J. A data-driven interactome of synergistic genes improves network-based cancer outcome prediction. PLOS Comput. Biol., 2019, 15(2), e1006657.
[http://dx.doi.org/10.1371/journal.pcbi.1006657] [PMID: 30726216]
[33]
Mitchell, M.J.; Jain, R.K.; Langer, R. Engineering and physical sciences in oncology: Challenges and opportunities. Nat. Rev. Cancer, 2017, 17(11), 659-675.
[http://dx.doi.org/10.1038/nrc.2017.83] [PMID: 29026204]
[34]
Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer, 2018, 18(8), 500-510.
[http://dx.doi.org/10.1038/s41568-018-0016-5] [PMID: 29777175]
[35]
Iqbal, M.J.; Javed, Z.; Sadia, H.; Qureshi, I.A.; Irshad, A.; Ahmed, R.; Malik, K.; Raza, S.; Abbas, A.; Pezzani, R.; Sharifi-Rad, J. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell Int., 2021, 21(1), 270.
[http://dx.doi.org/10.1186/s12935-021-01981-1] [PMID: 33397383]
[36]
Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; Mak, R.H.; Tamimi, R.M.; Tempany, C.M.; Swanton, C.; Hoffmann, U.; Schwartz, L.H.; Gillies, R.J.; Huang, R.Y.; Aerts, H.J.W.L. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin., 2019, 69(2), caac.21552.
[http://dx.doi.org/10.3322/caac.21552] [PMID: 30720861]
[37]
Tartar, A.; Akan, A.; Kilic, N. A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2014 Aug 26, , pp. 4651-4654. IEEE
[http://dx.doi.org/10.1109/EMBC.2014.6944661]
[38]
van der Waal, I. Skin cancer diagnosed using artificial intelligence on clinical images. Oral Dis., 2018, 24(6), 873-874.
[http://dx.doi.org/10.1111/odi.12668] [PMID: 28326656]
[39]
Baek, S.; He, Y.; Allen, B.G.; Buatti, J.M.; Smith, B.J.; Tong, L.; Sun, Z.; Wu, J.; Diehn, M.; Loo, B.W.; Plichta, K.A.; Seyedin, S.N.; Gannon, M.; Cabel, K.R.; Kim, Y.; Wu, X. Deep segmentation networks predict survival of non-small cell lung cancer. Sci. Rep., 2019, 9(1), 17286.
[http://dx.doi.org/10.1038/s41598-019-53461-2] [PMID: 31754135]
[40]
van Dijk, L.V.; Van den Bosch, L.; Aljabar, P.; Peressutti, D.; Both, S.; J H M Steenbakkers,, R. Langendijk, J.A.; Gooding, M.J.; Brouwer, C.L. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. Radiother. Oncol., 2020, 142, 115-123.
[http://dx.doi.org/10.1016/j.radonc.2019.09.022] [PMID: 31653573]
[41]
Zhao, W.; Shen, L.; Han, B.; Yang, Y.; Cheng, K.; Toesca, D.A.; Koong, A.C.; Chang, D.T.; Xing, L. Markerless pancreatic tumor target localization enabled by deep learning. International Journal of Radiation Oncology, 2019, 105(2), 432-439.
[42]
Lustberg, T.; van Soest, J.; Gooding, M.; Peressutti, D.; Aljabar, P.; van der Stoep, J.; van Elmpt, W.; Dekker, A. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother. Oncol., 2018, 126(2), 312-317.
[http://dx.doi.org/10.1016/j.radonc.2017.11.012] [PMID: 29208513]
[43]
Mahdavi, S.R.; Tavakol, A.; Sanei, M.; Molana, S.H.; Arbabi, F.; Rostami, A.; Barimani, S. Use of artificial neural network for pretreatment verification of intensity modulation radiation therapy fields. Br. J. Radiol., 2019, 92(1102), 20190355.
[http://dx.doi.org/10.1259/bjr.20190355] [PMID: 31317765]
[44]
Li, X.; Hu, B.; Li, H.; You, B. Application of artificial intelligence in the diagnosis of multiple primary lung cancer. Thorac. Cancer, 2019, 10(11), 2168-2174.
[http://dx.doi.org/10.1111/1759-7714.13185] [PMID: 31529684]
[45]
Houssami, N.; Kirkpatrick-Jones, G.; Noguchi, N.; Lee, C.I. Artificial Intelligence (AI) for the early detection of breast cancer: A scoping review to assess AI’s potential in breast screening practice. Expert Rev. Med. Devices, 2019, 16(5), 351-362.
[http://dx.doi.org/10.1080/17434440.2019.1610387] [PMID: 30999781]
[46]
Sherbet, G.; Woo, W.L.; Dlay, S. Application of artificial intelligence-based technology in cancer management: A commentary on the deployment of artificial neural networks. Anticancer Res., 2018, 38(12), 6607-6613.
[http://dx.doi.org/10.21873/anticanres.13027] [PMID: 30504368]
[47]
Tripathy, R.K.; Mahanta, S.; Paul, S. Artificial intelligence-based classification of breast cancer using cellular images. RSC Advances, 2014, 4(18), 9349-9355.
[http://dx.doi.org/10.1039/c3ra47489e]
[48]
Schütt, K.T.; Arbabzadah, F.; Chmiela, S.; Müller, K.R.; Tkatchenko, A. Quantum-chemical insights from deep tensor neural networks. Nature Communications, 2017, 8(1), 1-8.
[49]
Barboni, M.; Boehnke, P.; Keller, B.; Kohl, I.E.; Schoene, B.; Young, E.D.; McKeegan, K.D. Early formation of the Moon 4.51 billion years ago. Sci. Adv., 2017, 3(1), e1602365.
[http://dx.doi.org/10.1126/sciadv.1602365] [PMID: 28097222]
[50]
Wang, G.; Chen, X.; Liu, S.; Wong, C.; Chu, S. mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano, 2016, 10(2), 1788-1794.
[http://dx.doi.org/10.1021/acsnano.5b07472] [PMID: 26760215]
[51]
Klambauer, G.; Hochreiter, S.; Rarey, M. Machine learning in drug discovery. J. Chem. Inf. Model., 2019, 59(3), 945-946.
[http://dx.doi.org/10.1021/acs.jcim.9b00136] [PMID: 30905159]
[52]
Yin, Z.; Ai, H.; Zhang, L.; Ren, G.; Wang, Y.; Zhao, Q.; Liu, H. Predicting the cytotoxicity of chemicals using ensemble learning methods and molecular fingerprints. J. Appl. Toxicol., 2019, 39(10), 1366-1377.
[http://dx.doi.org/10.1002/jat.3785] [PMID: 30763981]
[53]
Barragán-Montero, A.M.; Nguyen, D.; Lu, W.; Lin, M.H.; Norouzi-Kandalan, R.; Geets, X.; Sterpin, E.; Jiang, S. Three‐dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Med. Phys., 2019, 46(8), 3679-3691.
[http://dx.doi.org/10.1002/mp.13597] [PMID: 31102554]
[54]
Lind, A.P.; Anderson, P.C. Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS One, 2019, 14(7), e0219774.
[http://dx.doi.org/10.1371/journal.pone.0219774] [PMID: 31295321]
[55]
Wang, Y.; Wang, Z.; Xu, J.; Li, J.; Li, S.; Zhang, M.; Yang, D. Systematic identification of non-coding pharmacogenomic landscape in cancer. Nat. Commun., 2018, 9(1), 3192.
[http://dx.doi.org/10.1038/s41467-018-05495-9] [PMID: 30093685]
[56]
Hossain, M.A.; Saiful Islam, S.M.; Quinn, J.M.W.; Huq, F.; Moni, M.A. Machine learning and bioinformatics models to identify gene expression patterns of ovarian cancer associated with disease progression and mortality. J. Biomed. Inform., 2019, 100, 103313.
[http://dx.doi.org/10.1016/j.jbi.2019.103313] [PMID: 31655274]
[57]
Aditya, M.; Amrita, I.; Kodipalli, A.; Martis, R.J. Ovarian cancer detection and classification using machine leaning. In 2021 5th international conference on electrical, electronics, communication, computer technologies and optimization techniques (ICEECCOT), 2021, Dec 10, , pp. 279-282. IEEE.
[http://dx.doi.org/10.1109/ICEECCOT52851.2021.9707954]
[58]
McDonald, J.F. Back to the future - The integration of big data with machine learning is re-establishing the importance of predictive correlations in ovarian cancer diagnostics and therapeutics. Gynecol. Oncol., 2018, 149(2), 230-231.
[http://dx.doi.org/10.1016/j.ygyno.2018.03.053] [PMID: 29572028]
[59]
Bai, X.; Shan, G.; Chen, M.; Wang, B. Approach and assessment of automated stereotactic radiotherapy planning for early stage non-small-cell lung cancer. Biomed. Eng. Online, 2019, 18(1), 101.
[http://dx.doi.org/10.1186/s12938-019-0721-7] [PMID: 31619263]
[60]
Li, Q.; Qi, L.; Feng, Q.X.; Liu, C.; Sun, S.W.; Zhang, J.; Yang, G.; Ge, Y.Q.; Zhang, Y.D.; Liu, X.S. Machine learning–based computational models derived from large-scale radiographic-radiomic images can help predict adverse histopathological status of gastric cancer. Clin. Transl. Gastroenterol., 2019, 10(10), e00079.
[http://dx.doi.org/10.14309/ctg.0000000000000079] [PMID: 31577560]
[61]
Taninaga, J.; Nishiyama, Y.; Fujibayashi, K.; Gunji, T.; Sasabe, N.; Iijima, K.; Naito, T. Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: A case-control study. Sci. Rep., 2019, 9(1), 12384.
[http://dx.doi.org/10.1038/s41598-019-48769-y] [PMID: 31455831]
[62]
Liu, C.; Qi, L.; Feng, Q.X.; Sun, S.W.; Zhang, Y.D.; Liu, X.S. Performance of a machine learning-based decision model to help clinicians decide the extent of lymphadenectomy (D1 vs. D2) in gastric cancer before surgical resection. Abdom. Radiol., 2019, 44(9), 3019-3029.
[http://dx.doi.org/10.1007/s00261-019-02098-w] [PMID: 31201432]
[63]
Yang, M.Q.; Wang, S.; Yang, F.; Darsey, J.A.; Ghosh, A.; Li, H-Y. Artificial intelligence and cancer drug development. Recent Patents Anticancer Drug Discov., 2022, 17(1), 2-8.
[http://dx.doi.org/10.2174/1574892816666210728123758] [PMID: 34323201]
[64]
Linton-reid, K. Introduction: An overview of AI in oncology drug discovery and development. Artificial intelligence in oncology drug discovery and development; Intech Open: London, 2020.
[65]
Luchini, C.; Pea, A.; Scarpa, A. Artificial intelligence in oncology: Current applications and future perspectives. Br. J. Cancer, 2022, 126(1), 4-9.
[http://dx.doi.org/10.1038/s41416-021-01633-1] [PMID: 34837074]
[66]
Kann, B.H.; Thompson, R.; Thomas, C.R., Jr; Dicker, A.; Aneja, S. Artificial intelligence in oncology: Current applications and future directions. Oncology, 2019, 33(2), 46-53.
[PMID: 30784028]
[67]
Chen, G.; Tsoi, A.; Xu, H.; Zheng, W.J. Predict effective drug combination by deep belief network and ontology fingerprints. J. Biomed. Inform., 2018, 85, 149-154.
[http://dx.doi.org/10.1016/j.jbi.2018.07.024] [PMID: 30081101]
[68]
Preuer, K.; Lewis, R.P.I.; Hochreiter, S.; Bender, A.; Bulusu, K.C.; Klambauer, G. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics, 2018, 34(9), 1538-1546.
[http://dx.doi.org/10.1093/bioinformatics/btx806] [PMID: 29253077]
[69]
Mao, J.; Price, D.D.; Mayer, D.J.; Lu, J.; Hayes, R.L. Intrathecal MK-801 and local nerve anesthesia synergistically reduce nociceptive behaviors in rats with experimental peripheral mononeuropathy. Brain Res., 1992, 576(2), 254-262.
[http://dx.doi.org/10.1016/0006-8993(92)90688-6] [PMID: 1325239]
[70]
Gayvert, K.M.; Aly, O.; Platt, J.; Bosenberg, M.W.; Stern, D.F.; Elemento, O. A computational approach for identifying synergistic drug combinations. PLOS Comput. Biol., 2017, 13(1), e1005308.
[http://dx.doi.org/10.1371/journal.pcbi.1005308] [PMID: 28085880]
[71]
Huang, L.; Jiang, Y.; Chen, Y. Predicting drug combination index and simulating the network-regulation dynamics by mathematical modeling of drug-targeted EGFR-erk signaling pathway. Sci. Rep., 2017, 7(1), 40752.
[http://dx.doi.org/10.1038/srep40752] [PMID: 28102344]
[72]
Ahuja, K.; Rather, G.M.; Lin, Z.; Sui, J.; Xie, P.; Le, T.; Bertino, J.R.; Javanmard, M. Toward point-of-care assessment of patient response: A portable tool for rapidly assessing cancer drug efficacy using multifrequency impedance cytometry and supervised machine learning. Microsyst. Nanoeng., 2019, 5(1), 34.
[http://dx.doi.org/10.1038/s41378-019-0073-2] [PMID: 31645995]
[73]
Pantuck, A.J.; Lee, D.K.; Kee, T.; Wang, P.; Lakhotia, S.; Silverman, M.H.; Mathis, C.; Drakaki, A.; Belldegrun, A.S.; Ho, C.M.; Ho, D. Modulating bet bromodomain inhibitor zen‐3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using curate. AI, an artificial intelligence platform. Adv. Ther., 2018, 1(6), 1800104.
[http://dx.doi.org/10.1002/adtp.201800104]
[74]
Jarrett, D.; Stride, E.; Vallis, K.; Gooding, M.J. Applications and limitations of machine learning in radiation oncology. Br. J. Radiol., 2019, 92(1100), 20190001.
[http://dx.doi.org/10.1259/bjr.20190001] [PMID: 31112393]
[75]
Feng, M.; Valdes, G.; Dixit, N.; Solberg, T.D. Machine learning in radiation oncology: Opportunities, requirements, and needs. Front. Oncol., 2018, 8, 110.
[http://dx.doi.org/10.3389/fonc.2018.00110] [PMID: 29719815]
[76]
Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J. Radiol., 2017, 18(4), 570-584.
[http://dx.doi.org/10.3348/kjr.2017.18.4.570] [PMID: 28670152]
[77]
Chang, AT.; Hung, AW.; Cheung, FW.; Lee, MC.; Chan, OS.; Philips, H.; Cheng, YT.; Ng, WT. Comparison of planning quality and efficiency between conventional and knowledge-based algorithms in nasopharyngeal cancer patients using intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2016, 95(3), 981-990.
[78]
Leung, L.H.T.; Kan, M.W.K.; Cheng, A.C.K.; Wong, W.K.H.; Yau, C.C. A new dose–volume-based Plan Quality Index for IMRT plan comparison. Radiother. Oncol., 2007, 85(3), 407-417.
[http://dx.doi.org/10.1016/j.radonc.2007.10.018] [PMID: 18023487]
[79]
Summary of the European Directive. 2013/59/Euratom: Essentials for health professionals in radiology. Insights Imaging, 2015, 6(4), 411-417.
[http://dx.doi.org/10.1007/s13244-015-0410-4]
[80]
Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Brief. Bioinform., 2018, 19(6), 1236-1246.
[http://dx.doi.org/10.1093/bib/bbx044] [PMID: 28481991]
[81]
Vandewinckele, L.; Claessens, M.; Dinkla, A.; Brouwer, C.; Crijns, W.; Verellen, D.; van Elmpt, W. Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance. Radiother. Oncol., 2020, 153, 55-66.
[http://dx.doi.org/10.1016/j.radonc.2020.09.008] [PMID: 32920005]
[82]
Karpathy, A.; Fei-fei, L. Deep visual-semantic alignments for generating image descriptions. In: proceedings of the IEEE conference on computer vision and pattern recognition; , 2015; pp. 3128-3137.
[83]
Qin, Y.; Deng, Y.; Jiang, H.; Hu, N.; Song, B. Artificial intelligence in the imaging of gastric cancer: Current applications and future direction. Front. Oncol., 2021, 11, 631686.
[http://dx.doi.org/10.3389/fonc.2021.631686] [PMID: 34367946]
[84]
Zhu, B.; Liu, J.Z.; Cauley, S.F.; Rosen, B.R.; Rosen, M.S. Image reconstruction by domain-transform manifold learning. Nature, 2018, 555(7697), 487-492.
[http://dx.doi.org/10.1038/nature25988] [PMID: 29565357]
[85]
Tsili, A.C.; Alexiou, G.; Naka, C.; Argyropoulou, M.I. Imaging of colorectal cancer liver metastases using contrast-enhanced US, multidetector CT, MRI, and FDG PET/CT: A meta-analysis. Acta Radiol., 2021, 62(3), 302-312.
[http://dx.doi.org/10.1177/0284185120925481] [PMID: 32506935]
[86]
Reig, B.; Heacock, L.; Geras, K.J.; Moy, L. Machine learning in breast MRI. J. Magn. Reson. Imaging, 2020, 52(4), 998-1018.
[http://dx.doi.org/10.1002/jmri.26852] [PMID: 31276247]
[87]
Bahl, M.; Barzilay, R.; Yedidia, A.B.; Locascio, N.J.; Yu, L.; Lehman, C.D. High-risk breast lesions: A machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision. Radiology, 2018, 286(3), 810-818.
[http://dx.doi.org/10.1148/radiol.2017170549] [PMID: 29039725]
[88]
Sun, R.; Limkin, E.J.; Vakalopoulou, M.; Dercle, L.; Champiat, S.; Han, S.R.; Verlingue, L.; Brandao, D.; Lancia, A.; Ammari, S.; Hollebecque, A.; Scoazec, J.Y.; Marabelle, A.; Massard, C.; Soria, J.C.; Robert, C.; Paragios, N.; Deutsch, E.; Ferté, C. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study. Lancet Oncol., 2018, 19(9), 1180-1191.
[http://dx.doi.org/10.1016/S1470-2045(18)30413-3] [PMID: 30120041]
[89]
Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother., 2020, 124, 109821.
[http://dx.doi.org/10.1016/j.biopha.2020.109821] [PMID: 31962285]
[90]
Liang, M.; Tang, W.; Xu, D.M.; Jirapatnakul, A.C.; Reeves, A.P.; Henschke, C.I.; Yankelevitz, D. Low-dose CT screening for lung cancer: Computer-aided detection of missed lung cancers. Radiology, 2016, 281(1), 279-288.
[http://dx.doi.org/10.1148/radiol.2016150063] [PMID: 27019363]
[91]
Wen, G.; Shao, M.; Zi, J. 2-fluoro-2-deoxy-D-glucose positron emission tomography versus conventional imaging for the diagnosis of breast cancer and lymph node metastases. J. Cancer Res. Ther., 2018, 14(Suppl. 10), 661.
[http://dx.doi.org/10.4103/0973-1482.207069] [PMID: 30249884]
[92]
Exarchos, K.P.; Goletsis, Y.; Fotiadis, D.I. Multiparametric decision support system for the prediction of oral cancer reoccurrence. IEEE Trans. Inf. Technol. Biomed., 2012, 16(6), 1127-1134.
[http://dx.doi.org/10.1109/TITB.2011.2165076] [PMID: 21859630]
[93]
Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med., 2001, 23(1), 89-109.
[http://dx.doi.org/10.1016/S0933-3657(01)00077-X] [PMID: 11470218]
[94]
Park, K.; Ali, A.; Kim, D.; An, Y.; Kim, M.; Shin, H. Robust predictive model for evaluating breast cancer survivability. Eng. Appl. Artif. Intell., 2013, 26(9), 2194-2205.
[http://dx.doi.org/10.1016/j.engappai.2013.06.013]
[95]
Sun, Y.; Goodison, S.; Li, J.; Liu, L.; Farmerie, W. Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics, 2007, 23(1), 30-37.
[http://dx.doi.org/10.1093/bioinformatics/btl543] [PMID: 17130137]
[96]
Orringer, D.A.; Pandian, B.; Niknafs, Y.S.; Hollon, T.C.; Boyle, J.; Lewis, S.; Garrard, M.; Hervey-Jumper, S.L.; Garton, H.J.L.; Maher, C.O.; Heth, J.A.; Sagher, O.; Wilkinson, D.A.; Snuderl, M.; Venneti, S.; Ramkissoon, S.H.; McFadden, K.A.; Fisher-Hubbard, A.; Lieberman, A.P.; Johnson, T.D.; Xie, X.S.; Trautman, J.K.; Freudiger, C.W.; Camelo-Piragua, S. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng., 2017, 1(2), 0027.
[http://dx.doi.org/10.1038/s41551-016-0027] [PMID: 28955599]
[97]
Kim, J.; Shin, H. Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data. J. Am. Med. Inform. Assoc., 2013, 20(4), 613-618.
[http://dx.doi.org/10.1136/amiajnl-2012-001570] [PMID: 23467471]
[98]
Ren, X.; Wang, Y.; Zhang, X.S.; Jin, Q. iPcc: A novel feature extraction method for accurate disease class discovery and prediction. Nucleic Acids Res., 2013, 41(14), e143.
[http://dx.doi.org/10.1093/nar/gkt343] [PMID: 23761440]
[99]
Wu, X.; Hasan, M.A.; Chen, J.Y. Pathway and network analysis in proteomics. J. Theor. Biol., 2014, 362, 44-52.
[http://dx.doi.org/10.1016/j.jtbi.2014.05.031] [PMID: 24911777]
[100]
Kumar, R.; Chaudhary, K.; Gupta, S.; Singh, H.; Kumar, S.; Gautam, A.; Kapoor, P.; Raghava, G.P.S.; Cancer, DR. Cancer drug resistance database. Sci. Rep., 2013, 3(1), 1445.
[http://dx.doi.org/10.1038/srep01445]
[101]
Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial intelligence in cancer research and precision medicine. Cancer Discov., 2021, 11(4), 900-915.
[http://dx.doi.org/10.1158/2159-8290.CD-21-0090] [PMID: 33811123]
[102]
Wu, E.; Wu, K.; Daneshjou, R.; Ouyang, D.; Ho, D.E.; Zou, J. How medical AI devices are evaluated: Limitations and recommendations from an analysis of FDA approvals. Nat. Med., 2021, 27(4), 582-584.
[http://dx.doi.org/10.1038/s41591-021-01312-x] [PMID: 33820998]