The Antibacterial Effects of Healing Abutments Coated with Gelatincurcumin Nanocomposite

Page: [390 - 395] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Introduction: For the long-term success of implant treatment, prevention of biological complications, including pre-implant diseases, plays an important role. The use of antimicrobial coatings is one of the prosperous methods in this field. The aim of this study is to evaluate the antimicrobial effects of healing abutments coated with gelatin-curcumin nanocomposite.

Methods: This study included 48 healing abutments in the form of a control group (titanium healing abutments without coating) and an intervention group (titanium healing abutments coated with gelatincurcumin nanocomposite). The disc diffusion method was used to evaluate the antimicrobial effects of coated healing abutments against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis and the results were reported in a non-growth zone area.

Results and Discussion: Gelatin-curcumin nanocomposite caused significant non-growth aura for all three bacteria compared to the control group. For the control group (healing abutments without coating), the antimicrobial effects (non-growth zone) were zero. Besides, gelatin-curcumin nanocomposite had the greatest inhibiting effect on the growth of S. aureus, then E. coli and finally E. faecalis.

Conclusion: The results of our study showed that the coating used was able to significantly demonstrate a non-growth zone against all three bacteria compared to the control group without coating. Further evaluations in various physicochemical, mechanical, and antimicrobial fields are necessary for the animal model and clinical phase.

Graphical Abstract

[1]
Ghinassi B, D’Addazio G, Di Baldassarre A, et al. Immunohistochemical results of soft tissues around a new implant healing-abutment surface: A human study. J Clin Med 2020; 9(4): 1009.
[http://dx.doi.org/10.3390/jcm9041009] [PMID: 32252463]
[2]
Rathee M, Bhoria M, Boor P. Restoration of gingival form in malaligned dental implant through custom fabricated healing abutment: A case report. Indo-European J Dental Therapy Research 2014; 2(2): 221-3.
[3]
Beretta M, Poli PP, Pieriboni S, et al. Peri-implant soft tissue conditioning by means of customized healing abutment: A randomized controlled clinical trial. Materials 2019; 12(18): 3041.
[http://dx.doi.org/10.3390/ma12183041] [PMID: 31546800]
[4]
Deepthi VS, Harshakumar K, Prasanth V, Ravichandran R. Customized healing abutment for enhancing pink aesthetics in implants. J Dent Implant 2013; 3(2): 172.
[http://dx.doi.org/10.4103/0974-6781.118862]
[5]
Odatsu T, Kuroshima S, Sato M, et al. Antibacterial properties of nano-Ag coating on healing abutment: An in vitro and clinical study. Antibiotics 2020; 9(6): 347.
[http://dx.doi.org/10.3390/antibiotics9060347] [PMID: 32575552]
[6]
Iwańczyk B, Wychowański P, Minkiewicz-Zochniak A, Strom K, Jarzynka S, Olędzka G. Bioactive healing abutment as a potential tool for the treatment of peri-implant disease-in vitro study. Appl Sci 2020; 10(15): 5376.
[http://dx.doi.org/10.3390/app10155376]
[7]
Zhang S, Wang M, Jiang T, Zhou Y, Wang Y. Roles of a new drug-delivery healing abutment in the prevention and treatment of peri-implant infections: A preliminary study. RSC Advances 2018; 8(68): 38836-43.
[http://dx.doi.org/10.1039/C8RA07676F] [PMID: 35558280]
[8]
Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG. Antimicrobial activity of nanoparticulate metal oxides against peri-implantitis pathogens. Int J Antimicrob Agents 2012; 40(2): 135-9.
[9]
Körtvélyessy G, Tarjányi T, Baráth ZL, Minarovits J, Tóth ZJA. Bioactive coatings for dental implants: A review of alternative strategies to prevent peri-implantitis induced by anaerobic bacteria. Anaerobe 2021; 70: 102404.
[http://dx.doi.org/10.1016/j.anaerobe.2021.102404]
[10]
Ghinassi B, Di Baldassarre A, D’Addazio G, et al. Gingival response to dental implant: Comparison study on the effects of new nanopored laser-treated vs. traditional healing abutments. Int J Mol Sci 2020; 21(17): 6056.
[http://dx.doi.org/10.3390/ijms21176056] [PMID: 32842709]
[11]
Al-Wattar WMA, Al-Wattar WM, Al-Radha ASD. Microbiological and cytological response to dental implant healing abutment. J Int Dent Medical Res 2017; 10(3): 891-8.
[12]
de Avila ED, Castro AGB, Tagit O, et al. Anti-bacterial efficacy via drug-delivery system from layer-by-layer coating for percutaneous dental implant components. Appl Surf Sci 2019; 488: 194-204.
[http://dx.doi.org/10.1016/j.apsusc.2019.05.154]
[13]
Cortizo MC, Oberti TG, Cortizo MS, Cortizo AM, Fernández Lorenzo de Mele MA. Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: Evaluation of cytotoxicity and early bacterial adhesion. J Dent 2012; 40(4): 329-37.
[http://dx.doi.org/10.1016/j.jdent.2012.01.008] [PMID: 22305778]
[14]
Chen W, Liu Y, Courtney HS, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 2006; 27(32): 5512-7.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.003] [PMID: 16872671]
[15]
Grischke J, Eberhard J, Stiesch M. Antimicrobial dental implant functionalization strategies-a systematic review. Dent Mater J 2016; 35(4): 545-58.
[http://dx.doi.org/10.4012/dmj.2015-314] [PMID: 27477219]
[16]
Pérez-Pacheco CG, Fernandes NAR, Primo FL, et al. Local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing in periodontitis: Randomized, placebo-controlled, double-blind split-mouth clinical trial. Clin Oral Investig 2021; 25(5): 3217-27.
[http://dx.doi.org/10.1007/s00784-020-03652-3] [PMID: 33125518]
[17]
Negahdari R, Sharifi S, Ghavimi MA, et al. Curcumin nanocrystals: production, physicochemical assessment, and in vitro evaluation of the antimicrobial effects against bacterial loading of the implant fixture. Appl Sci 2020; 10(23): 8356.
[http://dx.doi.org/10.3390/app10238356]
[18]
Sharifian P, Yaslianifard S, Fallah P, Aynesazi S, Bakhtiyari M, Mohammadzadeh M. Investigating the effect of nano-curcumin on the expression of biofilm regulatory genes of Pseudomonas aeruginosa. Infect Drug Resist 2020; 13: 2477-84.
[http://dx.doi.org/10.2147/IDR.S263387] [PMID: 32765020]
[19]
Ansari E, Issazadeh K, Shoae Hassani A. A study to investigate antibacterial effect of Nanocurcumin against pre-clinical methicillin resistant Staphylococcus aureus infection. J Microbial World 2014; 7(1): 26-37.
[20]
Sankhwar R, Yadav S, Kumar A, Gupta RK. Application of nano-curcumin as a natural antimicrobial agent against Gram-positive pathogens. J Appl Nat Sci 2021; 13(1): 110-26.
[http://dx.doi.org/10.31018/jans.v13i1.2482]
[21]
Zhou Z, He S, Huang T, et al. Preparation of gelatin/hyaluronic acid microspheres with different morphologies for drug delivery. Polym Bull 2015; 72(4): 713-23.
[http://dx.doi.org/10.1007/s00289-015-1300-0]
[22]
Yan H, Zhou Z, Huang T, et al. Controlled release in vitro of icariin from gelatin/hyaluronic acid composite microspheres. Polym Bull 2016; 73(4): 1055-66.
[http://dx.doi.org/10.1007/s00289-015-1534-x]
[23]
Maleki Dizaj S, Torab A, Kouhkani S, et al. Gelatin–curcumin nanocomposites as a coating for implant healing abutment: In vitro stability investigation. Clin Pract 2023; 13(1): 88-101.
[http://dx.doi.org/10.3390/clinpract13010009] [PMID: 36648849]
[24]
Damarla SR, Komma R, Bhatnagar U, Rajesh N, Mulla SMA. An evaluation of the genotoxicity and subchronic oral toxicity of synthetic curcumin. J Toxicol 2018; (7): 1-27.
[http://dx.doi.org/10.1155/2018/6872753]
[25]
Ngo HV, Tran PHL, Lee BJ, Tran TTD. Development of film-forming gel containing nanoparticles for transdermal drug delivery. Nanotechnology 2019; 30(41): 415102.
[http://dx.doi.org/10.1088/1361-6528/ab2e29] [PMID: 31261146]
[26]
Alizadeh SS. Evaluation of antimicrobial activity of Curcumin nanoparticles on the gene expression of the enterococcal surface protein, Esp, involved in biofilm formation of Enterococcus Faecalis. RJMS 2019; 26(9): 39-46.
[27]
Ghavimi MA, Bani Shahabadi A, Jarolmasjed S, Memar MY, Maleki Dizaj S, Sharifi S. Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration. Sci Rep 2020; 10(1): 18200.
[http://dx.doi.org/10.1038/s41598-020-75454-2] [PMID: 33097790]
[28]
Teow S-Y, Liew K, Ali SA, Khoo AS-B, Peh S-C. Antibacterial action of curcumin against Staphylococcus aureus: A brief review. J Trop Med 2016; 2016: 2853045.
[http://dx.doi.org/10.1155/2016/2853045]
[29]
Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 2015; 10(3): e0121313.
[http://dx.doi.org/10.1371/journal.pone.0121313] [PMID: 25811596]
[30]
Adamczak A, Ożarowski M, Karpiński TM. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals 2020; 13(7): 153.
[http://dx.doi.org/10.3390/ph13070153] [PMID: 32708619]
[31]
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 2014; 44: 278-84.
[http://dx.doi.org/10.1016/j.msec.2014.08.031] [PMID: 25280707]
[32]
Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int 2015; 39(8): 881-90.
[http://dx.doi.org/10.1002/cbin.10459] [PMID: 25790433]
[33]
Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K. Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 2015; 5(1): 19-23.
[PMID: 25789215]
[34]
Yun DG, Lee DG. Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl Microbiol Biotechnol 2016; 100(12): 5505-14.
[http://dx.doi.org/10.1007/s00253-016-7415-x] [PMID: 26960318]
[35]
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009; 41(1): 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[36]
Dörr T, Lewis K, Vulić M. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 2009; 5(12): e1000760.
[http://dx.doi.org/10.1371/journal.pgen.1000760] [PMID: 20011100]
[37]
Neelakantan P, Subbarao C, Sharma S, Subbarao CV, Garcia-Godoy F, Gutmann JL. Effectiveness of curcumin against Enterococcus faecalis biofilm. Acta Odontol Scand 2013; 71(6): 1453-7.
[http://dx.doi.org/10.3109/00016357.2013.769627] [PMID: 23394209]
[38]
Mun SH, Joung DK, Kim YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 2013; 20(8-9): 714-8.
[http://dx.doi.org/10.1016/j.phymed.2013.02.006] [PMID: 23537748]
[39]
Kali A, Bhuvaneshwar D, Charles PV, Seetha K. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. J Basic Clin Pharm 2016; 7(3): 93-6.
[http://dx.doi.org/10.4103/0976-0105.183265] [PMID: 27330262]