Engineered Clay-Polymer Composite for Biomedical Drug Delivery and Future Challenges: A Survey

Page: [645 - 661] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Clay materials are widely used in drug delivery systems due to their unique characteristics. Montmorillonite is a major component of bentonite and it has a large surface area, better swelling capacity, and high adsorption capacity. The modification of natural bentonite could improve its sorption ability for new emerging applications. Recent advancements in the polymer-silicate composite have novel biomedical applications in drug delivery, tissue regeneration, wound healing, cancer therapy, enzyme immobilization, diagnostic and therapeutic devices, etc. Perspective view of the montmorillonite- polymer composite as a pharmaceutical carrier in drug delivery systems has been discussed in this review. Different types of modification of montmorillonite for the development of pharmaceutical formulations have also been documented. Many challenges in clay nanocomposite systems of polymer of natural/synthetic origin are yet to be explored in improving antimicrobial properties, mechanical strength, stimuli responsiveness, resistance to hydrolysis, etc. Drug interaction and binding capability, swelling of clay may be carried out for finding possible applications in monitoring delivery systems. Pharmaceutical properties of active drugs in the formulation could also be improved along with dissolution rate, solubility, and adsorption. The clay-incorporated polymeric drug delivery systems may be examined for a possible increase in swelling capacity and residence time after mucosal administration.

Graphical Abstract

[1]
Savic, I.; Stojiljkovic, S.; Savic, I.; Gajic, D. Industrial application of clays and clay minerals. Wesley, L.R.; Stojiljkovic, S. In: Clays and clay minerals: Geological origin, mechanical properties and industrial applications; Nova Science Publishers, 2014, pp. 379-402.
[2]
Nazir, M.S.; Kassim, M.H.; Mohapatra, L.; Gilani, M.A.; Raza, M.R.; Majeed, K. Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: Nanoclay reinforced polymer composites; Springer: Singapore, 2016, pp. 35-55.
[http://dx.doi.org/10.1007/978-981-10-1953-1_2]
[3]
Müller, K.; Jesdinszki, M.; Schmid, M. Modification of functional properties of whey protein isolate nanocomposite films and coatings with nanoclays. J. Nanomater., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/6039192]
[4]
Lee, S.M.; Tiwari, D. Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview. Appl. Clay Sci., 2012, 59-60(59), 84-102.
[http://dx.doi.org/10.1016/j.clay.2012.02.006]
[5]
Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J., 2017, 308(308), 438-462.
[http://dx.doi.org/10.1016/j.cej.2016.09.029]
[6]
Barton, C.D.; Karathanasis, A.D. Clay minerals. In: Encyclopedia of Soil Science; Lal, R., Ed.; Taylor & Francis: Guelph, ON, Canada, 2016, p. 276.
[7]
Carretero, M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci., 2002, 21(3-4), 155-163.
[http://dx.doi.org/10.1016/S0169-1317(01)00085-0]
[8]
Pramanik, A.; Sahoo, R.N.; Nanda, A.; Mohapatra, R.; Singh, R.; Mallick, S. Ocular permeation and sustained anti-inflammatory activity of dexamethasone from kaolin nanodispersion hydrogel system. Curr. Eye Res., 2018, 43(6), 828-838.
[http://dx.doi.org/10.1080/02713683.2018.1446534] [PMID: 29521542]
[9]
Pramanik, A.; Sahoo, R.N.; Nanda, A.; Pattnaik, K.P.; Mallick, S. Swelling kinetics and corneal hydration level of Kaolinin-HPMC hydrogel film. Indian J. Pharm. Sci., 2020, 82(2), 306-314.
[10]
Chavali, R.V.P.; Ponnapureddy, H.P.R. Swelling and compressibility characteristics of bentonite and kaolin clay subjected to inorganic acid contamination. J. Geotech. Eng., 2018, 12(5), 500-506.
[http://dx.doi.org/10.1080/19386362.2017.1299418]
[11]
Mo, X.; Wu, F.; Li, Y.; Cai, X. Hyaluronic acid-functionalized halloysite nanotubes for targeted drug delivery to CD44-overexpressing cancer cells. Mater. Today Commun., 2021, 28, 102682.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102682]
[12]
Bediako, E.G. Nyankson, E.; Dodoo-Arhin, D.; Agyei-Tuffour, B.; Łukowiec, D.; Tomiczek, B.; Yaya, A.; Efavi, J.K. Modified halloysite nanoclay as a vehicle for sustained drug delivery. Heliyon, 2018, 4(7), e00689.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00689] [PMID: 30014048]
[13]
Gaaz, T.; Sulong, A.; Kadhum, A.; Al-Amiery, A.; Nassir, M.; Jaaz, A. The impact of halloysite on the thermo-mechanical properties of polymer composites. Molecules, 2017, 22(5), 838.
[http://dx.doi.org/10.3390/molecules22050838] [PMID: 28531126]
[14]
Liu, M.; Chang, Y.; Yang, J.; You, Y.; He, R.; Chen, T.; Zhou, C. Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(13), 2253-2263.
[http://dx.doi.org/10.1039/C5TB02725J] [PMID: 32263221]
[15]
Hu, Y.; Chen, J.; Li, X.; Sun, Y.; Huang, S.; Li, Y.; Liu, H.; Xu, J.; Zhong, S. Multifunctional halloysite nanotubes for targeted delivery and controlled release of doxorubicin in-vitro and in-vivo studies. Nanotechnology, 2017, 28(37), 375101.
[http://dx.doi.org/10.1088/1361-6528/aa8393] [PMID: 28767041]
[16]
Lvov, Y.M.; DeVilliers, M.M.; Fakhrullin, R.F. The application of halloysite tubule nanoclay in drug delivery. Expert Opin. Drug Deliv., 2016, 13(7), 977-986.
[http://dx.doi.org/10.1517/17425247.2016.1169271] [PMID: 27027933]
[17]
Junior, C.R.F.; Fernandes, R.S.; de Moura, M.R.; Aouada, F.A. On the preparation and physicochemical properties of pH-responsive hydrogel nanocomposite based on poly(acid methacrylic)/laponite RDS. Mater. Today Commun., 2020, 23, 100936.
[http://dx.doi.org/10.1016/j.mtcomm.2020.100936]
[18]
Park, J.K.; Choy, Y.B.; Oh, J.M.; Kim, J.Y.; Hwang, S.J.; Choy, J.H. Controlled release of donepezil intercalated in smectite clays. Int. J. Pharm., 2008, 359(1-2), 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.012] [PMID: 18502063]
[19]
Jung, H.; Kim, H.M.; Choy, Y.B.; Hwang, S.J.; Choy, J.H. Itraconazole–Laponite: Kinetics and mechanism of drug release. Appl. Clay Sci., 2008, 40(1-4), 99-107.
[http://dx.doi.org/10.1016/j.clay.2007.09.002]
[20]
Joshi, G.V.; Kevadiya, B.D.; Patel, H.A.; Bajaj, H.C.; Jasra, R.V. Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate. Int. J. Pharm., 2009, 374(1-2), 53-57.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.004] [PMID: 19446759]
[21]
Shah, L.A.; Khattak, N.S.; Valenzuela, M.G.S.; Manan, A.; Valenzuela Díaz, F.R. Preparation and characterization of purified Na-activated bentonite from Karak (Pakistan) for pharmaceutical use. Clay Miner., 2013, 48(4), 595-603.
[http://dx.doi.org/10.1180/claymin.2013.048.4.03]
[22]
Nasser, M.S.; Onaizi, S.A.; Hussein, I.A.; Saad, M.A.; Al-Marri, M.J.; Benamor, A. Intercalation of ionic liquids into bentonite: Swelling and rheological behaviors. Colloids Surf. A Physicochem. Eng. Asp., 2016, 507, 141-151.
[http://dx.doi.org/10.1016/j.colsurfa.2016.08.006]
[23]
Zhao, H.; Yang, Y.; Zhou, D.; Shu, X.; Ran, Q. Molecular dynamic simulations of montmorillonite contact with polycarboxylate superplasticizer at solid-liquid interface. Mater. Today Commun., 2021, 28, 102538.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102538]
[24]
Shackelford, C.D.; Benson, C.H.; Katsumi, T.; Edil, T.B.; Lin, L. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext. Geomembr., 2000, 18(2-4), 133-161.
[http://dx.doi.org/10.1016/S0266-1144(99)00024-2]
[25]
Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.; Lagaron, J.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; Pérez, G.; Jesdinszki, M.; Lindner, M.; Scheuerer, Z.; Castelló, S.; Schmid, M. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials, 2017, 7(4), 74.
[http://dx.doi.org/10.3390/nano7040074] [PMID: 28362331]
[26]
Seyed, M.A.; Atoon, S.; Irani, S.; Khorasani, M.T.; Morteza, D.J. Fibroblast cell behavior study on chitosan/laminin scaffolds for tissue engineering. Minerva Biotecnol., 2016, 28(4), 187-192.
[27]
Jafarbeglou, M.; Abdouss, M.; Shoushtari, A.M.; Jafarbeglou, M. Clay nanocomposites as engineered drug delivery systems. RSC Advances, 2016, 6(55), 50002-50016.
[http://dx.doi.org/10.1039/C6RA03942A]
[28]
Ozkose, U.U.; Altinkok, C.; Yilmaz, O.; Alpturk, O.; Tasdelen, M.A. In situ preparation of poly(2-ethyl-2-oxazoline)/clay nanocomposites via living cationic ring-opening polymerization. Eur. Polym. J., 2017, 88, 586-593.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.07.004]
[29]
Perioli, L.; Ambrogi, V.; di Nauta, L.; Nocchetti, M.; Rossi, C. Effects of hydrotalcite-like nanostructured compounds on biopharmaceutical properties and release of BCS class II drugs: The case of flurbiprofen. Appl. Clay Sci., 2011, 51(4), 407-413.
[http://dx.doi.org/10.1016/j.clay.2010.12.019]
[30]
Liu, P. Polymer modified clay minerals: A review. Appl. Clay Sci., 2007, 38(1-2), 64-76.
[http://dx.doi.org/10.1016/j.clay.2007.01.004]
[31]
Ha, J.U.; Xanthos, M. Drug release characteristics from nanoclay hybrids and their dispersions in organic polymers. Int. J. Pharm., 2011, 414(1-2), 321-331.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.028] [PMID: 21601624]
[32]
Xi, Y.; Frost, R.L.; He, H.; Kloprogge, T.; Bostrom, T. Modification of Wyoming montmorillonite surfaces using a cationic surfactant. Langmuir, 2005, 21(19), 8675-8680.
[http://dx.doi.org/10.1021/la051454i] [PMID: 16142947]
[33]
Saba, N.; Jawaid, M.; Asim, M. Recent advances in nanoclay/natural fibers hybrid composites; Nanoclay Reinforced Polymer, 2016, pp. 1-28.
[http://dx.doi.org/10.1007/978-981-10-0950-1_1]
[34]
Uddin, F. Montmorillonite: An introduction to properties and utilization; In: Current Topics in the Utilization of Clay in Industrial and Medical Applications. IntechOpen: London, 2018.
[35]
Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. Rep., 2000, 28(1-2), 1-63.
[http://dx.doi.org/10.1016/S0927-796X(00)00012-7]
[36]
Diamond, S.; Kinter, E.B. Surface areas of clay minerals as derived from measurements of glycerol retention. Clays Clay Miner., 1956, 5(1), 334-347.
[http://dx.doi.org/10.1346/CCMN.1956.0050128]
[37]
Zhang, H.; Shi, Y.; Xu, X.; Zhang, M.; Ma, L. Structure regulation of bentonite-alginate nanocomposites for controlled release of imidacloprid. ACS Omega, 2020, 5(17), 10068-10076.
[http://dx.doi.org/10.1021/acsomega.0c00610] [PMID: 32391494]
[38]
Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl. Clay Sci., 2010, 47(3-4), 171-181.
[http://dx.doi.org/10.1016/j.clay.2009.10.016]
[39]
Park, J.H.; Shin, H.J.; Kim, M.H.; Kim, J.S.; Kang, N.; Lee, J.Y.; Kim, K.T.; Lee, J.I.; Kim, D.D. Application of montmorillonite in bentonite as a pharmaceutical excipient in drug delivery systems. J. Pharm. Investig., 2016, 46(4), 363-375.
[http://dx.doi.org/10.1007/s40005-016-0258-8] [PMID: 32226640]
[40]
Al Thaher, Y.; Perni, S.; Prokopovich, P. Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material. Adv. Colloid Interface Sci., 2017, 249(249), 234-247.
[http://dx.doi.org/10.1016/j.cis.2017.04.017] [PMID: 28477865]
[41]
Ambre, A.H.; Katti, D.R.; Katti, K.S. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. J. Biomed. Mater. Res. A, 2013, 101A(9), 2644-2660.
[http://dx.doi.org/10.1002/jbm.a.34561] [PMID: 23413041]
[42]
Tzialla, A.A.; Pavlidis, I.V.; Felicissimo, M.P.; Rudolf, P.; Gournis, D.; Stamatis, H. Lipase immobilization on smectite nanoclays: Characterization and application to the epoxidation of α-pinene. Bioresour. Technol., 2010, 101(6), 1587-1594.
[http://dx.doi.org/10.1016/j.biortech.2009.10.023] [PMID: 19910187]
[43]
Alavi, M.; Totonchi, A.; Okhovat, M.A.; Motazedian, M.; Rezaei, P.; Atefi, M. The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing. Blood Coagul. Fibrinolysis, 2014, 25(8), 856-859.
[http://dx.doi.org/10.1097/MBC.0000000000000172] [PMID: 25004023]
[44]
Clark, K.J.; Sarr, A.B.; Grant, P.G.; Phillips, T.D.; Woode, G.N. In vitro studies on the use of clay, clay minerals and charcoal to adsorb bovine rotavirus and bovine coronavirus. Vet. Microbiol., 1998, 63(2-4), 137-146.
[http://dx.doi.org/10.1016/S0378-1135(98)00241-7] [PMID: 9850994]
[45]
Haderlein, S.B.; Schwarzenbach, R.P. Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environ. Sci. Technol., 1993, 27(2), 316-326.
[http://dx.doi.org/10.1021/es00039a012]
[46]
Li, S.; Jiang, C.; Chen, X.; Wang, H.; Lin, J. Lactobacillus casei immobilized onto montmorillonite: Survivability in simulated gastrointestinal conditions, refrigeration and yogurt. Food Res. Int., 2014, 64, 822-830.
[http://dx.doi.org/10.1016/j.foodres.2014.08.030] [PMID: 30011721]
[47]
Adib-Hajbaghery, M.; Mahmoudi, M.; Mashaiekhi, M. Comparing the effects of Bentonite & Calendula on the improvement of infantile diaper dermatitis: A randomized controlled trial. Indian J. Med. Res., 2015, 142(6), 742-746.
[http://dx.doi.org/10.4103/0971-5916.174567] [PMID: 26831423]
[48]
Hopkins, J.G. Some newer bases for use in cutaneous therapy. J. Invest. Dermatol., 1946, 7(4), 171-174.
[http://dx.doi.org/10.1038/jid.1946.21] [PMID: 20244421]
[49]
Styan, K.E.; Martin, D.J.; Poole-Warren, L.A. In vitro fibroblast response to polyurethane organosilicate nanocomposites. J. Biomed. Mater. Res. A, 2008, 86A(3), 571-582.
[http://dx.doi.org/10.1002/jbm.a.31667] [PMID: 17994560]
[50]
Liu, C.; Chen, L.; Zhang, K.; Li, J.; Guan, S. Tailoring ZE21B alloy with nature-inspired extracellular matrix secreted by micro-patterned smooth muscle cells and endothelial cells to promote surface biocompatibility. Int. J. Mol. Sci., 2022, 23(6), 3180.
[http://dx.doi.org/10.3390/ijms23063180] [PMID: 35328601]
[51]
Sun, X.; Xue, Z.; Yasin, A.; He, Y.; Chai, Y.; Li, J.; Zhang, K. Colorectal cancer and adjacent normal mucosa differ in apoptotic and inflammatory protein expression. Engineered Regeneration, 2021, 2, 279-287.
[http://dx.doi.org/10.1016/j.engreg.2022.01.004]
[52]
Suresh, R.; Borkar, S.N.; Sawant, V.A.; Shende, V.S.; Dimble, S.K. Nanoclay drug delivery system. Int. J. Pharma Sci., 2010, 3(2), 901-906.
[53]
Patel, H.A.; Somani, R.S.; Bajaj, H.C.; Jasra, R.V. Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull. Mater. Sci., 2006, 29(2), 133-145.
[http://dx.doi.org/10.1007/BF02704606]
[54]
Lin, F.H.; Lee, Y.H.; Jian, C.H.; Wong, J.M.; Shieh, M.J.; Wang, C.Y. A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier. Biomaterials, 2002, 23(9), 1981-1987.
[http://dx.doi.org/10.1016/S0142-9612(01)00325-8] [PMID: 11996039]
[55]
Pavlukhina, S.; Zhuk, I.; Mentbayeva, A.; Rautenberg, E.; Chang, W.; Yu, X.; van de Belt-Gritter, B.; Busscher, H.J.; van der Mei, H.C.; Sukhishvili, S.A. Small-molecule-hosting nanocomposite films with multiple bacteria-triggered responses. NPG Asia Mater., 2014, 6(8), e121.
[http://dx.doi.org/10.1038/am.2014.63]
[56]
McGinity, J.W.; Lach, J.L. In vitro adsorption of various pharmaceuticals to montmorillonite. J. Pharm. Sci., 1976, 65(6), 896-902.
[http://dx.doi.org/10.1002/jps.2600650623] [PMID: 932977]
[57]
Aguzzi, C.; Cerezo, P.; Viseras, C.; Caramella, C. Use of clays as drug delivery systems: Possibilities and limitations. Appl. Clay Sci., 2007, 36(1-3), 22-36.
[http://dx.doi.org/10.1016/j.clay.2006.06.015]
[58]
Sánchez-Camazano, M.; Sánchez-Martín, M.J.; Vicente, M.T.; Dominguez-Gil, A. Adsorption-desorption of sotalol hydrochloride by Na-montmorillonite. Clay Miner., 1987, 22(2), 121-128.
[http://dx.doi.org/10.1180/claymin.1987.022.2.01]
[59]
Porubcan, L.S.; Born, G.S.; White, J.L.; Hem, S.L. Interaction of digoxin and montmorillonite: Mechanism of adsorption and degradation. J. Pharm. Sci., 1979, 68(3), 358-361.
[http://dx.doi.org/10.1002/jps.2600680327] [PMID: 34025]
[60]
De Oliveira, T.; Guégan, R.; Thiebault, T.; Milbeau, C.L.; Muller, F.; Teixeira, V.; Giovanela, M.; Boussafir, M. Adsorption of diclofenac onto organoclays: Effects of surfactant and environmental (pH and temperature) conditions. J. Hazard. Mater., 2017, 323(Pt A), 558-566.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.001] [PMID: 27180207]
[61]
Karthikeyan, G.; Pius, A.; Alagumuthu, G. Fluoride adsorption studies of montmorillonite clay. Indian J. Chem. Technol., 2005, 12(3), 263-272.
[62]
Seki, Y.; Yurdakoç, K. Adsorption of promethazine hydrochloride with KSF montmorillonite. Adsorption, 2006, 12(1), 89-100.
[http://dx.doi.org/10.1007/s10450-006-0141-4]
[63]
Genç, N.; Can Dogan, E.; Yurtsever, M. Bentonite for ciprofloxacin removal from aqueous solution. Water Sci. Technol., 2013, 68(4), 848-855.
[http://dx.doi.org/10.2166/wst.2013.313] [PMID: 23985515]
[64]
Maheshwari, R.K.; Sharma, S.N.; Jain, N.K. Adsorption studies of phenformin hydrochloride on some clays and its application in formulating sustained release dosage forms. Indian J. Pharm. Sci., 1988, 50(2)
[65]
Fejér, I.; Kata, M.; Erös, I.; Berkesi, O.; Dékány, I. Release of cationic drugs from loaded clay minerals. Colloid Polym. Sci., 2001, 279(12), 1177-1182.
[http://dx.doi.org/10.1007/s003960100527]
[66]
Hu, F.; Zheng, Z.L. Application and prospects of metal ions antibacterial agents. Multipurpose Utiliz. Miner. Resour., 2000, 4, 28-33.
[67]
Zheng, J.P.; Luan, L.; Wang, H.Y.; Xi, L.F.; Yao, K.D. Study on ibuprofen/montmorillonite intercalation composites as drug release system. Appl. Clay Sci., 2007, 36(4), 297-301.
[http://dx.doi.org/10.1016/j.clay.2007.01.012]
[68]
Salahuddin, N.; Elbarbary, A.; Allam, N.G.; Hashim, A.F. Polyamide-montmorillonite nanocomposites as a drug delivery system: Preparation, release of 1,3,4-oxa(thia)diazoles, and antimicrobial activity. J. Appl. Polym. Sci., 2014, 131(23), 41177.
[http://dx.doi.org/10.1002/app.41177]
[69]
Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A review of the synthesis and applications of polymer–nanoclay composites. Appl. Sci., 2018, 8(9), 1696.
[http://dx.doi.org/10.3390/app8091696]
[70]
Lertsutthiwong, P.; Noomun, K.; Khunthon, S.; Limpanart, S. Influence of chitosan characteristics on the properties of biopolymeric chitosan–montmorillonite. Prog. Nat. Sci., 2012, 22(5), 502-508.
[http://dx.doi.org/10.1016/j.pnsc.2012.07.008]
[71]
Xu, W.; Raychowdhury, S.; Jiang, D.D.; Retsos, H.; Giannelis, E.P. Dramatic improvements in toughness in poly(lactide-co-glycolide) nanocomposites. Small, 2008, 4(5), 662-669.
[http://dx.doi.org/10.1002/smll.200701231] [PMID: 18398925]
[72]
Zhuang, H.; Zheng, J.P.; Gao, H.; De Yao, K. In vitro biodegradation and biocompatibility of gelatin/montmorillonite-chitosan intercalated nanocomposite. J. Mater. Sci. Mater. Med., 2007, 18(5), 951-957.
[http://dx.doi.org/10.1007/s10856-006-0093-y] [PMID: 17221313]
[73]
Yildiz, G.; Senkal, B.F. Formation of composites between polyvinylimidazole and bentonites and their use for removal of remazol black B from water. Sep. Sci. Technol., 2016, 51(15-16), 2596-2603.
[http://dx.doi.org/10.1080/01496395.2016.1165707]
[74]
Savas, L.A.; Hancer, M. Montmorillonite reinforced polymer nanocomposite antibacterial film. Appl. Clay Sci., 2015, 108, 40-44.
[http://dx.doi.org/10.1016/j.clay.2015.02.021]
[75]
Behroozi, M.; Pakizeh, M. Study the effects of Cloisite15A nanoclay incorporation on the morphology and gas permeation properties of Pebax2533 polymer. J. Appl. Polym. Sci., 2017, 134(37), 45302.
[http://dx.doi.org/10.1002/app.45302]
[76]
Lee, K.M.; Han, C.D. Linear dynamic viscoelastic properties of functionalized block copolymer/organoclay nanocomposites. Macromolecules, 2003, 36(3), 804-815.
[http://dx.doi.org/10.1021/ma020816f]
[77]
Webster, T.; Ergun, C.; Doremus, R.H.; Siegel, R.W.; Bizios, R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21(17), 1803-1810.
[http://dx.doi.org/10.1016/S0142-9612(00)00075-2] [PMID: 10905463]
[78]
Misra, S.K.; Ansari, T.; Mohn, D.; Valappil, S.P.; Brunner, T.J.; Stark, W.J.; Roy, I.; Knowles, J.C.; Sibbons, P.D.; Jones, E.V.; Boccaccini, A.R.; Salih, V. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. J. R. Soc. Interface, 2010, 7(44), 453-465.
[http://dx.doi.org/10.1098/rsif.2009.0255] [PMID: 19640877]
[79]
Yano, K.; Usuki, A.; Okada, A. Synthesis and properties of polyimide-clay hybrid films. J. Polym. Sci. A Polym. Chem., 1997, 35(11), 2289-2294.
[http://dx.doi.org/10.1002/(SICI)1099-0518(199708)35:11<2289:AID-POLA20>3.0.CO;2-9]
[80]
Dziadkowiec, J.; Mansa, R.; Quintela, A.; Rocha, F.; Detellier, C. Preparation, characterization and application in controlled release of Ibuprofen-loaded Guar Gum/Montmorillonite Bionanocomposites. Appl. Clay Sci., 2017, 135, 52-63.
[http://dx.doi.org/10.1016/j.clay.2016.09.003]
[81]
Joshi, G.V.; Kevadiya, B.D.; Bajaj, H.C. Design and evaluation of controlled drug delivery system of buspirone using inorganic layered clay mineral. Microporous Mesoporous Mater., 2010, 132(3), 526-530.
[http://dx.doi.org/10.1016/j.micromeso.2010.04.003]
[82]
Abdeen, R.; Salahuddin, N. Modified chitosan-clay nanocomposite as a drug delivery system intercalation and in vitro release of ibuprofen. J. Chem., 2013, 576370.
[http://dx.doi.org/10.1155/2013/576370]
[83]
Jain, S.; Datta, M. Oral extended release of dexamethasone: Montmorillonite–PLGA nanocomposites as a delivery vehicle. Appl. Clay Sci., 2015, 104, 182-188.
[http://dx.doi.org/10.1016/j.clay.2014.11.028]
[84]
Mohamed, W.S.; Mostafa, A.B.; Nasr, H.E. Characterization and application of intercalated montmorillonite with verapamil and its polymethyl methacrylate nanocomposite in drug delivery. Polym. Plast. Technol. Eng., 2014, 53(14), 1425-1433.
[http://dx.doi.org/10.1080/03602559.2014.909462]
[85]
Ambrogi, V.; Pietrella, D.; Nocchetti, M.; Casagrande, S.; Moretti, V.; De Marco, S.; Ricci, M. Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J. Colloid Interface Sci., 2017, 491, 265-272.
[http://dx.doi.org/10.1016/j.jcis.2016.12.058] [PMID: 28049050]
[86]
Hou, D.; Hu, S.; Huang, Y.; Gui, R.; Zhang, L.; Tao, Q.; Zhang, C.; Tian, S.; Komarneni, S.; Ping, Q. Preparation and in vitro study of lipid nanoparticles encapsulating drug loaded montmorillonite for ocular delivery. Appl. Clay Sci., 2016, 119, 277-283.
[http://dx.doi.org/10.1016/j.clay.2015.10.028]
[87]
Li, J.; Tian, S.; Tao, Q.; Zhao, Y.; Gui, R.; Yang, F.; Zang, L.; Chen, Y.; Ping, Q.; Hou, D. Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma. Int. J. Nanomedicine, 2018, 13, 3975-3987.
[http://dx.doi.org/10.2147/IJN.S162306] [PMID: 30022821]
[88]
Zhao, Y.; Li, J.; Han, X.; Tao, Q.; Liu, S.; Jiang, G.; Zhu, G.; Yang, F.; Lv, Z.; Chen, Y.; Ping, Q.; Li, W.; Hou, D. Dual controlled release effect of montmorillonite loaded polymer nanoparticles for ophthalmic drug delivery. Appl. Clay Sci., 2019, 180, 105167.
[http://dx.doi.org/10.1016/j.clay.2019.105167]
[89]
Giannelis, E.P. Polymer layered silicate nanocomposites. Adv. Mater., 1996, 8(1), 29-35.
[http://dx.doi.org/10.1002/adma.19960080104]
[90]
Jordan, J.W. Organophilic bentonites. I. Swelling in organic liquids. J. Phys. Colloid Chem., 1949, 53(2), 294-306.
[http://dx.doi.org/10.1021/j150467a009]
[91]
Carrado, K.A.; Komadel, P. Acid activation of bentonites and polymer-clay nanocomposites. Elements, 2009, 5(2), 111-116.
[http://dx.doi.org/10.2113/gselements.5.2.111]
[92]
Jiménez-Castañeda, M.; Medina, D. Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water, 2017, 9(4), 235.
[http://dx.doi.org/10.3390/w9040235]
[93]
Hower, W.F. Adsorption of surfactants on montmorillonite. Clays Clay Miner., 1970, 18(2), 97-105.
[http://dx.doi.org/10.1346/CCMN.1970.0180205]
[94]
Gallo, C.; Rizzo, P.; Guerra, G. Antimicrobial release from cleaning poultices for the conservation and disinfection of stone surfaces. Appl. Clay Sci., 2020, 193, 105667.
[http://dx.doi.org/10.1016/j.clay.2020.105667]
[95]
Lin, S.; Juang, R.S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J. Hazard. Mater., 2002, 92(3), 315-326.
[http://dx.doi.org/10.1016/S0304-3894(02)00026-2] [PMID: 12031615]
[96]
Ma, L.; Chen, Q.; Zhu, J.; Xi, Y.; He, H.; Zhu, R.; Tao, Q.; Ayoko, G.A. Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chem. Eng. J., 2016, 283, 880-888.
[http://dx.doi.org/10.1016/j.cej.2015.08.009]
[97]
Brum, M.C.; Capitaneo, J.L.; Oliveira, J.F. Removal of hexavalent chromium from water by adsorption onto surfactant modified montmorillonite. Miner. Eng., 2010, 23(3), 270-272.
[http://dx.doi.org/10.1016/j.mineng.2009.10.008]
[98]
Günister, E.; Güngör, N.; Ece, Ö.I. The investigations of influence of BDTDACl and DTABr surfactants on rheologic, electrokinetic and XRD properties of Na-activated bentonite dispersions. Mater. Lett., 2006, 60(5), 666-673.
[http://dx.doi.org/10.1016/j.matlet.2005.09.055]
[99]
Chanra, J.; Budianto, E.; Soegijono, B. The role of SDS surfactant in the synthesis of polymer hybrid latex poly-(St-co-BA-co-MMA) with OMMT as filler via mini-emulsion polymerization. In IOP Conference Series: Materials Science and Engineering, 2019, 515(1), p. 012059.
[100]
Anirudhan, T.; Ramachandran, M. Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters. Appl. Clay Sci., 2007, 35(3-4), 276-281.
[http://dx.doi.org/10.1016/j.clay.2006.09.009]
[101]
Anirudhan, T.S.; Ramachandran, M. Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay. J. Colloid Interface Sci., 2006, 299(1), 116-124.
[http://dx.doi.org/10.1016/j.jcis.2006.01.056] [PMID: 16563409]
[102]
Dutta, A.; Singh, N. Surfactant-modified bentonite clays: Preparation, characterization, and atrazine removal. Environ. Sci. Pollut. Res. Int., 2015, 22(5), 3876-3885.
[http://dx.doi.org/10.1007/s11356-014-3656-3] [PMID: 25273519]
[103]
Zhang, H.; Zou, K.; Guo, S.; Duan, X. Nanostructural drug-inorganic clay composites: Structure, thermal property and in vitro release of captopril-intercalated Mg–Al-layered double hydroxides. J. Solid State Chem., 2006, 179(6), 1792-1801.
[http://dx.doi.org/10.1016/j.jssc.2006.03.019]
[104]
Kornmann, X.; Lindberg, H.; Berglund, L.A. Synthesis of epoxy–clay nanocomposites: Influence of the nature of the clay on structure. Polymer, 2001, 42(4), 1303-1310.
[http://dx.doi.org/10.1016/S0032-3861(00)00346-3]
[105]
Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy clay nanocomposites – processing, properties and applications: A review. Compos., Part B Eng., 2013, 45(1), 308-320.
[http://dx.doi.org/10.1016/j.compositesb.2012.04.012]
[106]
Mallakpour, S.; Rashidimoghadam, S. Recent developments in the synthesis of hybrid polymer/clay nanocomposites: Properties and applications. In: Hybrid Polymer Composite Materials; Woodhead Publishing, 2017, pp. 227-265.
[http://dx.doi.org/10.1016/B978-0-08-100785-3.00008-5]
[107]
Kim, G.M.; Lee, D.H.; Hoffmann, B.; Kressler, J.; Stöppelmann, G. Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer, 2001, 42(3), 1095-1100.
[http://dx.doi.org/10.1016/S0032-3861(00)00468-7]
[108]
Joshi, M.; Banerjee, K.; Prasanth, R.; Thakare, V. Polymer/clay nanocomposite based coatings for enhanced gas barrier property. Indian J. Fibre Text. Res., 2006, 31(1), 202-214.
[109]
Krajišnik, D. Daković A.; Malenović A.; Kragović M.; Milić J. Ibuprofen sorption and release by modified natural zeolites as prospective drug carriers. Clay Miner., 2015, 50(1), 11-22.
[http://dx.doi.org/10.1180/claymin.2015.050.1.02]
[110]
Yue, X.; Zhang, R.; Li, H.; Su, M.; Jin, X.; Qin, D. Loading and sustained release of Benzyl Ammonium Chloride (BAC) in Nano-Clays. Materials, 2019, 12(22), 3780.
[http://dx.doi.org/10.3390/ma12223780] [PMID: 31752088]
[111]
Türker, S.; Yarza, F.; Sánchez, R.M.T.; Yapar, S. Surface and interface properties of benzethonium chloride-montmorillonite. Colloids Surf. A Physicochem. Eng. Asp., 2017, 520, 817-825.
[http://dx.doi.org/10.1016/j.colsurfa.2017.02.019]
[112]
Boufatit, M. Recovery of uranium by liquid-liquid extraction and development of clays for the specific adsorption (liquid-solid extraction) of organic pollutants., > Doctoral dissertation, 2006.
[113]
Parmanik, A.; Bose, A.; Ghosh, B. Research advancement on magnetic iron oxide nanoparticles and their potential biomedical applications. Minerva Biotecnol., 2022, 34(2), 86-95.
[114]
Oliveira, L.C.A.; Rios, R.V.R.A.; Fabris, J.D.; Sapag, K.; Garg, V.K.; Lago, R.M. Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Appl. Clay Sci., 2003, 22(4), 169-177.
[http://dx.doi.org/10.1016/S0169-1317(02)00156-4]
[115]
Gecol, H.; Miakatsindila, P.; Ergican, E.; Hiibel, S.R. Biopolymer coated clay particles for the adsorption of tungsten from water. Desalination, 2006, 197(1-3), 165-178.
[http://dx.doi.org/10.1016/j.desal.2006.01.016]
[116]
Yuan, P.; Fan, M.; Yang, D.; He, H.; Liu, D.; Yuan, A.; Zhu, J.; Chen, T. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. J. Hazard. Mater., 2009, 166(2-3), 821-829.
[http://dx.doi.org/10.1016/j.jhazmat.2008.11.083] [PMID: 19135796]
[117]
Bleiman, N.; Mishael, Y.G. Selenium removal from drinking water by adsorption to chitosan–clay composites and oxides: Batch and columns tests. J. Hazard. Mater., 2010, 183(1-3), 590-595.
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.065] [PMID: 20708334]
[118]
Zhao, G.; Zhang, H.; Fan, Q.; Ren, X.; Li, J.; Chen, Y.; Wang, X. Sorption of copper(II) onto super-adsorbent of bentonite–polyacrylamide composites. J. Hazard. Mater., 2010, 173(1-3), 661-668.
[http://dx.doi.org/10.1016/j.jhazmat.2009.08.135] [PMID: 19766390]
[119]
Thakre, D.; Rayalu, S.; Kawade, R.; Meshram, S.; Subrt, J.; Labhsetwar, N. Magnesium incorporated bentonite clay for defluoridation of drinking water. J. Hazard. Mater., 2010, 180(1-3), 122-130.
[http://dx.doi.org/10.1016/j.jhazmat.2010.04.001] [PMID: 20462694]
[120]
Lu, J.; Pan, J. Removal of carbon tetrachloride from contaminated groundwater environment by adsorption method. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering 2010, pp. 1-4.
[http://dx.doi.org/10.1109/ICBBE.2010.5517280]
[121]
Senturk, H.B.; Ozdes, D.; Gundogdu, A.; Duran, C.; Soylak, M. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. J. Hazard. Mater., 2009, 172(1), 353-362.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.019] [PMID: 19656623]
[122]
Gao, Z.; Peng, X.; Zhang, H.; Luan, Z.; Fan, B. Montmorillonite–Cu(II)/Fe(III) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination, 2009, 247(1-3), 337-345.
[http://dx.doi.org/10.1016/j.desal.2008.10.006]
[123]
Chen, D.; Chen, J.; Luan, X.; Ji, H.; Xia, Z. Characterization of anion–cationic surfactants modified montmorillonite and its application for the removal of methyl orange. Chem. Eng. J., 2011, 171(3), 1150-1158.
[http://dx.doi.org/10.1016/j.cej.2011.05.013]
[124]
Fu, M.; Zhang, Z.; Wu, L.; Zhuang, G.; Zhang, S.; Yuan, J.; Liao, L. Investigation on the co-modification process of montmorillonite by anionic and cationic surfactants. Appl. Clay Sci., 2016, 132-133, 694-701.
[http://dx.doi.org/10.1016/j.clay.2016.08.025]
[125]
Zhang, Z.; Liao, L.; Xia, Z. Ultrasound-assisted preparation and characterization of anionic surfactant modified montmorillonites. Appl. Clay Sci., 2010, 50(4), 576-581.
[http://dx.doi.org/10.1016/j.clay.2010.10.017]
[126]
Cao, X.; Wang, J.; Liu, M.; Chen, Y.; Cao, Y.; Yu, X. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering. Front. Mater. Sci., 2015, 9(4), 405-412.
[http://dx.doi.org/10.1007/s11706-015-0317-5]
[127]
Yang, S.; Guo, M.; Yang, E.; Zhang, H. Study on preparation and performance of high swelling bentonite. Materia, 2018, 23(3)
[http://dx.doi.org/10.1590/s1517-707620180003.0522]
[128]
Santhana Krishna Kumar, A.; Ramachandran, R.; Kalidhasan, S.; Rajesh, V.; Rajesh, N. Potential application of dodecylamine modified sodium montmorillonite as an effective adsorbent for hexavalent chromium. Chem. Eng. J., 2012, 211-212, 396-405.
[http://dx.doi.org/10.1016/j.cej.2012.09.029]
[129]
Deng, Y.; Dixon, J.B.; White, G.N. Bonding mechanisms and conformation of poly(ethylene oxide)-based surfactants in interlayer of smectite. Colloid Polym. Sci., 2006, 284(4), 347-356.
[http://dx.doi.org/10.1007/s00396-005-1388-0]
[130]
Calabrese, I.; Gelardi, G.; Merli, M.; Liveri, M.L.T.; Sciascia, L. Clay-biosurfactant materials as functional drug delivery systems: Slowing down effect in the in vitro release of cinnamic acid. Appl. Clay Sci., 2017, 135, 567-574.
[http://dx.doi.org/10.1016/j.clay.2016.10.039]
[131]
Balme, S.; Guégan, R.; Janot, J.M.; Jaber, M.; Lepoitevin, M.; Dejardin, P.; Bourrat, X.; Motelica-Heino, M. Structure, orientation and stability of lysozyme confined in layered materials. Soft Matter, 2013, 9(11), 3188-3196.
[http://dx.doi.org/10.1039/c3sm27880h]
[132]
Guégan, R.; Giovanela, M.; Warmont, F.; Motelica-Heino, M. Nonionic organoclay: A ‘Swiss Army knife’ for the adsorption of organic micro-pollutants? J. Colloid Interface Sci., 2015, 437, 71-79.
[http://dx.doi.org/10.1016/j.jcis.2014.09.043] [PMID: 25313469]
[133]
Salahuddin, N.; Kenawy, E.R.; Abdeen, R. Polyoxypropylene–montmorillonite nanocomposites for drug‐delivery vehicles: Preparation and characterization. J. Appl. Polym. Sci., 2012, 125(S1), 157-166.
[http://dx.doi.org/10.1002/app.35609]
[134]
Andrunik, M.; Bajda, T. Modification of bentonite with cationic and nonionic surfactants: Structural and textural features. Materials, 2019, 12(22), 3772.
[http://dx.doi.org/10.3390/ma12223772] [PMID: 31744177]
[135]
Wang, S.; Li, H. Kinetic modelling and mechanism of dye adsorption on unburned carbon. Dyes Pigments, 2007, 72(3), 308-314.
[http://dx.doi.org/10.1016/j.dyepig.2005.09.005]
[136]
Maziarz, P.; Matusik, J. The effect of acid activation and calcination of halloysite on the efficiency and selectivity of Pb(II), Cd(II), Zn(II) and As(V) uptake. Clay Miner., 2016, 51(3), 385-394.
[http://dx.doi.org/10.1180/claymin.2016.051.3.06]
[137]
Aytas, S.; Yurtlu, M.; Donat, R. Adsorption characteristic of U(VI) ion onto thermally activated bentonite. J. Hazard. Mater., 2009, 172(2-3), 667-674.
[http://dx.doi.org/10.1016/j.jhazmat.2009.07.049] [PMID: 19665840]
[138]
Sapalidis, A.A.; Katsaros, F.K.; Kanellopoulos, N.K. PVA/montmorillonite nanocomposites: development and properties. In: Nanocomposites and Polymers with Analytical Methods; N.C.S.R. Demokritos; Institute of Physical Chemistry: Greece, 2011.
[139]
Wang, L.; Wang, A. Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J. Hazard. Mater., 2007, 147(3), 979-985.
[http://dx.doi.org/10.1016/j.jhazmat.2007.01.145] [PMID: 17349744]
[140]
Strawhecker, K.E.; Manias, E. Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem. Mater., 2000, 12(10), 2943-2949.
[http://dx.doi.org/10.1021/cm000506g]
[141]
Tunç, S.; Duman, O. Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl. Clay Sci., 2010, 48(3), 414-424.
[http://dx.doi.org/10.1016/j.clay.2010.01.016]
[142]
Surya, R.; Mullassery, M.D.; Fernandez, N.B.; Thomas, D. Synthesis and characterization of a clay-alginate nanocomposite for the controlled release of 5-Flurouracil. J. Sci. Adv. Mater. Devices, 2019, 4(3), 432-441.
[http://dx.doi.org/10.1016/j.jsamd.2019.08.001]
[143]
Alekseeva, O.V.; Rodionova, A.N.; Bagrovskaya, N.A.; Agafonov, A.V.; Noskov, A.V. Effect of the bentonite filler on structure and properties of composites based on hydroxyethyl cellulose. Arab. J. Chem., 2019, 12(3), 398-404.
[http://dx.doi.org/10.1016/j.arabjc.2015.07.011]
[144]
Tunç, S.; Duman, O. Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. Lebensm. Wiss. Technol., 2011, 44(2), 465-472.
[http://dx.doi.org/10.1016/j.lwt.2010.08.018]
[145]
Thakur, G.; Singh, A.; Singh, I. Chitosan-montmorillonite polymer composites: Formulation and evaluation of sustained release tablets of aceclofenac. Sci. Pharm., 2015, 84(4), 603-617.
[http://dx.doi.org/10.3390/scipharm84040603] [PMID: 28656939]
[146]
DeLeon, V.H.; Nguyen, T.D.; Nar, M.; D’Souza, N.A.; Golden, T.D. Polymer nanocomposites for improved drug delivery efficiency. Mater. Chem. Phys., 2012, 132(2-3), 409-415.
[http://dx.doi.org/10.1016/j.matchemphys.2011.11.046]
[147]
Mondal, D.; Mollick, M.M.R.; Bhowmick, B.; Maity, D.; Bain, M.K.; Rana, D.; Mukhopadhyay, A.; Dana, K.; Chattopadhyay, D. Effect of poly(vinyl pyrrolidone) on the morphology and physical properties of poly(vinyl alcohol)/sodium montmorillonite nanocomposite films. Prog. Nat. Sci., 2013, 23(6), 579-587.
[http://dx.doi.org/10.1016/j.pnsc.2013.11.009]
[148]
Cypes, S.H.; Saltzman, W.M.; Giannelis, E.P. Organosilicate-polymer drug delivery systems: Controlled release and enhanced mechanical properties. J. Control. Release, 2003, 90(2), 163-169.
[http://dx.doi.org/10.1016/S0168-3659(03)00133-0] [PMID: 12810299]
[149]
Hou, D.; Gui, R.; Hu, S.; Huang, Y.; Feng, Z.; Ping, Q. Preparation and characterization of novel drug-inserted-montmorillonite chitosan carriers for ocular drug delivery. Adv. Nanopart., 2015, 4(3), 70-84.
[http://dx.doi.org/10.4236/anp.2015.43009]
[150]
Swain, R.; Nandi, S.; Sahoo, R.N.; Swain, S.S.; Mohapatra, S.; Mallick, S. Bentonite clay incorporated topical film formulation for delivery of trimetazidine: Control of ocular pressure and in vitro-in vivo correlation. J. Drug Deliv. Sci. Technol., 2022, 67, 102956.
[http://dx.doi.org/10.1016/j.jddst.2021.102956]
[151]
Baek, M.; Choy, J.H.; Choi, S.J. Montmorillonite intercalated with glutathione for antioxidant delivery: Synthesis, characterization, and bioavailability evaluation. Int. J. Pharm., 2012, 425(1-2), 29-34.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.015] [PMID: 22266539]
[152]
Koleman, H.A.; van Zyl, R.; Steyn, N.; Boneschans, B.; Steyn, H.S. Influence of montmorillonite on the dissolution and bioavailability of phenytoin. Drug Dev. Ind. Pharm., 1990, 16(5), 791-805.
[http://dx.doi.org/10.3109/03639049009114910]
[153]
Norrish, K. The swelling of montmorillonite. Discuss. Faraday Soc., 1954, 18, 120-134.
[http://dx.doi.org/10.1039/df9541800120]
[154]
Feng, S.S.; Mei, L.; Anitha, P.; Gan, C.W.; Zhou, W. Poly(lactide)–vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials, 2009, 30(19), 3297-3306.
[http://dx.doi.org/10.1016/j.biomaterials.2009.02.045] [PMID: 19299012]
[155]
Li, H.; Teppen, B.J.; Johnston, C.T.; Boyd, S.A. Thermodynamics of nitroaromatic compound adsorption from water by smectite clay. Environ. Sci. Technol., 2004, 38(20), 5433-5442.
[http://dx.doi.org/10.1021/es035054y] [PMID: 15543748]
[156]
Shi, Y.H.; Xu, Z.R.; Feng, J.L.; Xia, M.S.; Hu, C.H. Effects of modified montmorillonite nanocomposite on growing/finishing pigs during aflatoxicosis. Asian-Australas. J. Anim. Sci., 2005, 18(9), 1305-1309.
[http://dx.doi.org/10.5713/ajas.2005.1305]
[157]
McGinity, J.W.; Lach, J.L. Sustained-release applications of montmorillonite interaction with amphetamine sulfate. J. Pharm. Sci., 1977, 66(1), 63-66.
[http://dx.doi.org/10.1002/jps.2600660115] [PMID: 833744]