Inflammatory Response Modulation by Low-Dose Anti-inflammatory Drugs Treatment in an In Vitro Osteoarthritis Cellular Model

Page: [1740 - 1753] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Low-dose-medicine is based on the administration of low doses of biological regulators to restore the immunologic balance altered in the disease. Cytokines are pivotal regulators of cellular and tissue functions and impaired crosstalk, due to an imbalance between specific cytokines, it is fundamental in acute inflammation and diseases correlated to low-grade chronic inflammation. Osteoarthritis is the most prevalent arthritic disease and a leading cause of disability. In the treatment of muscle- skeletal pathologies, the therapeutic integration of conventional medicine with homotoxicology, or low-dose-medicine appears to be beneficial.

Objective: This study aims to get more insights into the role of inflammatory cytokines and chemokines during the development of osteoarthritis and to evaluate a possible blocking strategy using anti-inflammatory molecules, we resort to an in vitro experimental model using an established human chondrosarcoma cell line that underwent to a well known pro-inflammatory stimulus as bacterial lipopolysaccharide.

Methods: We tested the production of inflammatory-related cytokines and chemokines, and the efficacy of low-dose (LD) administration of anti-inflammatory compounds, namely IL-10 and anti-IL-1, to block inflammatory cellular pathways.

Results: Following an inflammatory insult, chondrocytes upregulated the expression of several pro-inflammatory cyto-/chemokines and this induction could be counteracted by LD IL-10 and anti-IL-1. We reported that these effects could be ascribed to an interfering effect of LD drugs with the NF-κB signaling.

Conclusion: Our results provided a good indication that LD drugs can be effective in inhibiting the inflammatory response in chondrocytes opening the way to new therapies for the treatment of diseases such as osteoarthritis.

[1]
Robinson, W.H.; Lepus, C.M.; Wang, Q.; Raghu, H.; Mao, R.; Lindstrom, T.M.; Sokolove, J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol., 2016, 12(10), 580-592.
[http://dx.doi.org/10.1038/nrrheum.2016.136] [PMID: 27539668]
[2]
Mabey, T.; Honsawek, S. Cytokines as biochemical markers for knee osteoarthritis. World J. Orthop., 2015, 6(1), 95-105.
[http://dx.doi.org/10.5312/wjo.v6.i1.95] [PMID: 25621214]
[3]
Kapoor, M.; Martel-Pelletier, J.; Lajeunesse, D.; Pelletier, J.P.; Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol., 2011, 7(1), 33-42.
[http://dx.doi.org/10.1038/nrrheum.2010.196] [PMID: 21119608]
[4]
Aman, Z.S.; DePhillipo, N.N.; Familiari, F.; Dickens, J.F.; LaPrade, R.F.; Dekker, T.J. Acute intervention with selective interleukin-1 inhibitor therapy may reduce the progression of posttraumatic osteoarthritis of the knee: A systematic review of current evidence. Arthroscopy, 2022, 38(8), 2543-2556.
[http://dx.doi.org/10.1016/j.arthro.2022.02.009] [PMID: 35189307]
[5]
Li, M.; Li, H.; Ran, X.; Yin, H.; Luo, X.; Chen, Z. Effects of adenovirus-mediated knockdown of IRAK4 on synovitis in the osteoarthritis rabbit model. Arthritis Res. Ther., 2021, 23(1), 294.
[http://dx.doi.org/10.1186/s13075-021-02684-8] [PMID: 34863246]
[6]
Paoloni, M.; Agostini, F.; Bernasconi, S.; Bona, G.; Cisari, C.; Fioranelli, M.; Invernizzi, M.; Madeo, A.; Matucci-Cerinic, M.; Migliore, A.; Quirino, N.; Ventura, C.; Viganò, R.; Bernetti, A. Information survey on the use of complementary and alternative medicine. Medicina, 2022, 58(1), 125.
[http://dx.doi.org/10.3390/medicina58010125] [PMID: 35056433]
[7]
Mancini, F.; Milardi, D.; Carfagna, P.; Grande, G.; Miranda, V.; De Cicco, N.A.; Ricciardi, D.; Pontecorvi, A.; Marana, R.; De Cicco Nardone, F. Low-dose SKA progesterone and interleukin-10 modulate the inflammatory pathway in endometriotic cell lines. Int. Immunopharmacol., 2018, 55, 223-230.
[http://dx.doi.org/10.1016/j.intimp.2017.12.008] [PMID: 29272819]
[8]
Castiglioni, S.; Miranda, V.; Cazzaniga, A.; Campanella, M.; Nichelatti, M.; Andena, M.; Maier, J. Femtograms of interferon-γ suffice to modulate the behavior of jurkat cells: A new light in immunomodulation. Int. J. Mol. Sci., 2017, 18(12), 2715.
[http://dx.doi.org/10.3390/ijms18122715] [PMID: 29244717]
[9]
Radice, E.; Miranda, V.; Bellone, G. Low-doses of sequential-kinetic-activated interferon-γ enhance the ex vivo cytotoxicity of peripheral blood natural killer cells from patients with early-stage colorectal cancer. A preliminary study. Int. Immunopharmacol., 2014, 19(1), 66-73.
[http://dx.doi.org/10.1016/j.intimp.2013.12.011] [PMID: 24369312]
[10]
Gariboldi, S.; Palazzo, M.; Zanobbio, L.; Dusio, G.F.; Mauro, V.; Solimene, U.; Cardani, D.; Mantovani, M.; Rumio, C. Low dose oral administration of cytokines for treatment of allergic asthma. Pulm. Pharmacol. Ther., 2009, 22(6), 497-510.
[http://dx.doi.org/10.1016/j.pupt.2009.05.002] [PMID: 19464382]
[11]
Dugina, J.L.; Petrov, V.I.; Babayeva, A.R.; Martyushev-Poklad, A.V.; Tcherevkova, E.V.; Epstein, O.I.; Sergeeva, S.A. A randomized, open-label, comparative, 6- month trial of oral ultra-low doses of antibodies to tumor necrosis factor-alpha and diclofenac in rheumatoid arthritis. Int. J. Tissue React., 2005, 27(1), 15-21.
[PMID: 15847101]
[12]
Peshekhonova, L.K.; Chernov, Y.N.; Barsukova, N.A.; Peshekhonov, D.V. Clinical efficiency and tolerability of artrofoon in patients with rheumatoid arthritis associated with osteopenic syndrome. Bull. Exp. Biol. Med., 2009, 148(3), 468-469.
[http://dx.doi.org/10.1007/s10517-010-0738-1] [PMID: 20396714]
[13]
Cardani, D.; Dusio, G.F.; Luchini, P.; Sciarabba, M.; Solimene, U.; Rumio, C. Oral administration of interleukin-10 and anti-il-1 antibody ameliorates experimental intestinal inflammation. Gastroenterol. Res., 2013, 6(4), 124-133.
[http://dx.doi.org/10.4021/gr556w] [PMID: 27785242]
[14]
Martin-Martin, L.S.; Giovannangeli, F.; Bizzi, E.; Massafra, U.; Ballanti, E.; Cassol, M.; Migliore, A. An open randomized active-controlled clinical trial with low-dose SKA cytokines versus DMARDs evaluating low disease activity maintenance in patients with rheumatoid arthritis. Drug Des. Devel. Ther., 2017, 11, 985-994.
[http://dx.doi.org/10.2147/DDDT.S118298] [PMID: 28408798]
[15]
Blasi, E.; Barluzzi, R.; Bocchini, V.; Mazzolla, R.; Bistoni, F. Immortalization of murine microglial cells by a v-raf / v-myc carrying retrovirus. J. Neuroimmunol., 1990, 27(2-3), 229-237.
[http://dx.doi.org/10.1016/0165-5728(90)90073-V] [PMID: 2110186]
[16]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta delta C(T)) method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[17]
Iuliano, M.; Mangino, G.; Chiantore, M.V.; Zangrillo, M.S.; Accardi, R.; Tommasino, M.; Fiorucci, G.; Romeo, G. Human Papillomavirus E6 and E7 oncoproteins affect the cell microenvironment by classical secretion and extracellular vesicles delivery of inflammatory mediators. Cytokine, 2018, 106, 182-189.
[http://dx.doi.org/10.1016/j.cyto.2017.11.003] [PMID: 29137858]
[18]
Xie, J.; Lotoski, L.C.; Chooniedass, R.; Su, R.C.; Simons, F.E.R.; Liem, J.; Becker, A.B.; Uzonna, J.; HayGlass, K.T. Elevated antigen-driven IL-9 responses are prominent in peanut allergic humans. PLoS One, 2012, 7(10), e45377.
[http://dx.doi.org/10.1371/journal.pone.0045377] [PMID: 23071516]
[19]
Boudot, A.; Kerdivel, G.; Habauzit, D.; Eeckhoute, J.; Le Dily, F.; Flouriot, G.; Samson, M.; Pakdel, F. Differential estrogen-regulation of CXCL12 chemokine receptors, CXCR4 and CXCR7, contributes to the growth effect of estrogens in breast cancer cells. PLoS One, 2011, 6(6), e20898.
[http://dx.doi.org/10.1371/journal.pone.0020898] [PMID: 21695171]
[20]
Arndt, S.; Landthaler, M.; Zimmermann, J.L.; Unger, P.; Wacker, E.; Shimizu, T.; Li, Y.F.; Morfill, G.E.; Bosserhoff, A.K.; Karrer, S. Effects of cold atmospheric plasma (CAP) on ß-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One, 2015, 10(3), e0120041.
[http://dx.doi.org/10.1371/journal.pone.0120041] [PMID: 25768736]
[21]
Cho, Y.S.; Kim, K.N.; Shim, J.H. Effects of cellular 11β-hydroxysteroid dehydrogenase 1 on lps-induced inflammatory responses in synovial cell line, SW982. Immune Netw., 2017, 17(3), 171-178.
[http://dx.doi.org/10.4110/in.2017.17.3.171] [PMID: 28680378]
[22]
Nennig, S.E.; Schank, J.R. The role of NFkB in drug addiction: Beyond inflammation. Alcohol Alcohol., 2017, 52(2), 172-179.
[http://dx.doi.org/10.1093/alcalc/agw098] [PMID: 28043969]
[23]
Magnani, M.; Crinelli, R.; Bianchi, M.; Antonelli, A. The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kB (NF-kB). Curr. Drug Targets, 2000, 1(4), 387-399.
[http://dx.doi.org/10.2174/1389450003349056] [PMID: 11467077]
[24]
Mangino, G.; Famiglietti, M.; Capone, C.; Veroni, C.; Percario, Z.A.; Leone, S.; Fiorucci, G.; Lülf, S.; Romeo, G.; Agresti, C.; Persichini, T.; Geyer, M.; Affabris, E. HIV-1 myristoylated nef treatment of murine microglial cells activates inducible nitric oxide synthase, NO2 production and neurotoxic activity. PLoS One, 2015, 10(6), e0130189.
[http://dx.doi.org/10.1371/journal.pone.0130189] [PMID: 26066624]
[25]
Dhabhar, F.S. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol. Res., 2014, 58(2-3), 193-210.
[http://dx.doi.org/10.1007/s12026-014-8517-0] [PMID: 24798553]
[26]
Raphael, I.; Nalawade, S.; Eagar, T.N.; Forsthuber, T.G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine, 2015, 74(1), 5-17.
[http://dx.doi.org/10.1016/j.cyto.2014.09.011] [PMID: 25458968]
[27]
Appay, V.; Rowland-Jones, S.L. RANTES: A versatile and controversial chemokine. Trends Immunol., 2001, 22(2), 83-87.
[http://dx.doi.org/10.1016/S1471-4906(00)01812-3] [PMID: 11286708]
[28]
Daly, C.; Rollins, B.J. Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. Microcirculation, 2003, 10(3-4), 247-257.
[http://dx.doi.org/10.1080/mic.10.3-4.247.257] [PMID: 12851642]
[29]
Iida, N.; Grotendorst, G.R. Cloning and sequencing of a new gro transcript from activated human monocytes: Expression in leukocytes and wound tissue. Mol. Cell. Biol., 1990, 10(10), 5596-5599.
[PMID: 2078213]
[30]
Marcu, K.B.; Otero, M.; Olivotto, E.; Borzi, R.M.; Goldring, M.B. NF-kappaB signaling: Multiple angles to target OA. Curr. Drug Targets, 2010, 11(5), 599-613.
[http://dx.doi.org/10.2174/138945010791011938] [PMID: 20199390]
[31]
Bondeson, J.; Blom, A.B.; Wainwright, S.; Hughes, C.; Caterson, B.; van den Berg, W.B. The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis. Arthritis Rheum., 2010, 62(3), 647-657.
[http://dx.doi.org/10.1002/art.27290] [PMID: 20187160]
[32]
Fendrick, A.M.; Greenberg, B.P. A review of the benefits and risks of nonsteroidal anti-inflammatory drugs in the management of mild-to-moderate osteoarthritis. Osteopath. Med. Prim. Care, 2009, 3(1), 1.
[http://dx.doi.org/10.1186/1750-4732-3-1] [PMID: 19126235]
[33]
Liu, S.; Deng, Z.; Chen, K.; Jian, S.; Zhou, F.; Yang, Y.; Fu, Z.; Xie, H.; Xiong, J.; Zhu, W. Cartilage tissue engineering: From proinflammatory and anti-inflammatory cytokines to osteoarthritis treatments (Review). Mol. Med. Rep., 2022, 25(3), 99.
[http://dx.doi.org/10.3892/mmr.2022.12615] [PMID: 35088882]
[34]
Moss, K.L.; Jiang, Z.; Dodson, M.E.; Linardi, R.L.; Haughan, J.; Gale, A.L.; Grzybowski, C.; Engiles, J.E.; Stefanovski, D.; Robinson, M.A.; Ortved, K.F. Sustained interleukin-10 transgene expression following intra-articular AAV5-IL-10 administration to horses. Hum. Gene Ther., 2020, 31(1-2), 110-118.
[http://dx.doi.org/10.1089/hum.2019.195] [PMID: 31773987]
[35]
Ortved, K.F.; Begum, L.; Stefanovski, D.; Nixon, A.J. AAV-mediated overexpression of IL-10 mitigates the inflammatory cascade in stimulated equine chondrocyte pellets. Curr. Gene Ther., 2018, 18(3), 171-179.
[http://dx.doi.org/10.2174/1566523218666180510165123] [PMID: 29749312]
[36]
Schulze-Tanzil, G.; Zreiqat, H.; Sabat, R.; Kohl, B.; Halder, A.; Müller, R.; John, T. Interleukin-10 and articular cartilage: Experimental therapeutical approaches in cartilage disorders. Curr. Gene Ther., 2009, 9(4), 306-315.
[http://dx.doi.org/10.2174/156652309788921044] [PMID: 19534651]
[37]
Behrendt, P.; Preusse-Prange, A.; Klüter, T.; Haake, M.; Rolauffs, B.; Grodzinsky, A.J.; Lippross, S.; Kurz, B. IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Osteoarthritis Cartilage, 2016, 24(11), 1981-1988.
[http://dx.doi.org/10.1016/j.joca.2016.06.016] [PMID: 27349464]
[38]
Reitamo, S.; Remitz, A.; Tamai, K.; Uitto, J. Interleukin-10 modulates type I collagen and matrix metalloprotease gene expression in cultured human skin fibroblasts. J. Clin. Invest., 1994, 94(6), 2489-2492.
[http://dx.doi.org/10.1172/JCI117618] [PMID: 7989607]
[39]
Salaffi, F.; Ciapetti, A.; Carotti, M. The sources of pain in osteoarthritis: A pathophysiological review. Reumatismo, 2014, 66(1), 57-71.
[http://dx.doi.org/10.4081/reumatismo.2014.766] [PMID: 24938198]
[40]
Kwilasz, A.J.; Grace, P.M.; Serbedzija, P.; Maier, S.F.; Watkins, L.R. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology, 2015, 96(Pt A), 55-69.
[http://dx.doi.org/10.1016/j.neuropharm.2014.10.020]