Evaluation of Intracellular Metabolism of Methotrexate in Hepatocytes and Embryonic Kidney Cells based on Folylpolyglutamate Synthetase and Gamma-Glutamyl Hydrolase Expression

Page: [139 - 147] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Methotrexate (MTX) is a common folic acid antagonist in clinical medicine, easily inducing a common adverse side effect of liver and kidney injury. It has been found that the expression of Folylpolyglutamate Synthetase (FPGS) and gamma-Glutamyl Hydrolase (GGH) may be closely related to that of related proteins to affect the intracellular metabolism of MTX.

Objective: The relationship between FPGS/GGH and MTXPGs accumulation in liver and kidney cells was explored by adjusting the expression of FPGS and GGH in cells using UPLC-MS/MS quantitative technology.

Method: Based on UPLC-MS/MS quantitative techniques, the relationship between MTXPGs accumulation and FPGS/GGH in hepatocytes and embryonic kidney cells was explored by adjusting the expression of FPGS and GGH, and the effect of FPGS/GGH on the intracellular toxicity of MTX was comprehensively analyzed.

Result: The results showed that the difference in methotrexate polyglutamates (MTXPGs) accumulation in liver and kidney cells was related to the difference in FPGS and GGH expression. The expression of FPGS interacted with that of GGH. These results suggest that the protein abundance ratio of FPGS to GGH (FPGS/GGH) has more potential to be used as a predictor of MTX efficacy than the FPGS or GGH single protein index. This can effectively avoid liver and kidney damage caused by MTX and guides the rational use of drugs in MTX.

Conclusion: The results prove that there is a positive correlation between the FPGS/GGH and the accumulation of MTXPGS in liver and kidney cells. Summarily, the FPGS/GGH is expected to be a predictor for MTXPGs accumulation and provides an effective method to evaluate the toxicity caused by MTX.

[1]
Zheng, Y.; Cantley, L.C. Toward a better understanding of folate metabolism in health and disease. J. Exp. Med., 2019, 216(2), 253-266.
[http://dx.doi.org/10.1084/jem.20181965] [PMID: 30587505]
[2]
Raz, S.; Stark, M.; Assaraf, Y.G. Folylpoly-γ-glutamate synthetase: A key determinant of folate homeostasis and antifolate resistance in cancer. Drug Resist. Updat., 2016, 28, 43-64.
[http://dx.doi.org/10.1016/j.drup.2016.06.004] [PMID: 27620954]
[3]
Gervasini, G.; Mota-Zamorano, S. Clinical implications of methotrexate pharmacogenetics in childhood acute lymphoblastic leukaemia. Curr. Drug Metab., 2019, 20(4), 313-330.
[http://dx.doi.org/10.2174/1389200220666190130161758] [PMID: 30706807]
[4]
Silva, M.F.; Ribeiro, C.; Gonçalves, V.M.F.; Tiritan, M.E.; Lima, Á. Liquid chromatographic methods for the therapeutic drug monitoring of methotrexate as clinical decision support for personalized medicine: A brief review. Biomed. Chromatogr., 2018, 32(5), e4159.
[http://dx.doi.org/10.1002/bmc.4159] [PMID: 29226354]
[5]
Leclerc, G.J.; Leclerc, G.M.; Kinser, T.T.H.; Barredo, J.C. Analysis of folylpoly-γ-glutamate synthetase gene expression in human B-precursor ALL and T-lineage ALL cells. BMC Cancer, 2006, 6(1), 132.
[http://dx.doi.org/10.1186/1471-2407-6-132] [PMID: 16707018]
[6]
Stamp, L.K.; Hazlett, J.; Highton, J.; Hessian, P.A. Expression of methotrexate transporters and metabolizing enzymes in rheumatoid synovial tissue. J. Rheumatol., 2013, 40(9), 1519-1522.
[http://dx.doi.org/10.3899/jrheum.130066] [PMID: 23858048]
[7]
Adam de Beaumais, T.; Jacqz-Aigrain, E. Intracellular disposition of methotrexate in acute lymphoblastic leukemia in children. Curr. Drug Metab., 2012, 13(6), 822-834.
[http://dx.doi.org/10.2174/138920012800840400] [PMID: 22571483]
[8]
Organista-Nava, J.; Gómez-Gómez, Y.; Del Moral-Hernandez, O.; Illades-Aguiar, B.; Gómez-Santamaria, J.; Rivera-Ramírez, A.B.; Saavedra-Herrera, M.V.; Jimenez-López, M.A.; Leyva-Vázquez, M.A. Deregulation of folate pathway gene expression correlates with poor prognosis in acute leukemia. Oncol. Lett., 2019, 18(3), 3115-3127.
[http://dx.doi.org/10.3892/ol.2019.10650] [PMID: 31452789]
[9]
Wang, Z.; Zhang, N.; Chen, C.; Chen, S.; Xu, J.; Zhou, Y.; Zhao, X.; Cui, Y. Influence of the OATP polymorphism on the population pharmacokinetics of methotrexate in chinese patients. Curr. Drug Metab., 2019, 20(7), 592-600.
[http://dx.doi.org/10.2174/1389200220666190701094756] [PMID: 31267867]
[10]
Shinojima, N.; Fujimoto, K.; Makino, K.; Todaka, K.; Yamada, K.; Mikami, Y.; Oda, K.; Nakamura, K.; Jono, H.; Kuratsu, J.; Nakamura, H.; Yano, S.; Mukasa, A. Clinical significance of polyglutamylation in primary central nervous system lymphoma. Acta Neuropathol. Commun., 2018, 6(1), 15.
[http://dx.doi.org/10.1186/s40478-018-0522-4] [PMID: 29475458]
[11]
Shea, B.; Swinden, M.V.; Tanjong Ghogomu, E.; Ortiz, Z.; Katchamart, W.; Rader, T.; Bombardier, C.; Wells, G.A.; Tugwell, P. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. Cochrane Libr., 2013, 2014(7), CD000951.
[http://dx.doi.org/10.1002/14651858.CD000951.pub2] [PMID: 23728635]
[12]
Ozkorkmaz, E.G.; Gul, N.; Ozluk, A.; Ozay, Y. Ultrastructural alterations of liver tissue cells in methotrexate-treated Balb/c mice. J. Microsc. Ultrastruct., 2018, 6(4), 192-196.
[PMID: 30464892]
[13]
Schmiegelow, K. Advances in individual prediction of methotrexate toxicity: A review. Br. J. Haematol., 2009, 146(5), 489-503.
[http://dx.doi.org/10.1111/j.1365-2141.2009.07765.x] [PMID: 19538530]
[14]
Herfarth, H.H.; Long, M.D.; Isaacs, K.L. Methotrexate: Underused and ignored? Dig. Dis., 2012, 30(S3), 112-118.
[http://dx.doi.org/10.1159/000342735] [PMID: 23295701]
[15]
Bienemann, K.; Staege, M.S.; Howe, S.J.; Sena-Esteves, M.; Hanenberg, H.; Kramm, C.M. Targeted expression of human folylpolyglutamate synthase for selective enhancement of methotrexate chemotherapy in osteosarcoma cells. Cancer Gene Ther., 2013, 20(9), 514-520.
[http://dx.doi.org/10.1038/cgt.2013.48] [PMID: 23949282]
[16]
Fujimoto, K.; Shinojima, N.; Hayashi, M.; Nakano, T.; Ichimura, K.; Mukasa, A. Histone deacetylase inhibition enhances the therapeutic effects of methotrexate on primary central nervous system lymphoma. Neurooncol. Adv., 2020, 2(1), vdaa084.
[http://dx.doi.org/10.1093/noajnl/vdaa084] [PMID: 32793886]
[17]
Funk, R.S.; van Haandel, L.; Leeder, J.S.; Becker, M.L. Folate depletion and increased glutamation in juvenile idiopathic arthritis patients treated with methotrexate. Arthritis Rheumatol., 2014, 66(12), 3476-3485.
[http://dx.doi.org/10.1002/art.38865] [PMID: 25186097]
[18]
Danila, M.I.; Hughes, L.B.; Brown, E.E.; Morgan, S.L.; Baggott, J.E.; Arnett, D.K.; Bridges, S.L., Jr Measurement of erythrocyte methotrexate polyglutamate levels: Ready for clinical use in rheumatoid arthritis? Curr. Rheumatol. Rep., 2010, 12(5), 342-347.
[http://dx.doi.org/10.1007/s11926-010-0120-3] [PMID: 20665136]
[19]
Mohamed, H.J.; Sorich, M.J.; Kowalski, S.M.; McKinnon, R.; Proudman, S.M.; Cleland, L.; Wiese, M.D. The role and utility of measuring red blood cell methotrexate polyglutamate concentrations in inflammatory arthropathies—a systematic review. Eur. J. Clin. Pharmacol., 2015, 71(4), 411-423.
[http://dx.doi.org/10.1007/s00228-015-1819-x] [PMID: 25687918]
[20]
Halilova, K.I.; Brown, E.E.; Morgan, S.L.; Bridges, S.L., Jr; Hwang, M.H.; Arnett, D.K.; Danila, M.I. Markers of treatment response to methotrexate in rheumatoid arthritis: Where do we stand? Int. J. Rheumatol., 2012, 2012, 978396.
[http://dx.doi.org/10.1155/2012/978396] [PMID: 22844292]
[21]
Cho, R.C.; Cole, P.D.; Sohn, K.J.; Gaisano, G.; Croxford, R.; Kamen, B.A.; Kim, Y.I. Effects of folate and folylpolyglutamyl synthase modulation on chemosensitivity of breast cancer cells. Mol. Cancer Ther., 2007, 6(11), 2909-2920.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0449] [PMID: 18025275]
[22]
Aithal, G.P. Hepatotoxicity related to antirheumatic drugs. Nat. Rev. Rheumatol., 2011, 7(3), 139-150.
[http://dx.doi.org/10.1038/nrrheum.2010.214] [PMID: 21263458]
[23]
Hattinger, C.M.; Tavanti, E.; Fanelli, M.; Vella, S.; Picci, P.; Serra, M. Pharmacogenomics of genes involved in antifolate drug response and toxicity in osteosarcoma. Expert Opin. Drug Metab. Toxicol., 2017, 13(3), 245-257.
[http://dx.doi.org/10.1080/17425255.2017.1246532] [PMID: 27758143]
[24]
Fang, C.; Zhang, Q.; Wang, N.; Jing, X.; Xu, Z. Effectiveness and tolerability of methotrexate in pulmonary sarcoidosis: A single center real-world study. Sarcoidosis Vasc. Diffuse Lung Dis., 2019, 36(3), 217-227.
[PMID: 32476957]
[25]
Ouyang, Z.; Huang, J.; Ren, Y.; Li, H.; Ding, Y.; Zhang, K.; Jiang, L.; Yu, P. Studies on the intracellular accumulation process of methotrexate and its correlation with the key protein using an LC-MS/MS method: A novel way to realize prospective individualized medication. Anal. Bioanal. Chem., 2021, 413(7), 1799-1807.
[http://dx.doi.org/10.1007/s00216-020-03125-2] [PMID: 33564926]
[26]
Yamamoto, T.; Shikano, K.; Nanki, T.; Kawai, S. Folylpolyglutamate synthase is a major determinant of intracellular methotrexate polyglutamates in patients with rheumatoid arthritis. Sci. Rep., 2016, 6(1), 35615.
[http://dx.doi.org/10.1038/srep35615] [PMID: 27752107]
[27]
Cole, P.D.; Kamen, B.A.; Gorlick, R.; Banerjee, D.; Smith, A.K.; Magill, E.; Bertino, J.R. Effects of overexpression of gamma-Glutamyl hydrolase on methotrexate metabolism and resistance. Cancer Res., 2001, 61(11), 4599-4604.
[PMID: 11389096]
[28]
Sakamoto, E.; Tsukioka, S.; Oie, S.; Kobunai, T.; Tsujimoto, H.; Sakamoto, K.; Okayama, Y.; Sugimoto, Y.; Oka, T.; Fukushima, M.; Oka, T. Folylpolyglutamate synthase and γ-glutamyl hydrolase regulate leucovorin-enhanced 5-fluorouracil anticancer activity. Biochem. Biophys. Res. Commun., 2008, 365(4), 801-807.
[http://dx.doi.org/10.1016/j.bbrc.2007.11.043] [PMID: 18035049]
[29]
Thomas, J.A.; Aithal, G.P. Monitoring liver function during methotrexate therapy for psoriasis: are routine biopsies really necessary? Am. J. Clin. Dermatol., 2005, 6(6), 357-363.
[http://dx.doi.org/10.2165/00128071-200506060-00003] [PMID: 16343024]