Advances in Two-dimensional (2D) Inorganic Chiral Materials and 2D Organic-inorganic Hybrid Chiral Materials

Page: [293 - 308] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Recently, two-dimensional (2D) materials have gained immense attention, as they are promising in various application fields, such as energy storage, thermal management, photodetectors, catalysis, field-effect transistors, and photovoltaic modules. These merits of 2D materials are attributed to their unique structure and properties. Chirality is an intrinsic property of a substance, which means the substance can not overlap with its mirror image. Significant progress has been made in chiral science, for chirality uniquely influences a chiral substance's performance. With the rapid development of chiral science, it became unveiled that chirality not only exists in chiral organic molecules but can also be induced in 2D inorganic materials and 2D organic-inorganic hybrid materials by breaking the chiral symmetry within their framework to form 2D chiral materials. Compared with 2D materials that do not have chirality, these 2D inorganic chiral materials and 2D organic-inorganic hybrid chiral materials exhibit innovative performance due to chiral symmetry breaking. Nevertheless, at present, only a fraction of work is available which comprehensively sums up the progress of these promising 2D chiral materials. Thus, given their high potential, it is urgent to summarize these newly developed 2D chiral materials comprehensively. In the current study, to feature and highlight their major significance, the recent progress of 2D inorganic materials and 2D organic-inorganic hybrid materials from their chemical composition and categories, application potential associated with their unique properties, and present synthesis strategies to fabricate them along with discussion concerning the development challenges and their bright future were reviewed. This review is anticipated to be instructive and provide a high understanding of advanced functional 2D materials with chirality.

Graphical Abstract

[1]
Khan, K.; Tareen, A.K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(2), 387-440.
[http://dx.doi.org/10.1039/C9TC04187G]
[2]
Fu, Q.; Bao, X. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev., 2017, 46(7), 1842-1874.
[http://dx.doi.org/10.1039/C6CS00424E] [PMID: 27722323]
[3]
Guan, Z.; Hu, H.; Shen, X.; Xiang, P.; Zhong, N.; Chu, J.; Duan, C. Recent progress in two dimensional ferroelectric materials. Adv. Electron. Mater., 2020, 6(1), 1900818.
[http://dx.doi.org/10.1002/aelm.201900818]
[4]
Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L. Exploring two-dimensional materials toward the next-generation circuits: From monomer design to assembly control. Chem. Rev., 2018, 118(13), 6236-6296.
[http://dx.doi.org/10.1021/acs.chemrev.7b00633] [PMID: 29381058]
[5]
Wang, C.; Liu, S.; Duan, Y.; Huang, Z.; Che, S. Hard-templating of chiral TiO 2 nanofibres with electron transition-based optical activity. Sci. Technol. Adv. Mater., 2015, 16(5), 054206.
[http://dx.doi.org/10.1088/1468-6996/16/5/054206] [PMID: 27877835]
[6]
He, Z.; Asare-Yeboah, K.; Zhang, Z.; Bi, S. Manipulate organic crystal morphology and charge transport. Org. Electron., 2022, 103, 106448.
[http://dx.doi.org/10.1016/j.orgel.2022.106448]
[7]
He, Z.; Chen, J.; Li, D. Polymer additive controlled morphology for high performance organic thin film transistors. Soft Matter, 2019, 15(29), 5790-5803.
[http://dx.doi.org/10.1039/C9SM01053J] [PMID: 31290910]
[8]
He, Z.; Zhang, Z.; Bi, S. Tailoring the molecular weight of polymer additives for organic semiconductors. Materials Advances, 2022, 3(4), 1953-1973.
[http://dx.doi.org/10.1039/D1MA00964H]
[9]
He, Z.; Zhang, Z.; Bi, S. Nanoparticles for organic electronics applications. Mater. Res. Express, 2020, 7(1), 012004.
[http://dx.doi.org/10.1088/2053-1591/ab636f]
[10]
Fan, J.; Kotov, N.A. Chiral nanoceramics. Adv. Mater., 2020, 32(41), 1906738.
[http://dx.doi.org/10.1002/adma.201906738] [PMID: 32500963]
[11]
Shen, Q.; Mao, W.; Han, L.; Duan, Y.; Che, S. Chiral mesostructured SnO2 films with tunable optical activities. Opt. Mater., 2019, 94, 21-27.
[http://dx.doi.org/10.1016/j.optmat.2019.04.055]
[12]
Sirenko, V.Y.; Kucheriv, O.I.; Naumova, D.D.; Fesych, I.V.; Linnik, R.P. Dascălu, I.A.; Shova, S.; Fritsky, I.O.; Gural’skiy, I.A. Chiral organic–inorganic lead halide perovskites based on α-alanine. New J. Chem., 2021, 45(28), 12606-12612.
[http://dx.doi.org/10.1039/D1NJ01089A]
[13]
Kim, Y.H.; Zhai, Y.; Gaulding, E.A.; Habisreutinger, S.N.; Moot, T.; Rosales, B.A.; Lu, H.; Hazarika, A.; Brunecky, R.; Wheeler, L.M.; Berry, J.J.; Beard, M.C.; Luther, J.M. Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano, 2020, 14(7), 8816-8825.
[http://dx.doi.org/10.1021/acsnano.0c03418] [PMID: 32644773]
[14]
Lu, H.; Wang, J.; Xiao, C.; Pan, X.; Chen, X.; Brunecky, R.; Berry, J.J.; Zhu, K.; Beard, M.C.; Vardeny, Z.V. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv., 2019, 5(12), eaay0571.
[http://dx.doi.org/10.1126/sciadv.aay0571] [PMID: 31840072]
[15]
Bai, T.; Ai, J.; Liao, L.; Luo, J.; Song, C.; Duan, Y.; Han, L.; Che, S. Chiral mesostructured NiO films with spin polarisation. Angew. Chem. Int. Ed., 2021, 60(17), 9421-9426.
[http://dx.doi.org/10.1002/anie.202101069] [PMID: 33554464]
[16]
Ding, K.; Ai, J.; Deng, Q.; Huang, B.; Zhou, C.; Duan, T.; Duan, Y.; Han, L.; Jiang, J.; Che, S. Chiral mesostructured BiOBr films with circularly polarized colour response. Angew. Chem. Int. Ed., 2021, 60(35), 19024-19029.
[http://dx.doi.org/10.1002/anie.202105496] [PMID: 34196086]
[17]
Zhang, W.; Wang, W.; Hu, Y.; Guan, H.; Yang, X.; Hao, L. Chiral CuO@Ni with continuous macroporous framework and its high catalytic activity for electrochemical water oxidation. Int. J. Hydrogen Energy, 2021, 46(13), 8922-8931.
[http://dx.doi.org/10.1016/j.ijhydene.2020.12.210]
[18]
Ghosh, S.; Bloom, B.P.; Lu, Y.; Lamont, D.; Waldeck, D.H. Increasing the efficiency of water splitting through spin polarization using cobalt oxide thin film catalysts. J. Phys. Chem. C, 2020, 124(41), 22610-22618.
[http://dx.doi.org/10.1021/acs.jpcc.0c07372]
[19]
Wang, C.; Li, J.; Paineau, E.; Laachachi, A.; Colbeau-Justin, C.; Remita, H.; Ghazzal, M.N. A sol–gel biotemplating route with cellulose nanocrystals to design a photocatalyst for improving hydrogen generation. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(21), 10779-10786.
[http://dx.doi.org/10.1039/C9TA12665A]
[20]
van Popta, A.C.; Sit, J.C.; Brett, M.J. Optical properties of porous helical thin films. Appl. Opt., 2004, 43(18), 3632-3639.
[http://dx.doi.org/10.1364/AO.43.003632] [PMID: 15218603]
[21]
Zhang, F.; Ai, J.; Ding, K.; Duan, Y.; Han, L.; Che, S. Synthesis of chiral mesostructured titanium dioxide films. Chem. Commun., 2020, 56(35), 4848-4851.
[http://dx.doi.org/10.1039/D0CC00669F] [PMID: 32236248]
[22]
Gesesse, G.D.; Li, C.; Paineau, E.; Habibi, Y.; Remita, H.; Colbeau-Justin, C.; Ghazzal, M.N. Enhanced photogenerated charge carriers and photocatalytic activity of biotemplated mesoporous tio 2 films with a chiral nematic structure. Chem. Mater., 2019, 31(13), 4851-4863.
[http://dx.doi.org/10.1021/acs.chemmater.9b01465]
[23]
Nguyen, T.D.; Lizundia, E.; Niederberger, M.; Hamad, W.Y.; MacLachlan, M.J. Self-assembly route to tio 2 and tic with a liquid crystalline order. Chem. Mater., 2019, 31(6), 2174-2181.
[http://dx.doi.org/10.1021/acs.chemmater.9b00462]
[24]
Shopsowitz, K.E.; Qi, H.; Hamad, W.Y.; MacLachlan, M.J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature, 2010, 468(7322), 422-425.
[http://dx.doi.org/10.1038/nature09540] [PMID: 21085176]
[25]
Switzer, J.A.; Kothari, H.M.; Poizot, P.; Nakanishi, S.; Bohannan, E.W. Enantiospecific electrodeposition of a chiral catalyst. Nature, 2003, 425(6957), 490-493.
[http://dx.doi.org/10.1038/nature01990] [PMID: 14523441]
[26]
Widmer, R.; Haug, F.J.; Ruffieux, P.; Gröning, O.; Bielmann, M.; Gröning, P.; Fasel, R. Surface chirality of CuO thin films. J. Am. Chem. Soc., 2006, 128(43), 14103-14108.
[http://dx.doi.org/10.1021/ja0640703] [PMID: 17061893]
[27]
Liu, R.; Kulp, E.A.; Oba, F.; Bohannan, E.W.; Ernst, F.; Switzer, J.A. Epitaxial electrodeposition of high-aspect-ratio Cu2O(110) nanostructures on InP(111). Chem. Mater., 2005, 17(4), 725-729.
[http://dx.doi.org/10.1021/cm048296l]
[28]
Duan, Y.; Han, L.; Zhang, J.; Asahina, S.; Huang, Z.; Shi, L.; Wang, B.; Cao, Y.; Yao, Y.; Ma, L.; Wang, C.; Dukor, R.K.; Sun, L.; Jiang, C.; Tang, Z.; Nafie, L.A.; Che, S. Optically active nanostructured ZnO films. Angew. Chem. Int. Ed., 2015, 54(50), 15170-15175.
[http://dx.doi.org/10.1002/anie.201507502] [PMID: 26489386]
[29]
Lv, J.; Ding, D.; Yang, X.; Hou, K.; Miao, X.; Wang, D.; Kou, B.; Huang, L.; Tang, Z. Biomimetic chiral photonic crystals. Angew. Chem. Int. Ed., 2019, 58(23), 7783-7787.
[http://dx.doi.org/10.1002/anie.201903264] [PMID: 30985979]
[30]
Szeto, B.; Hrudey, P.C.P.; Taschuk, M.; Brett, M.J. Circularly polarized luminescence from chiral thin films. Liq. Cryst. Mater. Devices Appl., 2006, XI, 613511.
[http://dx.doi.org/10.1117/12.646452]
[31]
Shukla, N.; Gellman, A.J. Chiral metal surfaces for enantioselective processes. Nat. Mater., 2020, 19(9), 939-945.
[http://dx.doi.org/10.1038/s41563-020-0734-4] [PMID: 32747699]
[32]
Wattanakit, C. Chiral metals as electrodes. Curr. Opin. Electrochem., 2018, 7, 54-60.
[http://dx.doi.org/10.1016/j.coelec.2017.09.027]
[33]
McFadden, C.F.; Cremer, P.S.; Gellman, A.J. Adsorption of chiral alcohols on “chiral” metal surfaces. Langmuir, 1996, 12(10), 2483-2487.
[http://dx.doi.org/10.1021/la950348l]
[34]
Ahmadi, A.; Attard, G.; Feliu, J.; Rodes, A. Surface reactivity at “chiral” platinum surfaces. Langmuir, 1999, 15(7), 2420-2424.
[http://dx.doi.org/10.1021/la9810915]
[35]
Martins, A.; Ferreira, V.; Queirós, A.; Aroso, I.; Silva, F.; Feliu, J. Enantiomeric electro-oxidation of D- and L-glucose on chiral gold single crystal surfaces. Electrochem. Commun., 2003, 5(9), 741-746.
[http://dx.doi.org/10.1016/S1388-2481(03)00182-6]
[36]
Kelso, M.V.; Tubbesing, J.Z.; Chen, Q.; Switzer, J.A. Epitaxial electrodeposition of chiral metal surfaces on silicon(643). J. Am. Chem. Soc., 2018, 140(46), 15812-15819.
[http://dx.doi.org/10.1021/jacs.8b09108] [PMID: 30360614]
[37]
Xu, L.; Sun, M.; Cheng, P.; Gao, R.; Wang, H.; Ma, W.; Shi, X.; Xu, C.; Kuang, H. 2D chiroptical nanostructures for high-performance photooxidants. Adv. Funct. Mater., 2018, 28(18), 1707237.
[http://dx.doi.org/10.1002/adfm.201707237]
[38]
Esfandiar, A.; Savaloni, H.; Placido, F. On the fabrication and characterization of graded slanted chiral nano-sculptured silver thin films. Physica E, 2013, 50, 88-96.
[http://dx.doi.org/10.1016/j.physe.2013.03.002]
[39]
King, M.O.; McLeod, I.M.; Hesp, D.; Dhanak, V.R.; Tadich, A.; Thomsen, L.; Cowie, B.C.C.; MacLaren, D.A.; Kadodwala, M. The templated growth of a chiral transition metal chalcogenide. Surf. Sci., 2014, 629, 94-101.
[http://dx.doi.org/10.1016/j.susc.2014.02.008]
[40]
Wattanakit, C.; Côme, Y.B.S.; Lapeyre, V.; Bopp, P.A.; Heim, M.; Yadnum, S.; Nokbin, S.; Warakulwit, C.; Limtrakul, J.; Kuhn, A. Enantioselective recognition at mesoporous chiral metal surfaces. Nat. Commun., 2014, 5(1), 3325.
[http://dx.doi.org/10.1038/ncomms4325] [PMID: 24548992]
[41]
Yutthalekha, T.; Wattanakit, C.; Lapeyre, V.; Nokbin, S.; Warakulwit, C.; Limtrakul, J.; Kuhn, A. Asymmetric synthesis using chiral-encoded metal. Nat. Commun., 2016, 7(1), 12678.
[http://dx.doi.org/10.1038/ncomms12678] [PMID: 27562028]
[42]
Butcha, S.; Lapeyre, V.; Wattanakit, C.; Kuhn, A. Self-assembled monolayer protection of chiral-imprinted mesoporous platinum electrodes for highly enantioselective synthesis. Chem. Sci., 2022, 13(8), 2339-2346.
[http://dx.doi.org/10.1039/D2SC00056C] [PMID: 35310499]
[43]
Assavapanumat, S.; Ketkaew, M.; Kuhn, A.; Wattanakit, C. Synthesis, characterization, and electrochemical applications of chiral imprinted mesoporous Ni surfaces. J. Am. Chem. Soc., 2019, 141(47), 18870-18876.
[http://dx.doi.org/10.1021/jacs.9b10507] [PMID: 31697491]
[44]
Assavapanumat, S.; Yutthalekha, T.; Garrigue, P.; Goudeau, B.; Lapeyre, V.; Perro, A.; Sojic, N.; Wattanakit, C.; Kuhn, A. Potential induced fine tuning of the enantioaffinity of chiral metal phases. Angew. Chem. Int. Ed., 2019, 58(11), 3471-3475.
[http://dx.doi.org/10.1002/anie.201812057] [PMID: 30552860]
[45]
Butcha, S.; Assavapanumat, S.; Ittisanronnachai, S.; Lapeyre, V.; Wattanakit, C.; Kuhn, A. Nanoengineered chiral Pt-Ir alloys for high-performance enantioselective electrosynthesis. Nat. Commun., 2021, 12(1), 1314.
[http://dx.doi.org/10.1038/s41467-021-21603-8] [PMID: 33637758]
[46]
Assavapanumat, S.; Butcha, S.; Ittisanronnachai, S.; Kuhn, A.; Wattanakit, C. Heterogeneous enantioselective catalysis with chiral encoded mesoporous Pt-Ir films supported on Ni foam. Chem. Asian J., 2021, 16(21), 3345-3353.
[http://dx.doi.org/10.1002/asia.202100966] [PMID: 34416087]
[47]
Duan, T.; Ai, J.; Duan, Y.; Han, L.; Che, S. Self-assembly of chiral nematic-like films with chiral nanorods directed by chiral molecules. Chem. Mater., 2021, 33(15), 6227-6232.
[http://dx.doi.org/10.1021/acs.chemmater.1c01998]
[48]
Duan, T.; Ai, J.; Cui, X.; Feng, X.; Duan, Y.; Han, L.; Jiang, J.; Che, S. Spontaneous chiral self-assembly of CdSe@CdS nanorods. Chem, 2021, 7(10), 2695-2707.
[http://dx.doi.org/10.1016/j.chempr.2021.06.009]
[49]
Nguyen, T.D.; Kelly, J.A.; Hamad, W.Y.; MacLachlan, M.J. Magnesiothermic reduction of thin films: Towards semiconducting chiral nematic mesoporous silicon carbide and silicon structures. Adv. Funct. Mater., 2015, 25(14), 2175-2181.
[http://dx.doi.org/10.1002/adfm.201404304]
[50]
Liang, Z.; Bernardino, K.; Han, J.; Zhou, Y.; Sun, K.; de Moura, A.F.; Kotov, N.A. Optical anisotropy and sign reversal in layer-by-layer assembled films from chiral nanoparticles. Faraday Discuss., 2016, 191, 141-157.
[http://dx.doi.org/10.1039/C6FD00064A] [PMID: 27458774]
[51]
Purcell-Milton, F.; McKenna, R.; Brennan, L.J.; Cullen, C.P.; Guillemeney, L.; Tepliakov, N.V.; Baimuratov, A.S.; Rukhlenko, I.D.; Perova, T.S.; Duesberg, G.S.; Baranov, A.V.; Fedorov, A.V.; Gun’ko, Y.K. Induction of chirality in two-dimensional nanomaterials: Chiral 2D MoS2 nanostructures. ACS Nano, 2018, 12(2), 954-964.
[http://dx.doi.org/10.1021/acsnano.7b06691] [PMID: 29338193]
[52]
Wang, Y.; Yao, S.; Liao, P.; Jin, S.; Wang, Q.; Kim, M.J.; Cheng, G.J.; Wu, W. Strain engineered anisotropic optical and electrical properties in 2D chiral chain tellurium. Adv. Mater., 2020, 32(29), 2002342.
[http://dx.doi.org/10.1002/adma.202002342] [PMID: 32519427]
[53]
Kim, C.J.; Sánchez-Castillo, A.; Ziegler, Z.; Ogawa, Y.; Noguez, C.; Park, J. Chiral atomically thin films. Nat. Nanotechnol., 2016, 11(6), 520-524.
[http://dx.doi.org/10.1038/nnano.2016.3] [PMID: 26900756]
[54]
Robbie, K.; Broer, D.J.; Brett, M.J. Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature, 1999, 399(6738), 764-766.
[http://dx.doi.org/10.1038/21612]
[55]
Zhou, C.; Zhang, S.; Ai, J.; Li, P.; Zhao, Y.; Li, B.; Han, L.; Duan, Y.; Che, S. Enantioselective interaction between cells and chiral hydroxyapatite films. Chem. Mater., 2022, 34(1), 53-62.
[http://dx.doi.org/10.1021/acs.chemmater.1c02417]
[56]
Guo, Z.; Li, J.; Chen, R.; He, T. Advances in single crystals and thin films of chiral hybrid metal halides. Prog. Quantum Electron., 2022, 82, 100375.
[http://dx.doi.org/10.1016/j.pquantelec.2022.100375]
[57]
Ahn, J.; Lee, E.; Tan, J.; Yang, W.; Kim, B.; Moon, J. A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz., 2017, 4(5), 851-856.
[http://dx.doi.org/10.1039/C7MH00197E]
[58]
Zhao, Y.; Zhong, H.Y.; Li, L.; Lin, W.L.; Huang, Y.E.; Su, B.Y.; Wu, X.H.; Huang, X.Y.; Du, K.Z. Crystalline intermarriage of hybrid organic–inorganic halide perovskite and epoxide: Enhanced stability and modified optical properties. ACS Appl. Energy Mater., 2021, 4(12), 13550-13555.
[http://dx.doi.org/10.1021/acsaem.1c02139]
[59]
Pan, R.; Wang, K.; Yu, Z.G. Magnetic-field manipulation of circularly polarized photoluminescence in chiral perovskites. Mater. Horiz., 2022, 9(2), 740-747.
[http://dx.doi.org/10.1039/D1MH01154E] [PMID: 34878471]
[60]
Zhou, C.; Chu, Y.; Ma, L.; Zhong, Y.; Wang, C.; Liu, Y.; Zhang, H.; Wang, B.; Feng, X.; Yu, X.; Zhang, X.; Sun, Y.; Li, X.; Zhao, G. Photoluminescence spectral broadening, chirality transfer and amplification of chiral perovskite materials (R-X- p -mBZA) 2 PbBr 4 (X = H, F, Cl, Br) regulated by van der Waals and halogen atoms interactions. Phys. Chem. Chem. Phys., 2020, 22(30), 17299-17305.
[http://dx.doi.org/10.1039/D0CP02530E] [PMID: 32686811]
[61]
Huang, P.J.; Taniguchi, K.; Shigefuji, M.; Kobayashi, T.; Matsubara, M.; Sasagawa, T.; Sato, H.; Miyasaka, H. Chirality-dependent circular photogalvanic effect in enantiomorphic 2D organic–inorganic hybrid perovskites. Adv. Mater., 2021, 33(17), 2008611.
[http://dx.doi.org/10.1002/adma.202008611] [PMID: 33754374]
[62]
Ma, S.; Jung, Y.K.; Ahn, J.; Kyhm, J.; Tan, J.; Lee, H.; Jang, G.; Lee, C.U.; Walsh, A.; Moon, J. Elucidating the origin of chiroptical activity in chiral 2D perovskites through nano-confined growth. Nat. Commun., 2022, 13(1), 3259.
[http://dx.doi.org/10.1038/s41467-022-31017-9] [PMID: 35672362]
[63]
Sun, B.; Liu, X.F.; Li, X.Y.; Zhang, Y.; Shao, X.; Yang, D.; Zhang, H.L. Two-dimensional perovskite chiral ferromagnets. Chem. Mater., 2020, 32(20), 8914-8920.
[http://dx.doi.org/10.1021/acs.chemmater.0c02729]
[64]
Yang, C.K.; Chen, W.N.; Ding, Y.T.; Wang, J.; Rao, Y.; Liao, W.Q.; Tang, Y.Y.; Li, P.F.; Wang, Z.X.; Xiong, R.G. The first 2D homochiral lead iodide perovskite ferroelectrics: [R- and S-1-(4-chlorophenyl)ethylammonium]2PbI4. Adv. Mater., 2019, 31(16), 1808088.
[http://dx.doi.org/10.1002/adma.201808088]
[65]
Ogiwara, T.; Katsumura, A.; Sugimura, K.; Teramoto, Y.; Nishio, Y. Calcium phosphate mineralization in cellulose derivative/poly(acrylic acid) composites having a chiral nematic mesomorphic structure. Biomacromolecules, 2015, 16(12), 3959-3969.
[http://dx.doi.org/10.1021/acs.biomac.5b01295] [PMID: 26536381]
[66]
Tritschler, U.; Zlotnikov, I.; Zaslansky, P.; Aichmayer, B.; Fratzl, P.; Schlaad, H.; Cölfen, H. Hierarchical structuring of liquid crystal polymer-Laponite hybrid materials. Langmuir, 2013, 29(35), 11093-11101.
[http://dx.doi.org/10.1021/la4007845] [PMID: 23790152]
[67]
Cao, Y.; Kao, K.; Mou, C.; Han, L.; Che, S. Oriented chiral DNA-silica film guided by a natural mica substrate. Angew. Chem. Int. Ed., 2016, 55(6), 2037-2041.
[http://dx.doi.org/10.1002/anie.201509068] [PMID: 26836337]
[68]
Lizundia, E.; Nguyen, T.D.; Vilas, J.L.; Hamad, W.Y.; MacLachlan, M.J. Chiroptical luminescent nanostructured cellulose films. Mater. Chem. Front., 2017, 1(5), 979-987.
[http://dx.doi.org/10.1039/C6QM00225K]
[69]
Xu, T.; Li, H.; Liu, W.; Li, Y.; Li, B.; Yang, Y. Circularly polarized luminescence from cholesteric organic-inorganic hybrid silica films. Dyes Pigments, 2022, 200, 110121.
[http://dx.doi.org/10.1016/j.dyepig.2022.110121]
[70]
Qian, Q.; Ren, H.; Zhou, J.; Wan, Z.; Zhou, J.; Yan, X.; Cai, J.; Wang, P.; Li, B.; Sofer, Z.; Li, B.; Duan, X.; Pan, X.; Huang, Y.; Duan, X. Chiral molecular intercalation superlattices. Nature, 2022, 606(7916), 902-908.
[http://dx.doi.org/10.1038/s41586-022-04846-3] [PMID: 35768590]
[71]
Guo, Z.; Li, J.; Wang, C.; Liu, R.; Liang, J.; Gao, Y.; Cheng, J.; Zhang, W.; Zhu, X.; Pan, R.; He, T. Giant optical activity and second harmonic generation in 2D hybrid copper halides. Angew. Chem. Int. Ed., 2021, 60(15), 8441-8445.
[http://dx.doi.org/10.1002/anie.202015445] [PMID: 33481292]
[72]
Liu, T.; Shi, W.; Tang, W.; Liu, Z.; Schroeder, B.C.; Fenwick, O.; Fuchter, M.J. High responsivity circular polarized light detectors based on quasi two-dimensional chiral perovskite films. ACS Nano, 2022, 16(2), 2682-2689.
[http://dx.doi.org/10.1021/acsnano.1c09521] [PMID: 35107990]
[73]
Liang, J.; Hao, A.; Xing, P. Noncovalently modulated chiral nanoclays for circularly polarized luminescence color conversion. ACS Appl. Mater. Interfaces, 2020, 12(40), 45665-45672.
[http://dx.doi.org/10.1021/acsami.0c14963] [PMID: 32965098]
[74]
Zhao, S.; Yu, Y.; Zhang, B.; Feng, P.; Dang, C.; Li, M.; Zhao, L.; Gao, L. Aqueous-phase assembly of ultra-stable perovskite nanocrystals in chiral cellulose nanocrystal films for circularly polarized luminescence. Colloids Surf. A Physicochem. Eng. Asp., 2022, 645, 128921.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128921]
[75]
Jana, M.K.; Song, R.; Liu, H.; Khanal, D.R.; Janke, S.M.; Zhao, R.; Liu, C.; Valy Vardeny, Z.; Blum, V.; Mitzi, D.B. Organic-to-inorganic structural chirality transfer in a 2D hybrid perovskite and impact on Rashba-Dresselhaus spin-orbit coupling. Nat. Commun., 2020, 11(1), 4699.
[http://dx.doi.org/10.1038/s41467-020-18485-7] [PMID: 32943625]
[76]
Long, G.; Jiang, C.; Sabatini, R.; Yang, Z.; Wei, M.; Quan, L.N.; Liang, Q.; Rasmita, A.; Askerka, M.; Walters, G.; Gong, X.; Xing, J.; Wen, X.; Quintero-Bermudez, R.; Yuan, H.; Xing, G.; Wang, X.R.; Song, D.; Voznyy, O.; Zhang, M.; Hoogland, S.; Gao, W.; Xiong, Q.; Sargent, E.H. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics, 2018, 12(9), 528-533.
[http://dx.doi.org/10.1038/s41566-018-0220-6]
[77]
Lu, H.; Xiao, C.; Song, R.; Li, T.; Maughan, A.E.; Levin, A.; Brunecky, R.; Berry, J.J.; Mitzi, D.B.; Blum, V.; Beard, M.C. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc., 2020, 142(30), 13030-13040.
[http://dx.doi.org/10.1021/jacs.0c03899] [PMID: 32602710]
[78]
Kim, Y.H.; Zhai, Y.; Lu, H.; Pan, X.; Xiao, C.; Gaulding, E.A.; Harvey, S.P.; Berry, J.J.; Vardeny, Z.V.; Luther, J.M.; Beard, M.C. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science, 2021, 371(6534), 1129-1133.
[http://dx.doi.org/10.1126/science.abf5291] [PMID: 33707260]
[79]
Huang, Z.; Bloom, B.P.; Ni, X.; Georgieva, Z.N.; Marciesky, M.; Vetter, E.; Liu, F.; Waldeck, D.H.; Sun, D. Magneto-optical detection of photoinduced magnetism via chirality-induced spin selectivity in 2D chiral hybrid organic–inorganic perovskites. ACS Nano, 2020, 14(8), 10370-10375.
[http://dx.doi.org/10.1021/acsnano.0c04017] [PMID: 32678570]
[80]
Al-Bustami, H.; Khaldi, S.; Shoseyov, O.; Yochelis, S.; Killi, K.; Berg, I.; Gross, E.; Paltiel, Y.; Yerushalmi, R. Atomic and molecular layer deposition of chiral thin films showing up to 99% spin selective transport. Nano Lett., 2022, 22(12), 5022-5028.
[http://dx.doi.org/10.1021/acs.nanolett.2c01953] [PMID: 35679580]
[81]
Zhang, J.H.; Xie, S.M.; Zhang, M.; Zi, M.; He, P.G.; Yuan, L.M. Novel inorganic mesoporous material with chiral nematic structure derived from nanocrystalline cellulose for high-resolution gas chromatographic separations. Anal. Chem., 2014, 86(19), 9595-9602.
[http://dx.doi.org/10.1021/ac502073g] [PMID: 25188539]
[82]
Liu, Y.; Liu, L.; Chen, X.; Liu, Y.; Han, Y.; Cui, Y. Single-crystalline ultrathin 2D porous nanosheets of chiral metal–organic frameworks. J. Am. Chem. Soc., 2021, 143(9), 3509-3518.
[http://dx.doi.org/10.1021/jacs.0c13005] [PMID: 33621078]
[83]
Ghosh, K.B.; Zhang, W.; Tassinari, F.; Mastai, Y.; Lidor-Shalev, O.; Naaman, R.; Möllers, P.; Nürenberg, D.; Zacharias, H.; Wei, J.; Wierzbinski, E.; Waldeck, D.H. Controlling chemical selectivity in electrocatalysis with chiral CuO-coated electrodes. J. Phys. Chem. C, 2019, 123(5), 3024-3031.
[http://dx.doi.org/10.1021/acs.jpcc.8b12027]
[84]
Liu, B.; Han, L.; Duan, Y.; Cao, Y.; Feng, J.; Yao, Y.; Che, S. Growth of optically active chiral inorganic films through DNA self-assembly and silica mineralisation. Sci. Rep., 2015, 4(1), 4866.
[http://dx.doi.org/10.1038/srep04866] [PMID: 24784912]
[85]
Wang, X.; Wang, Q.; Zhang, X.; Miao, J.; Cheng, J.; He, T.; Li, Y.; Tang, Z.; Chen, R. Circularly polarized light source from self assembled hybrid nanoarchitecture. Adv. Opt. Mater., 2022, 10(16), 2200761.
[http://dx.doi.org/10.1002/adom.202200761]
[86]
Kothari, H.M.; Kulp, E.A.; Boonsalee, S.; Nikiforov, M.P.; Bohannan, E.W.; Poizot, P.; Nakanishi, S.; Switzer, J.A. Enantiospecific electrodeposition of chiral CuO films from copper(II) complexes of tartaric and amino acids on single-crystal Au(001). Chem. Mater., 2004, 16(22), 4232-4244.
[http://dx.doi.org/10.1021/cm048939x]
[87]
Mujica, V. Chirality transfer takes a jump. Nat. Chem., 2015, 7(7), 543-544.
[http://dx.doi.org/10.1038/nchem.2294] [PMID: 26100801]
[88]
Lidor-Shalev, O.; Yemini, R.; Leifer, N.; Nanda, R.; Tibi, A.; Perelshtein, I.; Avraham, E.S.; Mastai, Y.; Noked, M. Growth of hybrid inorganic/organic chiral thin films by sequenced vapor deposition. ACS Nano, 2019, 13(9), 10397-10404.
[http://dx.doi.org/10.1021/acsnano.9b04180] [PMID: 31509374]