The Short-term Efficacy of Contrast-enhanced Ultrasound (CEUS) and Gd- EOB-DTPA-enhanced Magnetic Resonance Imaging (MRI) Fusion Imagingguided Radiofrequency Ablation (RFA) for Colorectal Liver Metastasis (CRLM)

Article ID: e050423215454 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Objective: This study is to explore the efficacy of contrast-enhanced ultrasound (CEUS) / Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) fusion imaging-guided(fusion group)radiofrequency ablation (RFA) versus conventional ultrasound imaging-guided (conventional group) RFA for colorectal cancer liver metastases (CRLM) in a short-term.

Methods: From December 2020 to December 2021, patients who underwent imaging-guided RFA of CRLM at our hospital with available CT/MRI images were enrolled consecutively. 22 patients with 46 lesions had undergone conventional group RFA whereas 29 patients with 63 lesions had undergone fusion group RFA. The lesion detection rate, technical success, local tumor progression (LTP) and complications were calculated.

Results: In this retrospective study, 51 patients with 130 lesions were diagnosed with CRLM. However, there were 12 lesions and 9 lesions invisible in the conventional group and fusion group, respectively. The lesion detection rate on the fusion imaging was significantly higher than on the US or CEUS in the fusion group (P<0.05). There were no significant differences of the detection rate between the conventional group and the fusion group (P=0.207). In both groups, the technical success rate was 100%. For local tumor progression (LTP), there were no significant differences between the two groups (P>0.05). The complications after ablation had no significant differences between the two groups (P=0.97).

Conclusion: CEUS/ Gd-EOB-DTPA-enhanced MRI fusion imaging is a safe and effective method for RFA in the management of CRLM patients, and it may improve the therapeutic effect by detecting small lesions early.

[1]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Zarour LR, Anand S, Billingsley KG, et al. Colorectal cancer liver metastasis: Evolving paradigms and future directions. Cell Mol Gastroenterol Hepatol 2017; 3(2): 163-73.
[http://dx.doi.org/10.1016/j.jcmgh.2017.01.006] [PMID: 28275683]
[4]
Abdalla EK, Vauthey JN, Ellis LM, et al. Recurrence and outcomes following hepatic resection, radiofrequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg 2004; 239(6): 818-27.
[http://dx.doi.org/10.1097/01.sla.0000128305.90650.71] [PMID: 15166961]
[5]
Wong SL, Mangu PB, Choti MA, et al. American society of clinical oncology 2009 clinical evidence review on radiofrequency ablation of hepatic metastases from colorectal cancer. J Clin Oncol 2010; 28(3): 493-508.
[http://dx.doi.org/10.1200/JCO.2009.23.4450] [PMID: 19841322]
[6]
Benson AB, Venook AP, Al-Hawary MM, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2021; 19(3): 329-59.
[http://dx.doi.org/10.6004/jnccn.2021.0012] [PMID: 33724754]
[7]
Ahmed M, Solbiati L, Brace CL, et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria--a 10-year update. Radiology 2014; 273(1): 241-60.
[http://dx.doi.org/10.1148/radiol.14132958] [PMID: 24927329]
[8]
Konopke R, Bunk A, Kersting S. The role of contrast-enhanced ultrasound for focal liver lesion detection: an overview. Ultrasound Med Biol 2007; 33(10): 1515-26.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2007.04.009] [PMID: 17618038]
[9]
Usman S, Smith L, Brown N, Major V. Diagnostic accuracy of Magnetic Resonance Imaging using liver tissue specific contrast agents and contrast enhanced Multi Detector Computed Tomography: A systematic review of diagnostic test in Hepatocellular Carcinoma (HCC). Radiography 2018; 24(4): e109-14.
[http://dx.doi.org/10.1016/j.radi.2018.05.002] [PMID: 30292515]
[10]
Li XQ, Wang X, Zhao DW, et al. Application of Gd-EOB-DTPA-enhanced magnetic resonance imaging (MRI) in hepatocellular carcinoma. World J Surg Oncol 2020; 18(1): 219.
[http://dx.doi.org/10.1186/s12957-020-01996-4] [PMID: 32828123]
[11]
Kim YK, Lee YH, Kwak HS, Kim CS, Han YM. Detection of liver metastases: Gadoxetic acid-enhanced three-dimensional MR imaging versus ferucarbotran-enhanced MR imaging. Eur J Radiol 2010; 73(1): 131-6.
[http://dx.doi.org/10.1016/j.ejrad.2008.09.027] [PMID: 18996659]
[12]
Kogita S, Imai Y, Okada M, et al. Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: Correlation with histological grading and portal blood flow. Eur Radiol 2010; 20(10): 2405-13.
[http://dx.doi.org/10.1007/s00330-010-1812-9] [PMID: 20490505]
[13]
Berger-Kulemann V, Schima W, Baroud S, et al. Gadoxetic acid-enhanced 3.0 T MR imaging versus multidetector-row CT in the detection of colorectal metastases in fatty liver using intraoperative ultrasound and histopathology as a standard of reference. Eur J Surg Oncol 2012; 38(8): 670-6.
[http://dx.doi.org/10.1016/j.ejso.2012.05.004] [PMID: 22652037]
[14]
Chen L, Zhang J, Zhang L, et al. Meta-analysis of gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging for the detection of liver metastases. PLoS One 2012; 7(11): e48681.
[http://dx.doi.org/10.1371/journal.pone.0048681] [PMID: 23144927]
[15]
Vreugdenburg TD, Ma N, Duncan JK, Riitano D, Cameron AL, Maddern GJ. Comparative diagnostic accuracy of hepatocyte-specific gadoxetic acid (Gd-EOB-DTPA) enhanced MR imaging and contrast enhanced CT for the detection of liver metastases: A systematic review and meta-analysis. Int J Colorectal Dis 2016; 31(11): 1739-49.
[http://dx.doi.org/10.1007/s00384-016-2664-9] [PMID: 27682648]
[16]
Clevert DA, Paprottka PM, Helck A, Reiser M, Trumm CG. Image fusion in the management of thermal tumor ablation of the liver. Clin Hemorheol Microcirc 2012; 52(2-4): 205-16.
[http://dx.doi.org/10.3233/CH-2012-1598] [PMID: 22960300]
[17]
Makino Y, Imai Y, Igura T, et al. Usefulness of the multimodality fusion imaging for the diagnosis and treatment of hepatocellular carcinoma. Dig Dis 2012; 30(6): 580-7.
[http://dx.doi.org/10.1159/000343070] [PMID: 23258098]
[18]
Zhong-Zhen S, Kai L, Rong-Qin Z, et al. A feasibility study for determining ablative margin with 3D-CEUS-CT/MR image fusion after radiofrequency ablation of hepatocellular carcinoma. Ultraschall Med 2012; 33(7): E250-5.
[http://dx.doi.org/10.1055/s-0032-1325466] [PMID: 23238803]
[19]
Lv S, Long Y, Su Z, et al. Investigating the accuracy of ultrasound-ultrasound fusion imaging for evaluating the ablation effect via special phantom-simulated liver tumors. Ultrasound Med Biol 2019; 45(11): 3067-74.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.07.415] [PMID: 31447240]
[20]
Murakami T, Sofue K, Hori M. Diagnosis of hepatocellular carcinoma using Gd-EOB-DTPA MR imaging. Magn Reson Med Sci 2022; 21(1): 168-81.
[http://dx.doi.org/10.2463/mrms.rev.2021-0031] [PMID: 34421091]
[21]
Ewertsen C, Săftoiu A, Gruionu LG, Karstrup S, Nielsen MB. Real-time image fusion involving diagnostic ultrasound. AJR Am J Roentgenol 2013; 200(3): W249-55.
[http://dx.doi.org/10.2214/AJR.12.8904] [PMID: 23436869]
[22]
Laimer G, Schullian P, Jaschke N, et al. Minimal ablative margin (MAM) assessment with image fusion: An independent predictor for local tumor progression in hepatocellular carcinoma after stereotactic radiofrequency ablation. Eur Radiol 2020; 30(5): 2463-72.
[http://dx.doi.org/10.1007/s00330-019-06609-7] [PMID: 32002642]
[23]
Sacks D, McClenny TE, John FC, Curtis AL. Society of interventional radiology clinical practice guidelines. J Vasc Interv Radiol 2003; 14(9 Pt 2): S199-202.
[http://dx.doi.org/10.1097/01.RVI.0000094584.83406.3e]
[24]
Zorzi D, Mullen J, Abdalla E, et al. Comparison between hepatic wedge resection and anatomic resection for colorectal liver metastases. J Gastrointest Surg 2006; 10(1): 86-94.
[http://dx.doi.org/10.1016/j.gassur.2005.07.022] [PMID: 16368496]
[25]
Gillams A, Goldberg N, Ahmed M, et al. Thermal ablation of colorectal liver metastases: A position paper by an international panel of ablation experts, the interventional oncology sans frontières meeting 2013. Eur Radiol 2015; 25(12): 3438-54.
[http://dx.doi.org/10.1007/s00330-015-3779-z] [PMID: 25994193]
[26]
Fowler KJ, Linehan DC, Menias CO. Colorectal liver metastases: State of the art imaging. Ann Surg Oncol 2013; 20(4): 1185-93.
[http://dx.doi.org/10.1245/s10434-012-2730-7] [PMID: 23115006]
[27]
Macera A, Lario C, Petracchini M, et al. Staging of colorectal liver metastases after preoperative chemotherapy. Diffusion-weighted imaging in combination with Gd-EOB-DTPA MRI sequences increases sensitivity and diagnostic accuracy. Eur Radiol 2013; 23(3): 739-47.
[http://dx.doi.org/10.1007/s00330-012-2658-0] [PMID: 22976920]
[28]
Page AJ, Cosgrove DC, Herman JM, Pawlik TM. Advances in understanding of colorectal liver metastasis and implications for the clinic. Expert Rev Gastroenterol Hepatol 2015; 9(2): 245-59.
[http://dx.doi.org/10.1586/17474124.2014.940897] [PMID: 25033964]
[29]
Hirooka M, Iuchi H, Kumagi T, et al. Virtual sonographic radiofrequency ablation of hepatocellular carcinoma visualized on CT but not on conventional sonography. AJR Am J Roentgenol 2006; 186(S5t): S255-60.
[http://dx.doi.org/10.2214/AJR.04.1252] [PMID: 16632685]
[30]
Kunishi Y, Numata K, Morimoto M, et al. Efficacy of fusion imaging combining sonography and hepatobiliary phase MRI with Gd-EOB-DTPA to detect small hepatocellular carcinoma. AJR Am J Roentgenol 2012; 198(1): 106-14.
[http://dx.doi.org/10.2214/AJR.10.6039] [PMID: 22194485]
[31]
Laimer G, Jaschke N, Schullian P, et al. Volumetric assessment of the periablational safety margin after thermal ablation of colorectal liver metastases. Eur Radiol 2021; 31(9): 6489-99.
[http://dx.doi.org/10.1007/s00330-020-07579-x] [PMID: 33447860]
[32]
Wang X, Sofocleous CT, Erinjeri JP, et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol 2013; 36(1): 166-75.
[http://dx.doi.org/10.1007/s00270-012-0377-1] [PMID: 22535243]
[33]
Nakazawa T, Kokubu S, Shibuya A, et al. Radiofrequency ablation of hepatocellular carcinoma: Correlation between local tumor progression after ablation and ablative margin. AJR Am J Roentgenol 2007; 188(2): 480-8.
[http://dx.doi.org/10.2214/AJR.05.2079] [PMID: 17242258]
[34]
Komatsu S, Murakami M, Fukumoto T, Hori Y, Hishikawa Y, Ku Y. Risk factors for survival and local recurrence after particle radiotherapy for single small hepatocellular carcinoma. Br J Surg 2011; 98(4): 558-64.
[http://dx.doi.org/10.1002/bjs.7397] [PMID: 21246516]
[35]
Hao Y, Numata K, Ishii T, et al. Rate of local tumor progression following radiofrequency ablation of pathologically early hepatocellular carcinoma. World J Gastroenterol 2017; 23(17): 3111-21.
[http://dx.doi.org/10.3748/wjg.v23.i17.3111] [PMID: 28533668]
[36]
Ju JX, Zeng QJ, Xu EJ, et al. Intraprocedural contrast-enhanced ultrasound-CT/MR fusion imaging assessment in HCC thermal ablation to reduce local tumor progression: Compared with routine contrast-enhanced ultrasound. Int J Hyperthermia 2019; 36(1): 784-92.
[http://dx.doi.org/10.1080/02656736.2019.1640899] [PMID: 31431086]