MiR-142-3p is a Critical Modulator of TNF-mediated Neuronal Toxicity in Multiple Sclerosis

Page: [2567 - 2582] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: TNF-dependent synaptotoxicity contributes to the neuronal damage occurring in patients with Multiple Sclerosis (pwMS) and its mouse model Experimental Autoimmune Encephalomyelitis (EAE). Here, we investigated miR-142-3p, a synaptotoxic microRNA induced by inflammation in EAE and MS, as a potential downstream effector of TNF signalling.

Methods: Electrophysiological recordings, supported by molecular, biochemical and histochemical analyses, were performed to explore TNF-synaptotoxicity in the striatum of EAE and healthy mice. MiR-142 heterozygous (miR-142 HE) mice and/or LNA-anti miR-142-3p strategy were used to verify the TNF-miR-142-3p axis hypothesis. The cerebrospinal fluid (CSF) of 151 pwMS was analysed to evaluate possible correlation between TNF and miR-142-3p levels and their impact on clinical parameters (e.g. progression index (PI), age-related clinical severity (gARMSS)) and MRI measurements at diagnosis (T0).

Results: High levels of TNF and miR-142-3p were detected in both EAE striatum and MS-CSF. The TNF-dependent glutamatergic alterations were prevented in the inflamed striatum of EAE miR-142 HE mice. Accordingly, TNF was ineffective in healthy striatal slices incubated with LNA-anti miR- 142-3p. However, both preclinical and clinical data did not validate the TNF-miR-142-3p axis hypothesis, suggesting a permissive neuronal role of miR-142-3p on TNF-signalling. Clinical data showed a negative impact of each molecule on disease course and/or brain lesions and unveiled that their high levels exert a detrimental synergistic effect on disease activity, PI and white matter lesion volume.

Conclusion: We propose miR-142-3p as a critical modulator of TNF-mediated neuronal toxicity and suggest a detrimental synergistic action of these molecules on MS pathology.

Graphical Abstract

[1]
Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Primers, 2018, 4(1), 43.
[http://dx.doi.org/10.1038/s41572-018-0041-4] [PMID: 30410033]
[2]
Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple sclerosis. N. Engl. J. Med., 2018, 378(2), 169-180.
[http://dx.doi.org/10.1056/NEJMra1401483] [PMID: 29320652]
[3]
Magliozzi, R.; Pezzini, F.; Pucci, M.; Rossi, S.; Facchiano, F.; Marastoni, D.; Montagnana, M.; Lippi, G.; Reynolds, R.; Calabrese, M. Changes in cerebrospinal fluid balance of TNF and TNF receptors in naïve multiple sclerosis patients: Early involvement in compartmentalised intrathecal inflammation. Cells, 2021, 10(7), 1712.
[http://dx.doi.org/10.3390/cells10071712] [PMID: 34359880]
[4]
Calabrese, M.; Magliozzi, R.; Ciccarelli, O.; Geurts, J.J.G.; Reynolds, R.; Martin, R. Exploring the origins of grey matter damage in multiple sclerosis. Nat. Rev. Neurosci., 2015, 16(3), 147-158.
[http://dx.doi.org/10.1038/nrn3900] [PMID: 25697158]
[5]
Michailidou, I.; Willems, J.G.P.; Kooi, E.J.; van Eden, C.; Gold, S.M.; Geurts, J.J.G.; Baas, F.; Huitinga, I.; Ramaglia, V. Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus. Ann. Neurol., 2015, 77(6), 1007-1026.
[http://dx.doi.org/10.1002/ana.24398] [PMID: 25727254]
[6]
Di Filippo, M.; Portaccio, E.; Mancini, A.; Calabresi, P. Multiple sclerosis and cognition: Synaptic failure and network dysfunction. Nat. Rev. Neurosci., 2018, 19(10), 599-609.
[http://dx.doi.org/10.1038/s41583-018-0053-9] [PMID: 30158590]
[7]
Mandolesi, G.; Gentile, A.; Musella, A.; Fresegna, D.; De Vito, F.; Bullitta, S.; Sepman, H.; Marfia, G.A.; Centonze, D. Synaptopathy connects inflammation and neurodegeneration in multiple sclerosis. Nat. Rev. Neurol., 2015, 11(12), 711-724.
[http://dx.doi.org/10.1038/nrneurol.2015.222] [PMID: 26585978]
[8]
Bellingacci, L.; Mancini, A.; Gaetani, L.; Tozzi, A.; Parnetti, L.; Di Filippo, M. Synaptic dysfunction in multiple sclerosis: A red thread from inflammation to network disconnection. Int. J. Mol. Sci., 2021, 22(18), 9753.
[http://dx.doi.org/10.3390/ijms22189753] [PMID: 34575917]
[9]
Ribeiro, C.M.; Oliveira, S.R.; Alfieri, D.F.; Flauzino, T.; Kaimen-Maciel, D.R.; Simão, A.N.C.; Maes, M.; Reiche, E.M.V. Tumor necrosis factor alpha (TNF-α) and its soluble receptors are associated with disability, disability progression and clinical forms of multiple sclerosis. Inflamm. Res., 2019, 68(12), 1049-1059.
[http://dx.doi.org/10.1007/s00011-019-01286-0] [PMID: 31559449]
[10]
James, R.E.; Schalks, R.; Browne, E.; Eleftheriadou, I.; Munoz, C.P.; Mazarakis, N.D.; Reynolds, R. Persistent elevation of intrathecal pro-inflammatory cytokines leads to multiple sclerosis-like cortical demyelination and neurodegeneration. Acta Neuropathol. Commun., 2020, 8(1), 66.
[http://dx.doi.org/10.1186/s40478-020-00938-1] [PMID: 32398070]
[11]
Picon, C.; Jayaraman, A.; James, R.; Beck, C.; Gallego, P.; Witte, M.E.; van Horssen, J.; Mazarakis, N.D.; Reynolds, R. Neuron-specific activation of necroptosis signaling in multiple sclerosis cortical grey matter. Acta Neuropathol., 2021, 141(4), 585-604.
[http://dx.doi.org/10.1007/s00401-021-02274-7] [PMID: 33569629]
[12]
Centonze, D.; Muzio, L.; Rossi, S.; Cavasinni, F.; De Chiara, V.; Bergami, A.; Musella, A.; D’Amelio, M.; Cavallucci, V.; Martorana, A.; Bergamaschi, A.; Cencioni, M.T.; Diamantini, A.; Butti, E.; Comi, G.; Bernardi, G.; Cecconi, F.; Battistini, L.; Furlan, R.; Martino, G. Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J. Neurosci., 2009, 29(11), 3442-3452.
[http://dx.doi.org/10.1523/JNEUROSCI.5804-08.2009] [PMID: 19295150]
[13]
Haji, N.; Mandolesi, G.; Gentile, A.; Sacchetti, L.; Fresegna, D.; Rossi, S.; Musella, A.; Sepman, H.; Motta, C.; Studer, V.; De Chiara, V.; Bernardi, G.; Strata, P.; Centonze, D. TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp. Neurol., 2012, 237(2), 296-303.
[http://dx.doi.org/10.1016/j.expneurol.2012.07.010] [PMID: 22836148]
[14]
Rossi, S.; Motta, C.; Studer, V.; Barbieri, F.; Buttari, F.; Bergami, A.; Sancesario, G.; Bernardini, S.; De Angelis, G.; Martino, G.; Furlan, R.; Centonze, D. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult. Scler., 2014, 20(3), 304-312.
[http://dx.doi.org/10.1177/1352458513498128] [PMID: 23886826]
[15]
Mandolesi, G.; De Vito, F.; Musella, A.; Gentile, A.; Bullitta, S.; Fresegna, D.; Sepman, H.; Di Sanza, C.; Haji, N.; Mori, F.; Buttari, F.; Perlas, E.; Ciotti, M.T.; Hornstein, E.; Bozzoni, I.; Presutti, C.; Centonze, D. MiR-142-3p is a key regulator of IL-1β-dependent synaptopathy in neuroinflammation. J. Neurosci., 2017, 37(3), 546-561.
[http://dx.doi.org/10.1523/JNEUROSCI.0851-16.2016] [PMID: 28100738]
[16]
De Vito, F.; Musella, A.; Fresegna, D.; Rizzo, F.R.; Gentile, A.; Stampanoni Bassi, M. MiR-142-3p regulates synaptopathy-driven disease progression in multiple sclerosis Neuropathol. Appl. Neurobiol., 2021.
[PMID: 34490928]
[17]
Mildner, A.; Chapnik, E.; Manor, O.; Yona, S.; Kim, K.W.; Aychek, T.; Varol, D.; Beck, G.; Itzhaki, Z.B.; Feldmesser, E.; Amit, I.; Hornstein, E.; Jung, S. Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood, 2013, 121(6), 1016-1027.
[http://dx.doi.org/10.1182/blood-2012-07-445999] [PMID: 23212522]
[18]
Mandolesi, G.; Musella, A.; Gentile, A.; Grasselli, G.; Haji, N.; Sepman, H.; Fresegna, D.; Bullitta, S.; De Vito, F.; Musumeci, G.; Di Sanza, C.; Strata, P.; Centonze, D. Interleukin-1β alters glutamate transmission at purkinje cell synapses in a mouse model of multiple sclerosis. J. Neurosci., 2013, 33(29), 12105-12121.
[http://dx.doi.org/10.1523/JNEUROSCI.5369-12.2013] [PMID: 23864696]
[19]
Kreitzer, A.C. Physiology and pharmacology of striatal neurons. Annu. Rev. Neurosci., 2009, 32(1), 127-147.
[http://dx.doi.org/10.1146/annurev.neuro.051508.135422] [PMID: 19400717]
[20]
Mao, M.; Nair, A.; Augustine, G.J. A novel type of neuron within the dorsal striatum. Front. Neural Circuits, 2019, 13, 32.
[http://dx.doi.org/10.3389/fncir.2019.00032] [PMID: 31164808]
[21]
Mandolesi, G.; Rizzo, F.R.; Balletta, S.; Stampanoni Bassi, M.; Gilio, L.; Guadalupi, L.; Nencini, M.; Moscatelli, A.; Ryan, C.P.; Licursi, V.; Dolcetti, E.; Musella, A.; Gentile, A.; Fresegna, D.; Bullitta, S.; Caioli, S.; Vanni, V.; Sanna, K.; Bruno, A.; Buttari, F.; Castelli, C.; Presutti, C.; De Santa, F.; Finardi, A.; Furlan, R.; Centonze, D.; De Vito, F. The microRNA let-7b-5p is negatively associated with inflammation and disease severity in multiple sclerosis. Cells, 2021, 10(2), 330.
[http://dx.doi.org/10.3390/cells10020330] [PMID: 33562569]
[22]
Rossi, S.; Furlan, R.; Chiara, V.D.; Muzio, L.; Musella, A.; Motta, C.; Studer, V.; Cavasinni, F.; Bernardi, G.; Martino, G.; Cravatt, B.F.; Lutz, B.; Maccarrone, M.; Centonze, D. Cannabinoid CB1 receptors regulate neuronal TNF-α effects in experimental autoimmune encephalomyelitis. Brain Behav. Immun., 2011, 25(6), 1242-1248.
[http://dx.doi.org/10.1016/j.bbi.2011.03.017] [PMID: 21473912]
[23]
Manouchehrinia, A.; Westerlind, H.; Kingwell, E.; Zhu, F.; Carruthers, R.; Ramanujam, R.; Ban, M.; Glaser, A.; Sawcer, S.; Tremlett, H.; Hillert, J. Age related multiple sclerosis severity score: Disability ranked by age. Mult. Scler., 2017, 23(14), 1938-1946.
[http://dx.doi.org/10.1177/1352458517690618] [PMID: 28155580]
[24]
Fresegna, D.; Bullitta, S.; Musella, A.; Rizzo, F.R.; De Vito, F.; Guadalupi, L.; Caioli, S.; Balletta, S.; Sanna, K.; Dolcetti, E.; Vanni, V.; Bruno, A.; Buttari, F.; Stampanoni Bassi, M.; Mandolesi, G.; Centonze, D.; Gentile, A. Re-examining the role of TNF in MS pathogenesis and therapy. Cells, 2020, 9(10), 2290.
[http://dx.doi.org/10.3390/cells9102290] [PMID: 33066433]
[25]
Stellwagen, D.; Beattie, E.C.; Seo, J.Y.; Malenka, R.C. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J. Neurosci., 2005, 25(12), 3219-3228.
[http://dx.doi.org/10.1523/JNEUROSCI.4486-04.2005] [PMID: 15788779]
[26]
Stellwagen, D.; Malenka, R.C. Synaptic scaling mediated by glial TNF-α. Nature, 2006, 440(7087), 1054-1059.
[http://dx.doi.org/10.1038/nature04671] [PMID: 16547515]
[27]
Leonoudakis, D.; Zhao, P.; Beattie, E.C. Rapid tumor necrosis factor alpha-induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity. J. Neurosci., 2008, 28(9), 2119-2130.
[http://dx.doi.org/10.1523/JNEUROSCI.5159-07.2008] [PMID: 18305246]
[28]
Lewitus, G.M.; Pribiag, H.; Duseja, R.; St-Hilaire, M.; Stellwagen, D. An adaptive role of TNFα in the regulation of striatal synapses. J. Neurosci., 2014, 34(18), 6146-6155.
[http://dx.doi.org/10.1523/JNEUROSCI.3481-13.2014] [PMID: 24790185]
[29]
Rizzo, F.R.; Musella, A.; De Vito, F.; Fresegna, D.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Stampanoni Bassi, M.; Buttari, F.; Mandolesi, G.; Centonze, D.; Gentile, A. Tumor necrosis factor and interleukin-1 β modulate synaptic plasticity during neuroinflammation. Neural Plast., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/8430123] [PMID: 29861718]
[30]
Olmos, G.; Lladó, J. Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediators Inflamm., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/861231] [PMID: 24966471]
[31]
Musella, A.; Mandolesi, G.; Mori, F.; Gentile, A.; Centonze, D. Linking synaptopathy and gray matter damage in multiple sclerosis. Mult. Scler., 2016, 22(2), 146-149.
[http://dx.doi.org/10.1177/1352458515581875] [PMID: 25921048]
[32]
Gentile, A.; De Vito, F.; Fresegna, D.; Rizzo, F.R.; Bullitta, S.; Guadalupi, L.; Vanni, V.; Buttari, F.; Stampanoni, B.M.; Leuti, A.; Chiurchiù, V.; Marfia, G.A.; Mandolesi, G.; Centonze, D.; Musella, A. Peripheral T cells from multiple sclerosis patients trigger synaptotoxic alterations in central neurons. Neuropathol. Appl. Neurobiol., 2020, 46(2), 160-170.
[http://dx.doi.org/10.1111/nan.12569] [PMID: 31125471]
[33]
Zunke, F.; Rose-John, S. The shedding protease ADAM17: Physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11), 2059-2070.
[http://dx.doi.org/10.1016/j.bbamcr.2017.07.001] [PMID: 28705384]
[34]
Cho, R.W.; Park, J.M.; Wolff, S.B.E.; Xu, D.; Hopf, C.; Kim, J.; Reddy, R.C.; Petralia, R.S.; Perin, M.S.; Linden, D.J.; Worley, P.F. mGluR1/5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron, 2008, 57(6), 858-871.
[http://dx.doi.org/10.1016/j.neuron.2008.01.010] [PMID: 18367087]
[35]
Zhao, W.Q.; Santini, F.; Breese, R.; Ross, D.; Zhang, X.D.; Stone, D.J.; Ferrer, M.; Townsend, M.; Wolfe, A.L.; Seager, M.A.; Kinney, G.G.; Shughrue, P.J.; Ray, W.J. Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J. Biol. Chem., 2010, 285(10), 7619-7632.
[http://dx.doi.org/10.1074/jbc.M109.057182] [PMID: 20032460]
[36]
Chaudhuri, A.D.; Dastgheyb, R.M.; Yoo, S.W.; Trout, A.; Talbot, C.C., Jr; Hao, H.; Witwer, K.W.; Haughey, N.J. TNFα and IL-1β modify the miRNA cargo of astrocyte shed extracellular vesicles to regulate neurotrophic signaling in neurons. Cell Death Dis., 2018, 9(3), 363.
[http://dx.doi.org/10.1038/s41419-018-0369-4] [PMID: 29507357]
[37]
Bai, Z.; Chen, D.; Wang, L.; Zhao, Y.; Liu, T.; Yu, Y.; Yan, T.; Cheng, Y. Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: A systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front. Neurosci., 2019, 13, 1026.
[http://dx.doi.org/10.3389/fnins.2019.01026] [PMID: 31636528]
[38]
Rovaris, M.; Barnes, D.; Woodrofe, N.; du Boulay, G.H.; Thorpe, J.W.; Thompson, A.J.; McDonald, W.I.; Miller, D.H. Patterns of disease activity in multiple sclerosis patients: A study with quantitative gadolinium-enhanced brain MRI and cytokine measurement in different clinical subgroups. J. Neurol., 1996, 243(7), 536-542.
[http://dx.doi.org/10.1007/BF00886876] [PMID: 8836944]
[39]
Magliozzi, R.; Howell, O.W.; Nicholas, R.; Cruciani, C.; Castellaro, M.; Romualdi, C.; Rossi, S.; Pitteri, M.; Benedetti, M.D.; Gajofatto, A.; Pizzini, F.B.; Montemezzi, S.; Rasia, S.; Capra, R.; Bertoldo, A.; Facchiano, F.; Monaco, S.; Reynolds, R.; Calabrese, M. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol., 2018, 83(4), 739-755.
[http://dx.doi.org/10.1002/ana.25197] [PMID: 29518260]
[40]
Ma, X.; Zhou, J.; Zhong, Y.; Jiang, L.; Mu, P.; Li, Y.; Singh, N.; Nagarkatti, M.; Nagarkatti, P. Expression, regulation and function of microRNAs in multiple sclerosis. Int. J. Med. Sci., 2014, 11(8), 810-818.
[http://dx.doi.org/10.7150/ijms.8647] [PMID: 24936144]