Nanoneuroscience: Cutting-edge Approach for Disease Management

Page: [305 - 320] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Neurological disorders (ND) have affected a major part of our society and have been a challenge for medical and biosciences for decades. However, many of these disorders haven't responded well to currently established treatment approaches. The fact that many active pharmaceutical ingredients can't get to their specified action site inside the body is one of the main reasons for this failure. Extracellular and intracellular central nervous system (CNS) barriers prevent the transfer of drugs from the blood circulation to the intended location of the action. Utilizing nanosized drug delivery technologies is one possible way to overcome these obstacles. These nano-drug carriers outperform conventional dosage forms in many areas, including good drug encapsulation capacity, targeted drug delivery, less toxicity, and enhanced therapeutic impact. As a result, nano-neuroscience is growing to be an intriguing area of research and a bright alternative approach for delivering medicines to their intended action site for treating different neurological and psychiatric problems. In this review, we have included a short overview of the pathophysiology of neurological diseases, a detailed discussion about the significance of nanocarriers in NDs, and a focus on its recent advances. Finally, we highlighted the patented technologies and market trends, including the predictive analysis for the years 2021-2028.

Graphical Abstract

[1]
Faghihi MA, Mottagui-Tabar S, Wahlestedt C. Genetics of neurological disorders. Expert Rev Mol Diagn 2004; 4(3): 317-32.
[http://dx.doi.org/10.1586/14737159.4.3.317] [PMID: 15137899]
[2]
Misra MK, Damotte V, Hollenbach JA. The immunogenetics of neurological disease. Immunology 2018; 153(4): 399-414.
[http://dx.doi.org/10.1111/imm.12869] [PMID: 29159928]
[3]
Ngowi EE, Wang YZ, Qian L, et al. The application of nanotechnology for the diagnosis and treatment of brain diseases and disorders. Front Bioeng Biotechnol 2021; 9: 629832.
[http://dx.doi.org/10.3389/fbioe.2021.629832] [PMID: 33738278]
[4]
Chhabra R, Tosi G, Grabrucker A. Emerging use of nanotechnology in the treatment of neurological disorders. Curr Pharm Des 2015; 21(22): 3111-30.
[http://dx.doi.org/10.2174/1381612821666150531164124] [PMID: 26027574]
[5]
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020; 25(9): 2193.
[http://dx.doi.org/10.3390/molecules25092193] [PMID: 32397080]
[6]
Sun M, Lee J, Chen Y, Hoshino K. Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioact Mater 2020; 5(4): 924-37.
[http://dx.doi.org/10.1016/j.bioactmat.2020.06.016] [PMID: 32637755]
[7]
Tang GF, Zhang MR, Liu QQ, Tian XM, Mai RR. Applications of nanodiamonds in the diagnosis and treatment of neurological diseases. J Nanopart Res 2022; 24(3): 55.
[http://dx.doi.org/10.1007/s11051-022-05434-2]
[8]
Annu SA, Sartaj A, Qamar Z, et al. An insight to brain targeting utilizing polymeric nanoparticles: Effective treatment modalities for neurological disorders and brain tumor. Front Bioeng Biotechnol 2022; 10: 788128.
[http://dx.doi.org/10.3389/fbioe.2022.788128] [PMID: 35186901]
[9]
Bhattacharya T, Soares GAB, Chopra H, et al. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders. Materials 2022; 15(3): 804.
[http://dx.doi.org/10.3390/ma15030804] [PMID: 35160749]
[10]
Valadão KMG, Luizeti BO, Yamaguchi MU, Issy AC, Bernuci MP. Nanotechnology in improving the treatment of Huntington’s Disease: A systematic review. Neurotox Res 2022; 40(2): 636-45.
[http://dx.doi.org/10.1007/s12640-021-00468-1] [PMID: 35060083]
[11]
Moradi F, Dashti N. Targeting neuroinflammation by intranasal delivery of nanoparticles in neurological diseases: A comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395(2): 133-48.
[http://dx.doi.org/10.1007/s00210-021-02196-x] [PMID: 34982185]
[12]
Riccardi C, Napolitano F, Montesarchio D, Sampaolo S, Melone MAB. Nanoparticle-guided brain drug delivery: Expanding the therapeutic approach to neurodegenerative diseases. Pharmaceutics 2021; 13(11): 1897.
[http://dx.doi.org/10.3390/pharmaceutics13111897] [PMID: 34834311]
[13]
Nguyen TT, Dung Nguyen TT, Vo TK, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed Pharmacother 2021; 143: 112117.
[http://dx.doi.org/10.1016/j.biopha.2021.112117] [PMID: 34479020]
[14]
Shah R, Bhattacharya S. Advanced nanoparticular approaches to combat Alzheimer’s Disease. Pharm Nanotechnol 2021; 9(5): 308-16.
[http://dx.doi.org/10.2174/2211738509666211123091913] [PMID: 34814823]
[15]
Kaur I, Kumar A, Behl T, Setia D. Recent advances in nanotechnology-based drug delivery approaches for Alzheimer disease. Curr Drug Targets 2021; 22(12): 1404-23.
[http://dx.doi.org/10.2174/1389450122999210104205018] [PMID: 33397264]
[16]
Ling TS, Chandrasegaran S, Xuan LZ, et al. The potential benefits of nanotechnology in treating Alzheimer’s Disease. BioMed Res Int 2021; 2021: 5550938.
[http://dx.doi.org/10.1155/2021/5550938] [PMID: 34285915]
[17]
Asefy Z, Hoseinnejhad S, Ceferov Z. Nanoparticles approaches in neurodegenerative diseases diagnosis and treatment. Neurol Sci 2021; 42(7): 2653-60.
[http://dx.doi.org/10.1007/s10072-021-05234-x] [PMID: 33846881]
[18]
Sharma S, Rabbani SA, Agarwal T, Baboota S, Pottoo FH, Kadian R. Nanotechnology driven approaches for the management of Parkinson’s Disease: Current status and future perspectives. Curr Drug Metab 2021; 22(4): 287-98.
[http://dx.doi.org/10.2174/18755453MTExhNzY00] [PMID: 33234098]
[19]
Shabbir U, Rubab M, Tyagi A, Oh DH. Curcumin and its derivatives as theranostic agents in Alzheimer’s Disease: The implication of nanotechnology. Int J Mol Sci 2020; 22(1): 196.
[http://dx.doi.org/10.3390/ijms22010196] [PMID: 33375513]
[20]
Shringarpure M, Gharat S, Momin M, Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin Drug Deliv 2021; 18(2): 169-85.
[http://dx.doi.org/10.1080/17425247.2021.1823965] [PMID: 32921169]
[21]
Rocka A, Psiuk D. Piędel F, Żak K, Brzezińska A. Nanotechnology in Amyloid Lateral Sclerosis (ALS)-review. J Educ Health Sport 2020; 10(7): 197-203.
[http://dx.doi.org/10.12775/JEHS.2020.10.07.021]
[22]
Masoudi AS, Ahlawat J, Guillama BG, Narayan M. Application of nanotechnology in stem-cell-based therapy of neurodegenerative diseases. Appl Sci 2020; 10(14): 4852.
[http://dx.doi.org/10.3390/app10144852]
[23]
Naqvi S, Panghal A, Flora SJS. Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front Neurosci 2020; 14: 494.
[http://dx.doi.org/10.3389/fnins.2020.00494] [PMID: 32581676]
[24]
Baranowska-Wójcik E, Szwajgier D. Alzheimer’s disease: Review of current nanotechnological therapeutic strategies. Expert Rev Neurother 2020; 20(3): 271-9.
[http://dx.doi.org/10.1080/14737175.2020.1719069] [PMID: 31957510]
[25]
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019; 111: 666-75.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[26]
Torres-Ortega PV, Saludas L, Hanafy AS, Garbayo E, Blanco-Prieto MJ. Micro- and nanotechnology approaches to improve Parkinson’s disease therapy. J Control Release 2019; 295: 201-13.
[http://dx.doi.org/10.1016/j.jconrel.2018.12.036] [PMID: 30579984]
[27]
Ojha S, Kumar B. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. J Cellular Immunotherapy 2018; 4(2): 56-64.
[http://dx.doi.org/10.1016/j.jocit.2017.12.001]
[28]
Ramanathan S, Archunan G, Sivakumar M, et al. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 2018; 13: 5561-76.
[http://dx.doi.org/10.2147/IJN.S149022] [PMID: 30271147]
[29]
Ortiz GG, González-Usigli H, Pacheco-Moisés FP, Mireles-Ramírez MA, Sánchez-López AL, Torres-Sánchez ED, et al. Physiology and pathology of neuroimmunology: Role of inflammation in Parkinson’s Disease. Physiology and Pathology of Immunology. 2017.
[30]
Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 2021; 29(6): 1669-81.
[http://dx.doi.org/10.1007/s10787-021-00889-6] [PMID: 34813026]
[31]
Wesół-Kucharska D, Rokicki D, Jezela-Stanek A. Epilepsy in mitochondrial diseases—current state of knowledge on aetiology and treatment. Children 2021; 8(7): 532.
[http://dx.doi.org/10.3390/children8070532] [PMID: 34206602]
[32]
Anglada-Huguet M, Vidal-Sancho L, Cabezas-Llobet N, Alberch J, Xifró X. Pathogenesis of Huntington’s Disease: How to fight excitotoxicity and transcriptional dysregulation. Huntington’s Disease-molecular pathogenesis and current models. 2017.
[33]
Thau L, Reddy V, Singh P. Anatomy, Central Nervous System. StatPearls Publishing 2022.
[34]
Simon DK, Tanner CM, Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 2020; 36(1): 1-12.
[http://dx.doi.org/10.1016/j.cger.2019.08.002] [PMID: 31733690]
[35]
Kumar A, Singh A. Ekavali. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol Rep 2015; 67(2): 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[36]
Patel DC, Tewari BP, Chaunsali L, Sontheimer H. Neuron–glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci 2019; 20(5): 282-97.
[http://dx.doi.org/10.1038/s41583-019-0126-4] [PMID: 30792501]
[37]
Meunier C, Merienne N, Jollé C, Déglon N, Pellerin L. Astrocytes are key but indirect contributors to the development of the symptomatology and pathophysiology of Huntington’s disease. Glia 2016; 64(11): 1841-56.
[http://dx.doi.org/10.1002/glia.23022] [PMID: 27442486]
[38]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol 2018; 9: 1050-74.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[39]
Pampaloni NP, Giugliano M, Scaini D, Ballerini L, Rauti R. Advances in nano neuroscience: From nanomaterials to nanotools. Front Neurosci 2019; 12: 953.
[http://dx.doi.org/10.3389/fnins.2018.00953] [PMID: 30697140]
[40]
Silva GA. What is nanotechnology and how is it impacting neuroscience? Forbes 2021.
[41]
Kumar A, Tan A, Wong J, et al. Nanotechnology for Neuroscience: Promising approaches for diagnostics, therapeutics and brain activity mapping. Adv Funct Mater 2017; 27(39): 1700489.
[http://dx.doi.org/10.1002/adfm.201700489] [PMID: 30853878]
[42]
Berger M. Nanotechnology for neuroscience. Nanowerk 2017.
[43]
Modi G, Pillay V. Nano-Neuromedicine. World Neurology 2014.
[44]
Nirale P, Paul A, Yadav KS. Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer’s, Parkinson’s and Prion’s. Life Sci 2020; 245: 117394.
[http://dx.doi.org/10.1016/j.lfs.2020.117394] [PMID: 32017870]
[45]
Esquerdo VM, Monte ML, Pinto LAA. Microstructures containing nanocapsules of unsaturated fatty acids with biopolymers: Characterization and thermodynamic properties. J Food Eng 2019; 248: 28-35.
[http://dx.doi.org/10.1016/j.jfoodeng.2018.12.015]
[46]
Bonferoni M, Rossi S, Sandri G, et al. Nanoemulsions for “Nose-to-Brain” drug delivery. Pharmaceutics 2019; 11(2): 84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[47]
Lonappan D, Krishnakumar K, Dineshkumar B. Nanoemulsion in pharmaceuticals. American J PharmTech Res 2018; 8(2): 1-14.
[http://dx.doi.org/10.46624/ajptr.2018.v8.i2.001]
[48]
Sutradhar KB, Amin ML. Nanoemulsions: Increasing possibilities in drug delivery. Eur J Nanomed 2013; 5(2): 1662-596X.
[http://dx.doi.org/10.1515/ejnm-2013-0001]
[49]
Shinde R, Jindal A, Devarajan P. Microemulsions and nanoemulsions for targeted drug delivery to the brain. Curr Nanosci 2011; 7(1): 119-33.
[http://dx.doi.org/10.2174/157341311794480282]
[50]
Lovelyn C, Attama AA. Current state of nanoemulsions in drug delivery. J Biomater Nanobiotechnol 2011; 2(5): 626-39.
[http://dx.doi.org/10.4236/jbnb.2011.225075]
[51]
Karami Z, Saghatchi Zanjani MR, Hamidi M. Nanoemulsions in CNS drug delivery: Recent developments, impacts and challenges. Drug Discov Today 2019; 24(5): 1104-15.
[http://dx.doi.org/10.1016/j.drudis.2019.03.021] [PMID: 30914298]
[52]
Tayeb HH, Sainsbury F. Nanoemulsions in drug delivery: Formulation to medical application. Nanomedicine 2018; 13(19): 2507-25.
[http://dx.doi.org/10.2217/nnm-2018-0088] [PMID: 30265218]
[53]
Chime SA, Kenechukwu FC, Attama AA. Nanoemulsions-advances in formulation, characterization and applications in drug delivery. App Nanotechnol Drug Deliv InTech 2014; 3: 77-126.
[http://dx.doi.org/10.5772/58673]
[54]
Mathialagan V, Sugumaran A, Narayanaswamy D. Nanoemulsion: Importance in pharmaceutical nanotechnology. Research J Pharmacy Technol 2020; 13(4): 2007.
[http://dx.doi.org/10.5958/0974-360X.2020.00361.3]
[55]
Wu Y, Zhang B, Kebebe D, et al. Preparation, optimization and cellular uptake study of tanshinone I nanoemulsion modified with lactoferrin for brain drug delivery. Pharm Dev Technol 2019; 24(8): 982-91.
[http://dx.doi.org/10.1080/10837450.2019.1621897] [PMID: 31107131]
[56]
Kaur A, Nigam K, Bhatnagar I, et al. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: An intranasal approach. Drug Deliv Transl Res 2020; 10(6): 1862-75.
[http://dx.doi.org/10.1007/s13346-020-00754-z] [PMID: 32297166]
[57]
Arora A, Kumar S, Ali J, Baboota S. Intranasal delivery of tetrabenazine nanoemulsion via olfactory region for better treatment of hyperkinetic movement associated with Huntington’s disease: Pharmacokinetic and brain delivery study. Chem Phys Lipids 2020; 230: 104917.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104917] [PMID: 32439327]
[58]
Kumar M, Nishad DK, Kumar A, et al. Enhancement in brain uptake of vitamin D3 nanoemulsion for treatment of cerebral ischemia: formulation, gamma scintigraphy and efficacy study in transient middle cerebral artery occlusion rat models. J Microencapsul 2020; 37(7): 492-501.
[http://dx.doi.org/10.1080/02652048.2020.1801870] [PMID: 32715833]
[59]
Saleh DO, Nasr M, Hassan A, El-Awdan SA, Abdel Jaleel GA. Curcumin nanoemulsion ameliorates brain injury in diabetic rats. J Food Biochem 2022; 46(7): e14104.
[http://dx.doi.org/10.1111/jfbc.14104] [PMID: 35098560]
[60]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[61]
Castro KC, Costa JM, Campos MGN. Drug-loaded polymeric nanoparticles: A review. Int J Polym Mater 2022; 71(1): 1-13.
[http://dx.doi.org/10.1080/00914037.2020.1798436]
[62]
Christoforidis JB, Chang S, Jiang A, Wang J, Cebulla CM. Intravitreal devices for the treatment of vitreous inflammation. Mediators Inflamm 2012; 2012: 126463.
[http://dx.doi.org/10.1155/2012/126463] [PMID: 22988344]
[63]
Gagliardi A, Giuliano E, Venkateswararao E, et al. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front Pharmacol 2021; 12: 601626.
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[64]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[65]
Hickey JW, Santos JL, Williford JM, Mao HQ. Control of polymeric nanoparticle size to improve therapeutic delivery. J Control Release 2015; 219: 536-47.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.006] [PMID: 26450667]
[66]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[67]
Kahraman E, Güngör S, Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther Deliv 2017; 8(11): 967-85.
[http://dx.doi.org/10.4155/tde-2017-0075] [PMID: 29061106]
[68]
Sánchez A, Mejía SP, Orozco J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules 2020; 25(16): 3760.
[http://dx.doi.org/10.3390/molecules25163760] [PMID: 32824757]
[69]
Kunjumon R, Viswanathan G, Jayasree DV, et al. Anti-excitotoxicity and neuroprotective action of asiaticoside encapsulated polymeric nanoparticles in pilocarpine rodent seizure model. Can J Chem 2022; 100(6): 396-404.
[http://dx.doi.org/10.1139/cjc-2021-0281]
[70]
Ali KA, El-Naa MM, Bakr AF, Mahmoud MY, Abdelgawad EM, Matoock MY. The dual gastro- and neuroprotective effects of curcumin loaded chitosan nanoparticles against cold restraint stress in rats. Biomed Pharmacother 2022; 148: 112778.
[http://dx.doi.org/10.1016/j.biopha.2022.112778] [PMID: 35272135]
[71]
Patil D, Nangare S, Patil G, Nerkar K, Patil G. Development of thiolated polyethylene glycol-poly (lactic-co-glycolic acid) co-polymeric nanoparticles for intranasal delivery of quetiapine: In vitro-ex vivo characterization. Int J Polym Mater 2022; 1-11.
[72]
Oliveira AI, Pinho C, Sarmento B, Dias ACP. Quercetin-biapigenin nanoparticles are effective to penetrate the blood–brain barrier. Drug Deliv Transl Res 2022; 12(1): 267-81.
[http://dx.doi.org/10.1007/s13346-021-00917-6] [PMID: 33709285]
[73]
Lin F, Liu Y, Luo W, et al. Minocycline-loaded poly(α-lipoic acid)–methylprednisolone prodrug nanoparticles for the combined anti-inflammatory treatment of spinal cord injury. Int J Nanomedicine 2022; 17: 91-104.
[http://dx.doi.org/10.2147/IJN.S344491] [PMID: 35027828]
[74]
Zhao Y, Xiong S, Liu P, et al. Polymeric nanoparticles-based brain delivery with improved therapeutic efficacy of ginkgolide B in Parkinson’s disease. Int J Nanomedicine 2020; 15: 10453-67.
[http://dx.doi.org/10.2147/IJN.S272831] [PMID: 33380795]
[75]
Silva GA. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci 2008; 9 (Suppl. 3): S4.
[http://dx.doi.org/10.1186/1471-2202-9-S3-S4] [PMID: 19091001]
[76]
Rauti R, Musto M, Bosi S, Prato M, Ballerini L. Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon 2019; 143: 430-46.
[http://dx.doi.org/10.1016/j.carbon.2018.11.026]
[77]
Patel KD, Singh RK, Kim HW. Carbon-based nanomaterials as an emerging platform for theranostics. Mater Horiz 2019; 6(3): 434-69.
[http://dx.doi.org/10.1039/C8MH00966J]
[78]
Maiti D, Tong X, Mou X, Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol 2019; 9: 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[79]
Bakry R, Vallant RM, Najam-ul-Haq M, et al. Medicinal applications of fullerenes. Int J Nanomedicine 2007; 2(4): 639-49.
[PMID: 18203430]
[80]
Fullerene. Neutrino 2007. Available from: https://academic.oup.com/ptep/article/2012/1/04D002/1574620
[81]
Paraskevi P, Tsachouridis S. Fullerenes: Chemical structure and properties. Front Pharmacol 2010; 1. Available from: https://www.frontiersin.org/10.3389/conf.fphar.2010.60.00206/event_abstract
[82]
Hsieh FY, Zhilenkov AV, Voronov II, et al. Water-soluble fullerene derivatives as brain medicine: Surface chemistry determines if they are neuroprotective and antitumor. ACS Appl Mater Interfaces 2017; 9(13): 11482-92.
[http://dx.doi.org/10.1021/acsami.7b01077] [PMID: 28263053]
[83]
Serda M, Gawecki R, Dulski M, et al. Synthesis and applications of [60] fullerene nanoconjugate with 5-aminolevulinic acid and its glycoconjugate as drug delivery vehicles. RSC Advances 2022; 12(11): 6377-88.
[http://dx.doi.org/10.1039/D1RA08499B] [PMID: 35424628]
[84]
Kitko KE, Zhang Q. Graphene-based nanomaterials: From production to integration with modern tools in neuroscience. Front Syst Neurosci 2019; 13: 26.
[http://dx.doi.org/10.3389/fnsys.2019.00026] [PMID: 31379522]
[85]
Grajek H, Jonik J, Witkiewicz Z, Wawer T. Purchała M. Applications of graphene and its derivatives in chemical analysis. Crit Rev Anal Chem 2020; 50(5): 445-71.
[http://dx.doi.org/10.1080/10408347.2019.1653165] [PMID: 31702380]
[86]
Liao C, Li Y, Tjong S. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int J Mol Sci 2018; 19(11): 3564.
[http://dx.doi.org/10.3390/ijms19113564] [PMID: 30424535]
[87]
Su S, Wang J, Qiu J, Martinez-Zaguilan R, Sennoune SR, Wang S. In vitro study of transportation of porphyrin immobilized graphene oxide through blood brain barrier. Mater Sci Eng C 2020; 107: 110313.
[http://dx.doi.org/10.1016/j.msec.2019.110313] [PMID: 31761227]
[88]
Basso L, Cazzanelli M, Orlandi M, Miotello A. Nanodiamonds: synthesis and application in sensing, Catalysis, and the possible Connection with some processes occurring in space. Appl Sci (Basel) 2020; 10(12): 4094.
[http://dx.doi.org/10.3390/app10124094]
[89]
Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J Pharm Anal 2020; 10(1): 1-12.
[http://dx.doi.org/10.1016/j.jpha.2019.09.003] [PMID: 32123595]
[90]
Moscariello P, Raabe M, Liu W, et al. Unraveling in vivo brain transport of protein‐Coated fluorescent nanodiamonds. Small 2019; 15(42): 1902992.
[http://dx.doi.org/10.1002/smll.201902992] [PMID: 31465151]
[91]
Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed Pharmacother 2017; 87: 209-22.
[http://dx.doi.org/10.1016/j.biopha.2016.12.108] [PMID: 28061404]
[92]
Liu J, Li R, Yang B. Carbon Dots: A new type of carbon-based nanomaterial with wide applications. ACS Cent Sci 2020; 6(12): 2179-95.
[http://dx.doi.org/10.1021/acscentsci.0c01306] [PMID: 33376780]
[93]
Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: A review. Mater Today Chem 2018; 8: 96-109.
[http://dx.doi.org/10.1016/j.mtchem.2018.03.003]
[94]
Tuerhong M, Xu Y, Yin X-B. Review on carbon dots and their applications. Chin J Anal Chem 2017; 45(1): 139-50.
[http://dx.doi.org/10.1016/S1872-2040(16)60990-8]
[95]
Wang Y, Hu A. Carbon quantum dots: Synthesis, properties and applications. J Mater Chem C Mater Opt Electron Devices 2014; 2(34): 6921.
[http://dx.doi.org/10.1039/C4TC00988F]
[96]
Lin D, Li M, Gao Y, Yin L, Guan Y. Brain-targeted gene delivery of ZnO quantum dots nanoplatform for the treatment of Parkinson disease. Chem Eng J 2022; 429: 132210.
[http://dx.doi.org/10.1016/j.cej.2021.132210]
[97]
Ray U. What are the different types of nanoparticles?. Azonano 2018.
[98]
Saifuddin N, Raziah AZ, Junizah AR. Carbon Nanotubes: A review on structure and their interaction with proteins. J Chem 2013; 2013: 676815.
[http://dx.doi.org/10.1155/2013/676815]
[99]
He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C. Carbon nanotubes: Applications in pharmacy and medicine. BioMed Res Int 2013; 2013: 578290.
[http://dx.doi.org/10.1155/2013/578290] [PMID: 24195076]
[100]
Ibrahim KS. Carbon nanotubes-properties and applications: A review. Carbon letters 2013; 14(3): 131-44.
[http://dx.doi.org/10.5714/CL.2013.14.3.131]
[101]
Pitroda J, Jethwa B, Dave SKD. A Critical Review on Carbon Nanotubes. Int J Construct Res Civil Engineer 2016; 2(5): 36-42.
[102]
Teleanu D, Chircov C, Grumezescu A, Volceanov A, Teleanu R. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018; 10(4): 269.
[http://dx.doi.org/10.3390/pharmaceutics10040269] [PMID: 30544966]
[103]
Alavian F, Shams N. Oral and Intra-nasal administration of nanoparticles in the cerebral ischemia treatment in animal experiments: Considering its advantages and Disadvantages. Curr Clin Pharmacol 2020; 15(1): 20-9.
[http://dx.doi.org/10.2174/22123938OTkzpOTU1TcVY] [PMID: 31272358]
[104]
Staff. What Does “In the Pipeline” Mean for Pharmaceutical Companies? The Motley Staff. 2016.
[105]
Product Development Portfolio. Hoffmann-La Roche Ltd. 2022. Available from: https://www.roche.com/solutions/pipeline/#81ad1b25-f415-4714-9450-45c188614658
[106]
Novartis Pipeline. Novartis AG. Available from: 2022. https://www.novartis.com/research-development/novartis-pipeline
[107]
Pipeline. Biogen 2007. Available from: https://www.biogen.com/science-and-innovation/pipeline.html
[108]
PIPELINE. UCB Available from: https://www.ucb.com/our-science/pipeline
[109]
Our Pipeline. ACADIA. Available from: https://acadia.com/pipeline/
[110]
WU CC. Nanoemulsions having reversible continuous and dispersed phases. Patent EP 3159012 B1, 2019.
[111]
NAM KH. Stable nanoemulsions for ultrasound-mediated drug delivery and imaging. Patent US 8709451 B2, 2014.
[112]
Narayana C. Nanoparticle composition and process thereof. Patent WO 2009/063508 A2, 2009.
[113]
Dandr F, Ruth DM, David B, Howard WL. Compositions and methods for treating neurological disorders. Patent EP 2332570 A1, 2011.
[114]
Anirban M, George F, Savita B. Water-dispersible oral, parenteral, and topical formulations for poorly water soluble drugs using smart polymeric nanoparticles. Patent US 8715741 B2, 2014.
[115]
Xiarong W, Hidkei K, Herman PJ, Christopher RG, Yaohong C, Yuan-Yong Y. Hairy polymeric nanoparticles with first and second shell block polymer arms. Patent US 9493601 B2, 2016.
[116]
Ryszard K, Bogumil L, Piotr K, et al. Method of manufacturing silver nanoparticles, cellulosic fibers and nanofibers containing silver nanoparticles, fibers and nanofibers containing silver nanoparticles, use of silver nanoparticles to the manufacture of cellulosic fibers and nanofibers. Patent WO 2008/100163 A1, 2008.
[117]
Sun Y-P. Fluorescent carbon nanoparticles. Patent US 7829772 B2, 2010.
[118]
Haiping H, Bud P, David RS. Composite materials with magnetically aligned carbon nanoparticles and methods of preparation. Patent US 9892835 B2, 2018.
[119]
Haiping H, Andrew WJ. Carbon nanoparticle-containing nanofluid. Patent US 7871533 B1, 2011.
[120]
Syed QB, Teddy KM. Bulk synthesis of carbon nanotubes from metallic and ethynyl compounds. Patent AU 2003/210108 B2, 2009.
[121]
Jean J, Haku Oh J, Chul Kim D. Method for producing carbon nanoparticles JP3606855B2, 2005-01-05.
[122]
Nanomaterials market size, share & trends analysis report by product (Gold, Silver, Iron, Copper), by application (Aerospace, Automotive, Medical), by region, and segment forecasts, 2021 - 2028. 2021.
[123]
Tiwari S, Kaushik A. Nano-Neurogenesis for CNS Diseases and Disorders. Frontiers in Nanotechnology 2022; 4: 42.
[124]
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: Diagnostic and therapeutic nano-based strategies in applied neuroscience. BioMedical Engineering OnLine 2023; 22(1): 1-41. Available from: https://biomedical-engineeringonline.biomedcentral.com/articles/10.1186/s12938-022-01062-y