Green Tea Catechins as Potential Drug Scaffolding Molecules in Structural Studies with Diverse Protein Targets

Page: [189 - 206] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Previous studies provide substantial evidence that catechins, polyphenol bioactive compounds, exhibit medicinal benefits. These polyphenols are found in abundance in green teas, including a combination of the four major types of catechins: (-)-Epicatechin (EC), (-)-Epicatechin-3-gallate (ECG), (-)- Epigallocatechin (EGC), and (-)- Epigallocatechin-3-gallate (EGCG). Although all four exhibit medicinal benefits, the catechin cited in the literature the most is EGCG, so derivatives of this catechin were selected for these studies. Literature searches identified catechins as biologically active compounds for a diverse set of diseases ranging from cancer, metabolism, neurological, and neuromuscular ailments. A diverse set of potential protein targets for docking with catechin derivatives was first identified as a list (n = 48). The targets were then selected based on the presence of 3D protein coordinates for these targets provided by the Rutgers Consortium for Structural Biology (RCSB) Protein Data Bank (PDB) (n = 10). The surfaces of the 3D protein targets were evaluated with computational methods to identify potential binding sites for the EGCG catechin derivatives. Static and flexible docking was done using target protein binding sites performed with the catechin derivatives followed by molecular dynamics (MD). MD protocols were run to confirm binding in the physiological range and environment. In summary, the results of computational protocols confirmed predicted binding by docking with MD of several catechin derivatives to be used as scaffolds once validated in lab-based assays. Possible changes to these scaffolding molecules that could result in tighter, more specific binding is discussed.

Graphical Abstract

[1]
Saeki, K.; Hayakawa, S.; Nakano, S.; Ito, S.; Oishi, Y.; Suzuki, Y.; Isemura, M. In vitro and in silico studies of the molecular interactions of Epigallocatechin-3-O-gallate (EGCG) with proteins that explain the health benefits of green tea. Molecules, 2018, 23(6), 1295.
[http://dx.doi.org/10.3390/molecules23061295] [PMID: 29843451]
[2]
Robertson, I.M.; Li, M.X.; Sykes, B.D. Solution structure of human cardiac troponin C in complex with the green tea polyphenol, (-)-epigallocatechin 3-gallate. J. Biol. Chem., 2009, 284(34), 23012-23023.
[http://dx.doi.org/10.1074/jbc.M109.021352] [PMID: 19542563]
[3]
Nakano, S.; Megro, S.; Hase, T.; Suzuki, T.; Isemura, M.; Nakamura, Y.; Ito, S. Computational molecular docking and x-ray crystallographic studies of catechins in new drug design strategies. Molecules, 2018, 23(8), 2020.
[http://dx.doi.org/10.3390/molecules23082020] [PMID: 30104534]
[4]
Leal, H.G.; Arya, M.A.; Anderson, R.; Stieglitz, K. Preparation and Implementation of a High Throughput Virtual Screening Protocol on a Shared Memory GPU Supercomputer. In: functional properties of advanced engineering materials and biomolecules. engineering materials; La Porta, F.A.; Taft, C.A., Eds.; Springer: Cham, 2021.
[http://dx.doi.org/10.1007/978-3-030-62226-8_15]
[5]
Cui, F.; Yang, K.; Li, Y. Investigate the binding of catechins to trypsin using docking and molecular dynamics simulation. PLoS One, 2015, 10(5), e0125848.
[http://dx.doi.org/10.1371/journal.pone.0125848] [PMID: 25938485]
[6]
Federico, L.B.; Barcelos, M.P.; Silva, G.M.; Francischini, I.A.G.; Taft, C.A.; da Silva, C.H.T.P. Key Aspects for Achieving Hits by Virtual Screening Studies. In: functional properties of advanced engineering materials and biomolecules. Engineering materials; La Porta, F.A.; Taft, C.A., Eds.; Springer: China, 2021.
[http://dx.doi.org/10.1007/978-3-030-62226-8_16]
[7]
Taft, C.A.; Canchaya, J.G.S.; dos Santos, J.D.; Silva, J.C.F. Review: Simulation Models for Materials and Biomolecules. In: functional properties of advanced engineering materials and biomolecules. Engineering materials; La Porta, F.A.; Taft, C.A., Eds.; Springer: Cham, 2021.
[http://dx.doi.org/10.1007/978-3-030-62226-8_2]
[8]
Etheve, L.; Martin, J.; Lavery, R. Protein–DNA interfaces: A molecular dynamics analysis of time-dependent recognition processes for three transcription factors. Nucleic Acids Res., 2016, 44(20), gkw841.
[http://dx.doi.org/10.1093/nar/gkw841] [PMID: 27658967]
[9]
Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron, 2018, 99(6), 1129-1143.
[http://dx.doi.org/10.1016/j.neuron.2018.08.011] [PMID: 30236283]
[10]
Salsbury, F.R., Jr Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr. Opin. Pharmacol., 2010, 10(6), 738-744.
[http://dx.doi.org/10.1016/j.coph.2010.09.016] [PMID: 20971684]
[11]
Topaz, G.; Ngesina, D.; Eligene, L.; Watson, D.; Stieglitz, K.A. Structural analysis and comparison of active site architecture from ancient bacteria to human phosphatases: A novel approach to identification of lead compounds with increased specificity and potency for drug discovery. Curr. Phys. Chem., 2015, 5(3), 195-205.
[12]
Da Silva, V.B.; Kawano, D.F.; Gomes, A.S.; Carvalho, I.; Taft, C.A.; da Silva, C.H.T.P. Molecular dynamics, density functional, ADMET predictions, virtual screening, and molecular interaction field studies for identification and evaluation of novel potential CDK2 inhibitors in cancer therapy. J. Phys. Chem. A, 2008, 112(38), 8902-8910.
[13]
Metrick, C.M.; Peterson, E.A.; Santoro, J.C.; Enyedy, I.J.; Murugan, P.; Chen, T.; Michelsen, K.; Cullivan, M.; Spilker, K.A.; Kumar, P.R.; May-Dracka, T.L.; Chodaparambil, J.V. Human PLD structures enable drug design and characterization of isoenzyme selectivity. Nat. Chem. Biol., 2020, 16(4), 391-399.
[http://dx.doi.org/10.1038/s41589-019-0458-4] [PMID: 32042197]
[14]
Huang, Y.; Su, R.; Sheng, Y.; Dong, L.; Dong, Z.; Xu, H.; Ni, T.; Zhang, Z.S.; Zhang, T.; Li, C.; Han, L.; Zhu, Z.; Lian, F.; Wei, J.; Deng, Q.; Wang, Y.; Wunderlich, M.; Gao, Z.; Pan, G.; Zhong, D.; Zhou, H.; Zhang, N.; Gan, J.; Jiang, H.; Mulloy, J.C.; Qian, Z.; Chen, J.; Yang, C.G. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell, 2019, 35(4), 677-691.e10.
[http://dx.doi.org/10.1016/j.ccell.2019.03.006] [PMID: 30991027]
[15]
Shiau, A.K.; Barstad, D.; Loria, P.M.; Cheng, L.; Kushner, P.J.; Agard, D.A.; Greene, G.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 1998, 95(7), 927-937.
[16]
You, W.; Zheng, W.; Weiss, S.; Chua, K.F.; Steegborn, C. Structural basis for the activation and inhibition of Sirtuin 6 by quercetin and its derivatives. Sci. Rep., 2019, 9(1), 19176.
[http://dx.doi.org/10.1038/s41598-019-55654-1] [PMID: 31844103]
[17]
Dai, H.; Case, A.W.; Riera, T.V.; Considine, T.; Lee, J.E.; Hamuro, Y.; Zhao, H.; Jiang, Y.; Sweitzer, S.M.; Pietrak, B.; Schwartz, B.; Blum, C.A.; Disch, J.S.; Caldwell, R.; Szczepankiewicz, B.; Oalmann, C.; Yee Ng, P.; White, B.H.; Casaubon, R.; Narayan, R.; Koppetsch, K.; Bourbonais, F.; Wu, B.; Wang, J.; Qian, D.; Jiang, F.; Mao, C.; Wang, M.; Hu, E.; Wu, J.C.; Perni, R.B.; Vlasuk, G.P.; Ellis, J.L. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Nat. Commun., 2015, 6(1), 7645.
[http://dx.doi.org/10.1038/ncomms8645] [PMID: 26134520]
[18]
Shihoya, W.; Nishizawa, T.; Yamashita, K.; Hirata, K.; Nureki, O. Raw diffraction images of endothelin ETB receptor bound to clinical antagonist bosentan and its analog. Zenodo, 2017.
[http://dx.doi.org/10.5281/zenodo.897676]
[19]
Shihoya, W.; Nishizawa, T.; Yamashita, K.; Inoue, A.; Hirata, K.; Kadji, F.M.N.; Okuta, A.; Tani, K.; Aoki, J.; Fujiyoshi, Y.; Doi, T.; Nureki, O. X-ray structures of endothelin ETB receptor bound to clinical antagonist bosentan and its analog. Nat. Struct. Mol. Biol., 2017, 24(9), 758-764.
[http://dx.doi.org/10.1038/nsmb.3450] [PMID: 28805809]
[20]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[21]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[22]
Mannhold, R. Molecular Drug Properties: Measurement and Prediction; Wiley Online Library, 2007.
[http://dx.doi.org/10.1002/9783527621286]
[23]
Renee, M.K.; Ervin, P.; Kazuo, K.; Ken, H.; Aleksandra, R.; Boguslaw, S.; Stieglitz, K.A. Shape matters: Improving docking results by prior analysis of geometric attributes of binding sites. JSM Chem., 2016, 4, 1020.
[24]
Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[25]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[26]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[27]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[28]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[29]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[30]
Eberhardt, J. Autodock vina 1.2.0, new docking methods, expanded force field, and phython bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[31]
The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC.
[32]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[33]
Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res., 2011, 39, 270-277.
[http://dx.doi.org/10.1093/nar/gkr366]
[34]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[35]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[36]
CHARMM General Force Field (CGenFF). A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem., 2017, 31(4), 671-690.
[38]
Di Pierro, M.; Elber, R.; Leimkuhler, B. A stochastic algorithm for the isobaric–isothermal ensemble with ewald summations for all long range forces. J. Chem. Theory Comput., 2015, 11(12), 5624-5637.
[http://dx.doi.org/10.1021/acs.jctc.5b00648] [PMID: 26616351]
[39]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[40]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[41]
Eelke, B. Predicting binding affinities for GPCR ligands using free-energy perturbation. ACS Omega, 2016, 1(2), 293-304.
[http://dx.doi.org/10.1021/acsomega.6b00086]
[42]
Fiorentino, F.; Mai, A.; Rotili, D. Emerging therapeutic potential of SIRT6 modulators. J. Med. Chem., 2021, 64(14), 9732-9758.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00601] [PMID: 34213345]
[43]
Onn, L.; Portillo, M.; Ilic, S.; Cleitman, G.; Stein, D.; Kaluski, S.; Shirat, I.; Slobodnik, Z.; Einav, M.; Erdel, F.; Akabayov, B.; Toiber, D. SIRT6 is a DNA double-strand break sensor. eLife, 2020, 9, e51636.
[http://dx.doi.org/10.7554/eLife.51636] [PMID: 31995034]
[44]
Parenti, M.D.; Grozio, A.; Bauer, I.; Galeno, L.; Damonte, P.; Millo, E.; Sociali, G.; Franceschi, C.; Ballestrero, A.; Bruzzone, S.; Rio, A.D.; Nencioni, A. Discovery of novel and selective SIRT6 inhibitors. J. Med. Chem., 2014, 57(11), 4796-4804.
[http://dx.doi.org/10.1021/jm500487d] [PMID: 24785705]
[45]
D’Onofrio, N.; Servillo, L.; Balestrieri, M.L. SIRT1 and SIRT6 signaling pathways in cardiovascular disease protection. Antioxid. Redox Signal., 2018, 28(8), 711-732.
[http://dx.doi.org/10.1089/ars.2017.7178] [PMID: 28661724]
[46]
Yuan, P.; Liang, K.; Ma, B.; Zheng, N.; Nussinov, R.; Huang, J. Multiple-targeting and conformational selection in the estrogen receptor: Computation and experiment. Chem. Biol. Drug Des., 2011, 78(1), 137-149.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01119.x] [PMID: 21443691]
[47]
Rosenberg, P.S.; Barker, K.A.; Anderson, W.F. Estrogen receptor status and the future burden of invasive and in situ breast cancers in the United States. J. Natl. Cancer Inst., 2015, 107(9), djv159.
[http://dx.doi.org/10.1093/jnci/djv159] [PMID: 26063794]
[48]
Pavlin, M.; Gelsomino, L.; Barone, I.; Spinello, A.; Catalano, S.; Andò, S.; Magistrato, A. Structural, thermodynamic, and kinetic traits of antiestrogen-compounds selectively targeting the Y537S mutant estrogen receptor α transcriptional activity in breast cancer cell lines. Front Chem., 2019, 7, 602.
[http://dx.doi.org/10.3389/fchem.2019.00602] [PMID: 31552220]
[49]
Bafna, D.; Ban, F.; Rennie, P.S.; Singh, K.; Cherkasov, A. Computer-aided ligand discovery for estrogen receptor alpha. Int. J. Mol. Sci., 2020, 21(12), 4193.
[http://dx.doi.org/10.3390/ijms21124193] [PMID: 32545494]
[50]
Pang, X.; Fu, W.; Wang, J.; Kang, D.; Xu, L.; Zhao, Y.; Liu, A.L.; Du, G.H. Identification of estrogen receptor α antagonists from natural products viain vitro and in silico approaches. Oxid. Med. Cell. Longev., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/6040149] [PMID: 29861831]
[51]
Moreno-Ulloa, A.; Miranda-Cervantes, A.; Licea-Navarro, A.; Mansour, C.; Beltrán-Partida, E.; Donis-Maturano, L.; Delgado De la Herrán, H.C.; Villarreal, F.; Álvarez-Delgado, C. (-)-Epicatechin stimulates mitochondrial biogenesis and cell growth in C2C12 myotubes via the G-protein coupled estrogen receptor. Eur. J. Pharmacol., 2018, 822, 95-107.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.014] [PMID: 29355558]
[52]
Clegg, N.J.; Paruthiyil, S.; Leitman, D.C.; Scanlan, T.S. Differential response of estrogen receptor subtypes to 1,3-diarylindene and 2,3-diarylindene ligands. J. Med. Chem., 2005, 48(19), 5989-6003.
[http://dx.doi.org/10.1021/jm050226i] [PMID: 16162002]
[53]
Church, C.; Moir, L.; McMurray, F.; Girard, C.; Banks, G.T.; Teboul, L.; Wells, S.; Brüning, J.C.; Nolan, P.M.; Ashcroft, F.M.; Cox, R.D. Overexpression of Fto leads to increased food intake and results in obesity. Nat. Genet., 2010, 42(12), 1086-1092.
[http://dx.doi.org/10.1038/ng.713] [PMID: 21076408]
[54]
Xie, L.J.; Liu, L.; Cheng, L. Selective inhibitors of AlkB family of nucleic acid demethylases. Biochemistry, 2020, 59(3), 230-239.
[http://dx.doi.org/10.1021/acs.biochem.9b00774] [PMID: 31603665]
[55]
Zhou, L.L.; Xu, H.; Huang, Y.; Yang, C.G. Targeting the RNA demethylase FTO for cancer therapy. RSC Chem. Biol., 2021, 2(5), 1352-1369.
[http://dx.doi.org/10.1039/D1CB00075F] [PMID: 34704042]
[56]
Su, W.; Chen, Q.; Frohman, M.A. Targeting phospholipase D with small-molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol., 2009, 5(9), 1477-1486.
[http://dx.doi.org/10.2217/fon.09.110] [PMID: 19903073]
[57]
Ganesan, R.; Mahankali, M.; Alter, G.; Gomez-Cambronero, J. Two sites of action for PLD2 inhibitors: The enzyme catalytic center and an allosteric, phosphoinositide biding pocket. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(3), 261-272.
[http://dx.doi.org/10.1016/j.bbalip.2014.12.007] [PMID: 25532944]
[58]
Buxton, N.D.; Kaiser, R.A.; Buxton, I.L.O. Vascular actions of the polyphenolic catechin gallate EGCG: Endothelium-dependent contraction and relaxation. Proc. West. Pharmacol. Soc., 2003, 46, 37-38.
[PMID: 14699880]
[59]
Monsalve, B.; Concha-Meyer, A.; Palomo, I.; Fuentes, E. Mechanisms of endothelial protection by natural bioactive compounds from fruit and vegetables. An. Acad. Bras. Cienc., 2017, 89(1)(Suppl.), 615-633.
[http://dx.doi.org/10.1590/0001-3765201720160509] [PMID: 28538813]
[60]
Sosa, Y.J.; Sosa, H.M.; Epiter-Smith, V.A.; Topaz, G.R.; Stieglitz, K.A. Connecting Pathway Errors in the Insulin Signaling Cascade: The Molecular Link to Inflammation, Obesity, Cancer, and Alzheimer’s Disease. In: Emerging research in science and engineering based on advanced experimental and computational strategies. Engineering materials; La Porta, F.; Taft, C., Eds.; Springer: Cham, 2020.
[http://dx.doi.org/10.1007/978-3-030-31403-3_9]