Impact of TRP Channels in Oral Pathology and Therapeutic Targeting Options: A Narrative Review

Page: [1559 - 1573] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Transient Receptor Potential (TRP) channels are non-selective Ca2+ permeable channels with a wide and dynamic involvement in the perception of environmental stimuli in the oral cavity and a pivotal role in oral tissues’ pathology and oral diseases. Several factors secreted during pulpitis and periodontitis, such as pro-inflammatory cytokines, prostaglandins, glutamate, extracellular ATP, and bradykinin, can trigger TRPs, either directly or indirectly, lowering the threshold of sensory neurons and regulate immune cell function.

Objective: To investigate the diverse functions and molecular mechanisms of TRP channels in oral pathology and critically discuss their clinical significance and therapeutic targeting potential.

Methods: Relevant keywords were used for research in scientific databases (Pumped, Scopus, and Science Direct). Only articles in English were included, screened, and critically analyzed. The key findings of these studies were included, along with their clinical importance.

Results: Certain TRP channels were detected as key mediators of oral pathology. TRPV1 was revealed to play an important role in pain transduction in pulpits, induce inflammation, and be involved in bone resorption during periodontitis. TRPM2 activation may reduce saliva secretion in acinar salivary cells and xerostomia after head and neck radiation, while TRPV1 and TRPA1 channels mediate trigeminal nerve pain. Several TRP agonists and antagonists have been demonstrated to block pathological pathways in oral diseases along with certain compounds such as capsaicin, capsazepine, nifedipine, eugenol, thapsigargin and specific targeting techniques such as UHF-USP and Er: YAG lasers. Current TRP targeting approaches have been shown to exert beneficial effects in osteoblasts and fibroblasts proliferation, carcinoma cells’ apoptosis, saliva secretion, and nociception.

Conclusion: TRPs play a central role in pain transduction, inflammatory responses in oral tissues, and pathological conditions of the oral mucosa, including oral squamous cell carcinoma and ulcerative mucositis.

Graphical Abstract

[1]
Levanti, M.; Randazzo, B.; Viña, E.; Montalbano, G.; Garcia-Suarez, O.; Germanà, A.; Vega, J.A.; Abbate, F. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds. Ann. Anat., 2016, 207, 32-37.
[http://dx.doi.org/10.1016/j.aanat.2016.06.006] [PMID: 27513962]
[2]
Katsianou, M.A.; Skondra, F.G.; Gargalionis, A.N.; Piperi, C.; Basdra, E.K. The role of transient receptor potential polycystin channels in bone diseases. Ann. Transl. Med., 2018, 6(12), 246.
[http://dx.doi.org/10.21037/atm.2018.04.10] [PMID: 30069448]
[3]
Kaneko, Y.; Szallasi, A. Transient receptor potential (TRP) channels: A clinical perspective. Br. J. Pharmacol., 2014, 171(10), 2474-2507.
[http://dx.doi.org/10.1111/bph.12414] [PMID: 24102319]
[4]
Hung, C.Y.; Tan, C.H. TRP channels in nociception and pathological pain. Adv. Exp. Med. Biol., 2018, 1099, 13-27.
[http://dx.doi.org/10.1007/978-981-13-1756-9_2] [PMID: 30306511]
[5]
Emir, T.L.R. Neurobiology of TRP channels, 1st ed; CRC Press/Taylor & Francis: Boca Raton, FL, 2017.
[6]
Li, H. TRP channel classification. Adv. Exp. Med. Biol., 2017, 976, 1-8.
[http://dx.doi.org/10.1007/978-94-024-1088-4_1] [PMID: 28508308]
[7]
Adamopoulos, C.; Gargalionis, A.N.; Piperi, C.; Papavassiliou, A.G. Recent advances in mechanobiology of osteosarcoma. J. Cell. Biochem., 2017, 118(2), 232-236.
[http://dx.doi.org/10.1002/jcb.25660] [PMID: 27463370]
[8]
Hossain, M.; Bakri, M.; Yahya, F.; Ando, H.; Unno, S.; Kitagawa, J. The role of Transient Receptor Potential (TRP) channels in the transduction of dental pain. Int. J. Mol. Sci., 2019, 20(3), 526.
[http://dx.doi.org/10.3390/ijms20030526] [PMID: 30691193]
[9]
Wang, S.; Lim, J.; Joseph, J.; Wang, S.; Wei, F.; Ro, J.Y.; Chung, M.K. Spontaneous and bite-evoked muscle pain are mediated by a common nociceptive pathway with differential contribution by TRPV1. J. Pain, 2017, 18(11), 1333-1345.
[http://dx.doi.org/10.1016/j.jpain.2017.06.005] [PMID: 28669862]
[10]
Tsutsumi, T.; Kajiya, H.; Fukawa, T.; Sasaki, M.; Nemoto, T.; Tsuzuki, T.; Takahashi, Y.; Fujii, S.; Maeda, H.; Okabe, K. The potential role of transient receptor potential type A1 as a mechanoreceptor in human periodontal ligament cells. Eur. J. Oral Sci., 2013, 121(6), 538-544.
[http://dx.doi.org/10.1111/eos.12083] [PMID: 24206072]
[11]
Zhao, L.Y.; Xu, W.L.; Xu, Z.Q.; Qi, C.; Li, Y.; Cheng, J.; Liu, L.K.; Wu, Y.N.; Gao, J.; Ye, J.H. The overexpressed functional transient receptor potential channel TRPM2 in oral squamous cell carcinoma. Sci. Rep., 2016, 6(1), 38471.
[http://dx.doi.org/10.1038/srep38471] [PMID: 28008929]
[12]
Ambudkar, I.S. Calcium signalling in salivary gland physiology and dysfunction. J. Physiol., 2016, 594(11), 2813-2824.
[http://dx.doi.org/10.1113/JP271143] [PMID: 26592972]
[13]
Kong, S.; Aoki, A.; Iwasaki, K.; Mizutani, K.; Katagiri, S.; Suda, T.; Ichinose, S.; Ogita, M.; Pavlic, V.; Izumi, Y. Biological effects of Er:YAG laser irradiation on the proliferation of primary human gingival fibroblasts. J. Biophotonics, 2018, 11(3), e201700157.
[http://dx.doi.org/10.1002/jbio.201700157] [PMID: 29045028]
[14]
Cong, X.; Zhang, Y.; Shi, L.; Yang, N.Y.; Ding, C.; Li, J.; Ding, Q.W.; Su, Y.C.; Xiang, R.L.; Wu, L.L.; Yu, G.Y. Activation of transient receptor potential vanilloid subtype 1 increases expression and permeability of tight junction in normal and hyposecretory submandibular gland. Lab. Invest., 2012, 92(5), 753-768.
[http://dx.doi.org/10.1038/labinvest.2012.12] [PMID: 22391958]
[15]
Urano, H.; Ara, T.; Fujinami, Y.; Hiraoka, B.Y. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain. Int. J. Med. Sci., 2012, 9(8), 690-697.
[http://dx.doi.org/10.7150/ijms.4706] [PMID: 23091405]
[16]
Rechenberg, D.K.; Galicia, J.C.; Peters, O.A. Biological markers for pulpal inflammation: A systematic review. PLoS One, 2016, 11(11), e0167289.
[http://dx.doi.org/10.1371/journal.pone.0167289] [PMID: 27898727]
[17]
El Karim, I.A.; McCrudden, M.T.C.; McGahon, M.K.; Curtis, T.M.; Jeanneau, C.; Giraud, T.; Irwin, C.R.; Linden, G.J.; Lundy, F.T.; About, I. Biodentine reduces tumor necrosis factor alpha-induced TRPA1 expression in odontoblastlike cells. J. Endod., 2016, 42(4), 589-595.
[http://dx.doi.org/10.1016/j.joen.2015.12.017] [PMID: 26874643]
[18]
El Karim, I.; McCrudden, M.T.C.; Linden, G.J.; Abdullah, H.; Curtis, T.M.; McGahon, M.; About, I.; Irwin, C.; Lundy, F.T. TNF-α-induced p38MAPK activation regulates TRPA1 and TRPV4 activity in odontoblast-like cells. Am. J. Pathol., 2015, 185(11), 2994-3002.
[http://dx.doi.org/10.1016/j.ajpath.2015.07.020] [PMID: 26358221]
[19]
Diogenes, A.; Akopian, A.N.; Hargreaves, K.M. NGF up-regulates TRPA1: Implications for orofacial pain. J. Dent. Res., 2007, 86(6), 550-555.
[http://dx.doi.org/10.1177/154405910708600612] [PMID: 17525356]
[20]
Miyashita, K.; Oyama, T.; Sakuta, T.; Tokuda, M.; Torii, M. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture. J. Endod., 2012, 38(6), 786-790.
[http://dx.doi.org/10.1016/j.joen.2012.02.025] [PMID: 22595113]
[21]
Utreras, E.; Prochazkova, M.; Terse, A.; Gross, J.; Keller, J.; Iadarola, M.J.; Kulkarni, A.B. TGF-β1 sensitizes TRPV1 through Cdk5 signaling in odontoblast-like cells. Mol. Pain, 2013, 9, 1744-8069-9-24.
[http://dx.doi.org/10.1186/1744-8069-9-24] [PMID: 23668392]
[22]
Shibukawa, Y.; Sato, M.; Kimura, M.; Sobhan, U.; Shimada, M.; Nishiyama, A.; Kawaguchi, A.; Soya, M.; Kuroda, H.; Katakura, A.; Ichinohe, T.; Tazaki, M. Odontoblasts as sensory receptors: Transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Arch., 2015, 467(4), 843-863.
[http://dx.doi.org/10.1007/s00424-014-1551-x] [PMID: 24939701]
[23]
Liu, J.; Zhao, Z.; Wen, J.; Wang, Y.; Zhao, M.; Peng, L.; Zang, C.; Que, K. TNF‐α differently regulates TRPV2 and TRPV4 channels in human dental pulp cells. Int. Endod. J., 2019, 52(11), 1617-1628.
[http://dx.doi.org/10.1111/iej.13174] [PMID: 31206742]
[24]
Rowland, K.; Kanive, C.; Wells, J.; Hatton, J. TRPM2 immunoreactivity is increased in fibroblasts, but not nerves, of symptomatic human dental pulp. J. Endod., 2007, 33(3), 245-248.
[http://dx.doi.org/10.1016/j.joen.2006.11.020] [PMID: 17320705]
[25]
Wang, S.; Kim, M.; Ali, Z.; Ong, K.; Pae, E.K.; Chung, M.K. TRPV1 and TRPV1-expressing nociceptors mediate orofacial pain behaviors in a mouse model of orthodontic tooth movement. Front. Physiol., 2019, 10, 1207.
[http://dx.doi.org/10.3389/fphys.2019.01207] [PMID: 31620023]
[26]
Sert, S. Sakallioğlu, U.; Lütfioğlu, M.; Aydoğdu, A.; Acarel, E.; Günaydın, M. Neurogenic inflammation in periimplant and periodontal disease: A case-control split‐mouth study. Clin. Oral Implants Res., 2019, 30(8), 800-807.
[http://dx.doi.org/10.1111/clr.13486] [PMID: 31121061]
[27]
Diogenes, A.; Ferraz, C.C.R.; Akopian, A.N.; Henry, M.A.; Hargreaves, K.M. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J. Dent. Res., 2011, 90(6), 759-764.
[http://dx.doi.org/10.1177/0022034511400225] [PMID: 21393555]
[28]
Öztürk, A. Yıldız, L. Expression of transient receptor potential vanilloid receptor 1 and toll-like receptor 4 in aggressive periodontitis and in chronic periodontitis. J. Periodontal Res., 2011, 46(4), 475-482.
[http://dx.doi.org/10.1111/j.1600-0765.2011.01363.x] [PMID: 21517856]
[29]
Takahashi, N.; Matsuda, Y.; Yamada, H.; Tabeta, K.; Nakajima, T.; Murakami, S.; Yamazaki, K. Epithelial TRPV1 signaling accelerates gingival epithelial cell proliferation. J. Dent. Res., 2014, 93(11), 1141-1147.
[http://dx.doi.org/10.1177/0022034514552826] [PMID: 25266715]
[30]
Özdemir, B.; Shi, B.; Bantleon, H.P.; Moritz, A.; Rausch-Fan, X.; Andrukhov, O. Endocannabinoids and inflammatory response in periodontal ligament cells. PLoS One, 2014, 9(9), e107407.
[http://dx.doi.org/10.1371/journal.pone.0107407] [PMID: 25226300]
[31]
Yngvar, G.; Gundersen, Y.; Gjermo, P.; Fristad, I.; Opstad, P.K. Systemic chemical desensitization of peptidergic sensory neurons with resiniferatoxin inhibits experimental periodontitis. Open Dent. J., 2011, 5(1), 1-6.
[http://dx.doi.org/10.2174/1874210601105010001] [PMID: 21339860]
[32]
Avellan, N.L.; Kemppainen, P.; Tervahartiala, T.; Vilppola, P.; Forster, C.; Sorsa, T. Capsaicin-induced local elevations in collagenase-2 (matrix metalloproteinase-8) levels in human gingival crevice fluid. J. Periodontal Res., 2006, 41(1), 33-38.
[http://dx.doi.org/10.1111/j.1600-0765.2005.00836.x] [PMID: 16409253]
[33]
Takahashi, N.; Matsuda, Y.; Sato, K.; de Jong, P.R.; Bertin, S.; Tabeta, K.; Yamazaki, K. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci. Rep., 2016, 6(1), 29294.
[http://dx.doi.org/10.1038/srep29294] [PMID: 27388773]
[34]
Wang, L.; Shi, X.; Zhao, R.; Halloran, B.P.; Clark, D.J.; Jacobs, C.R.; Kingery, W.S. Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-κB activation, osteoclastogenesis and bone resorption. Bone, 2010, 46(5), 1369-1379.
[http://dx.doi.org/10.1016/j.bone.2009.11.029] [PMID: 19962460]
[35]
Kitsuki, T.; Yoshimoto, R.U.; Aijima, R.; Hatakeyama, J.; Cao, A.L.; Zhang, J.Q.; Ohsaki, Y.; Mori, Y.; Kido, M.A. Enhanced junctional epithelial permeability in TRPV4‐deficient mice. J. Periodontal Res., 2020, 55(1), 51-60.
[http://dx.doi.org/10.1111/jre.12685] [PMID: 31343743]
[36]
Stokłosa, P.; Borgström, A.; Kappel, S.; Peinelt, C. TRP Channels in digestive tract cancers. Int. J. Mol. Sci., 2020, 21(5), 1877.
[http://dx.doi.org/10.3390/ijms21051877] [PMID: 32182937]
[37]
Cui, C.; Merritt, R.; Fu, L.; Pan, Z. Targeting calcium signaling in cancer therapy. Acta Pharm. Sin. B, 2017, 7(1), 3-17.
[http://dx.doi.org/10.1016/j.apsb.2016.11.001] [PMID: 28119804]
[38]
Fels, B.; Bulk, E. Pethő Z.; Schwab, A. The role of TRP channels in the metastatic cascade. Pharmaceuticals, 2018, 11(2), 48.
[http://dx.doi.org/10.3390/ph11020048] [PMID: 29772843]
[39]
Sakakibara, A.; Sakakibara, S.; Kusumoto, J.; Takeda, D.; Hasegawa, T.; Akashi, M.; Minamikawa, T.; Hashikawa, K.; Terashi, H.; Komori, T. Upregulated expression of Transient Receptor Potential Cation channel subfamily V receptors in mucosae of patients with oral squamous cell carcinoma and Patients with a history of alcohol consumption or smoking. PLoS One, 2017, 12(1), e0169723.
[http://dx.doi.org/10.1371/journal.pone.0169723] [PMID: 28081185]
[40]
Marincsák, R.; Tóth, B.I.; Czifra, G.; Márton, I.; Rédl, P.; Tar, I.; Tóth, L.; Kovács, L.; Bíró, T. Increased expression of TRPV1 in squamous cell carcinoma of the human tongue. Oral Dis., 2009, 15(5), 328-335.
[http://dx.doi.org/10.1111/j.1601-0825.2009.01526.x] [PMID: 19320840]
[41]
Ruparel, S.; Bendele, M.; Wallace, A.; Green, D. Released lipids regulate transient receptor potential channel (TRP)-dependent oral cancer pain. Mol. Pain, 2015, 11, s12990-015-0016.
[http://dx.doi.org/10.1186/s12990-015-0016-3] [PMID: 26007300]
[42]
Okamoto, Y.; Ohkubo, T.; Ikebe, T.; Yamazaki, J. Blockade of TRPM8 activity reduces the invasion potential of oral squamous carcinoma cell lines. Int. J. Oncol., 2012, 40(5), 1431-1440.
[PMID: 22267123]
[43]
Piperi, C.; Basdra, E.K. Polycystins and mechanotransduction: From physiology to disease. World J. Exp. Med., 2015, 5(4), 200-205.
[http://dx.doi.org/10.5493/wjem.v5.i4.200] [PMID: 26618106]
[44]
Hitomi, S.; Ujihara, I.; Ono, K. Pain mechanism of oral ulcerative mucositis and the therapeutic traditional herbal medicine hangeshashinto. J. Oral Biosci./JAOB, Jpn. Assoc. Oral Biol., 2019, 61(1), 12-15.
[http://dx.doi.org/10.1016/j.job.2019.01.004] [PMID: 30929796]
[45]
Nodai, T.; Hitomi, S.; Ono, K.; Masaki, C.; Harano, N.; Morii, A.; Sago-Ito, M.; Ujihara, I.; Hibino, T.; Terawaki, K.; Omiya, Y.; Hosokawa, R.; Inenaga, K. Endothelin-1 elicits TRP-mediated pain in an acid-induced oral ulcer model. J. Dent. Res., 2018, 97(8), 901-908.
[http://dx.doi.org/10.1177/0022034518762381] [PMID: 29518348]
[46]
Ito, M.; Ono, K.; Hitomi, S.; Nodai, T.; Sago, T.; Yamaguchi, K.; Harano, N.; Gunjigake, K.; Hosokawa, R.; Kawamoto, T.; Inenaga, K. Prostanoid-dependent spontaneous pain and PAR 2 -dependent mechanical allodynia following oral mucosal trauma. Mol. Pain, 2017, 13, 1-17.
[http://dx.doi.org/10.1177/1744806917704138]
[47]
Liu, X.; Ong, H.; Ambudkar, I. TRP channel involvement in salivary glands-some good, some bad. Cells, 2018, 7(7), 74.
[http://dx.doi.org/10.3390/cells7070074] [PMID: 29997338]
[48]
Liu, X.; Gong, B.; de Souza, L.B.; Ong, H.L.; Subedi, K.P.; Cheng, K.T.; Swaim, W.; Zheng, C.; Mori, Y.; Ambudkar, I.S. Radiation inhibits salivary gland function by promoting STIM1 cleavage by caspase-3 and loss of SOCE through a TRPM2-dependent pathway. Sci. Signal., 2017, 10(482), eaal4064.
[http://dx.doi.org/10.1126/scisignal.aal4064] [PMID: 28588080]
[49]
Liu, X.; Cotrim, A.; Teos, L.; Zheng, C.; Swaim, W.; Mitchell, J.; Mori, Y.; Ambudkar, I. Loss of TRPM2 function protects against irradiation-induced salivary gland dysfunction. Nat. Commun., 2013, 4(1), 1515.
[http://dx.doi.org/10.1038/ncomms2526] [PMID: 23443543]
[50]
Ro, J.Y.; Lee, J.S.; Zhang, Y. Activation of TRPV1 and TRPA1 leads to muscle nociception and mechanical hyperalgesia. Pain, 2009, 144(3), 270-277.
[http://dx.doi.org/10.1016/j.pain.2009.04.021] [PMID: 19464796]
[51]
Wang, S.; Brigoli, B.; Lim, J.; Karley, A.; Chung, M.K. Roles of TRPV1 and TRPA1 in spontaneous pain from inflamed masseter muscle. Neuroscience, 2018, 384, 290-299.
[http://dx.doi.org/10.1016/j.neuroscience.2018.05.048] [PMID: 29890293]
[52]
Chung, M.K.; Ro, J.Y. Peripheral glutamate receptor and transient receptor potential channel mechanisms of craniofacial muscle pain. Mol. Pain, 2020, 16, 1-10.
[http://dx.doi.org/10.1177/1744806920914204] [PMID: 32189565]
[53]
de Oliveira, B.; Santos, S.; Pereira, E.; Nogueira, A.; Neto, A.; de Melo Júnior, J.; Damasceno, M.; Quintans-Júnior, L.; Sessle, B.; Magalhães, F.; Campos, A. de MeloJúnior, J.; Damasceno, M.; Quintans-Júnior, L.; Sessle, B.; Magalhães, F.; Campos, A. Orofacial antinociceptive effect of nifedipine in rodents is mediated by TRPM3, TRPA1, and NMDA processes. J. Oral Facial Pain Headache, 2020, 34(2), 174-186.
[http://dx.doi.org/10.11607/ofph.2491] [PMID: 32255583]
[54]
Chen, Y.; Williams, S.H.; McNulty, A.L.; Hong, J.H.; Lee, S.H.; Rothfusz, N.E.; Parekh, P.K.; Moore, C.; Gereau, R.W., IV; Taylor, A.B.; Wang, F.; Guilak, F.; Liedtke, W. Temporomandibular joint pain: A critical role for Trpv4 in the trigeminal ganglion. Pain, 2013, 154(8), 1295-1304.
[http://dx.doi.org/10.1016/j.pain.2013.04.004] [PMID: 23726674]
[55]
Denadai-Souza, A.; Martin, L.; de Paula, M.A.V.; de Avellar, M.C.W.; Muscará, M.N.; Vergnolle, N.; Cenac, N. Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum., 2012, 64(6), 1848-1858.
[http://dx.doi.org/10.1002/art.34345] [PMID: 22184014]
[56]
Zakrzewska, J.M.; Linskey, M.E. Trigeminal neuralgia. BMJ, 2015, 350(3), h1238.
[http://dx.doi.org/10.1136/bmj.h1238] [PMID: 25767102]
[57]
Hargreaves, K.M.; Ruparel, S. Role of oxidized lipids and TRP channels in orofacial pain and inflammation. J. Dent. Res., 2016, 95(10), 1117-1123.
[http://dx.doi.org/10.1177/0022034516653751] [PMID: 27307050]
[58]
Demartini, C.; Greco, R.; Zanaboni, A.; Francesconi, O.; Nativi, C.; Tassorelli, C.; Deseure, K. Antagonism of transient receptor potential ankyrin type-1 channels as a potential target for the treatment of trigeminal neuropathic pain: Study in an animal model. Int. J. Mol. Sci., 2018, 19(11), 3320.
[http://dx.doi.org/10.3390/ijms19113320] [PMID: 30366396]
[59]
Lee, K.; Lee, B.M.; Park, C.K.; Kim, Y.H.; Chung, G. Ion channels involved in tooth pain. Int. J. Mol. Sci., 2019, 20(9), 2266.
[http://dx.doi.org/10.3390/ijms20092266] [PMID: 31071917]
[60]
Haas, E.T.; Rowland, K.; Gautam, M. Tooth injury increases expression of the cold sensitive TRP channel TRPA1 in trigeminal neurons. Arch. Oral Biol., 2011, 56(12), 1604-1609.
[http://dx.doi.org/10.1016/j.archoralbio.2011.06.014] [PMID: 21783172]
[61]
Chen, Y.; Kanju, P.; Fang, Q.; Lee, S.H.; Parekh, P.K.; Lee, W.; Moore, C.; Brenner, D.; Gereau, R.W., IV; Wang, F.; Liedtke, W. TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain, 2014, 155(12), 2662-2672.
[http://dx.doi.org/10.1016/j.pain.2014.09.033] [PMID: 25281928]
[62]
Cobb, C.M. Lasers and the treatment of periodontitis: The essence and the noise. Periodontol. 2000, 2017, 75(1), 205-295.
[http://dx.doi.org/10.1111/prd.12137] [PMID: 28758295]
[63]
Mikami, R.; Mizutani, K.; Aoki, A.; Tamura, Y.; Aoki, K.; Izumi, Y. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg. Med., 2018, 50(4), 340-352.
[http://dx.doi.org/10.1002/lsm.22775] [PMID: 29214666]
[64]
Pourzarandian, A.; Watanabe, H.; Ruwanpura, S.M.P.M.; Aoki, A.; Ishikawa, I. Effect of low-level Er:YAG laser irradiation on cultured human gingival fibroblasts. J. Periodontol., 2005, 76(2), 187-193.
[http://dx.doi.org/10.1902/jop.2005.76.2.187] [PMID: 15974841]
[65]
Zhang, Y.; Cong, X.; Shi, L.; Xiang, B.; Li, Y.M.; Ding, Q.W.; Ding, C.; Wu, L.L.; Yu, G.Y. Activation of transient receptor potential vanilloid subtype 1 increases secretion of the hypofunctional, transplanted submandibular gland. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(1), G54-G62.
[http://dx.doi.org/10.1152/ajpgi.00528.2009] [PMID: 20360133]
[66]
Shin, Y.H.; Kim, J.; Park, K. The effect of capsaicin on salivary gland dysfunction. Molecules, 2016, 21(7), 835.
[http://dx.doi.org/10.3390/molecules21070835] [PMID: 27347918]
[67]
Sun, Y.; Birnbaumer, L.; Singh, B.B. TRPC1 regulates calcium‐activated chloride channels in salivary gland cells. J. Cell. Physiol., 2015, 230(11), 2848-2856.
[http://dx.doi.org/10.1002/jcp.25017] [PMID: 25899321]
[68]
Liu, X.; Ong, H.L.; Pani, B.; Johnson, K.; Swaim, W.B.; Singh, B.; Ambudkar, I. Effect of cell swelling on ER/PM junctional interactions and channel assembly involved in SOCE. Cell Calcium, 2010, 47(6), 491-499.
[http://dx.doi.org/10.1016/j.ceca.2010.04.002] [PMID: 20488539]
[69]
Quiding, H.; Jonzon, B.; Svensson, O.; Webster, L.; Reimfelt, A.; Karin, A.; Karlsten, R.; Segerdahl, M. TRPV1 antagonistic analgesic effect: A randomized study of AZD1386 in pain after third molar extraction. Pain, 2013, 154(6), 808-812.
[http://dx.doi.org/10.1016/j.pain.2013.02.004] [PMID: 23541425]
[70]
Gavva, N.R.; Treanor, J.J.S.; Garami, A.; Fang, L.; Surapaneni, S.; Akrami, A.; Alvarez, F.; Bak, A.; Darling, M.; Gore, A.; Jang, G.R.; Kesslak, J.P.; Ni, L.; Norman, M.H.; Palluconi, G.; Rose, M.J.; Salfi, M.; Tan, E.; Romanovsky, A.A.; Banfield, C.; Davar, G. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain, 2008, 136(1), 202-210.
[http://dx.doi.org/10.1016/j.pain.2008.01.024] [PMID: 18337008]
[71]
Badral, B.; Davies, A.J.; Kim, Y.H.; Ahn, J.S.; Hong, S.D.; Chung, G.; Kim, J.S.; Oh, S.B. Pain fiber anesthetic reduces brainstem Fos after tooth extraction. J. Dent. Res., 2013, 92(11), 1005-1010.
[http://dx.doi.org/10.1177/0022034513505620] [PMID: 24056223]
[72]
Puopolo, M.; Binshtok, A.M.; Yao, G.L.; Oh, S.B.; Woolf, C.J.; Bean, B.P. Permeation and block of TRPV1 channels by the cationic lidocaine derivative QX-314. J. Neurophysiol., 2013, 109(7), 1704-1712.
[http://dx.doi.org/10.1152/jn.00012.2013] [PMID: 23303863]
[73]
Ye, Y.; Bae, S.S.; Viet, C.T.; Troob, S.; Bernabé, D.; Schmidt, B.L. IB4(+) and TRPV1(+) sensory neurons mediate pain but not proliferation in a mouse model of squamous cell carcinoma. Behav. Brain Funct., 2014, 10(1), 5.
[http://dx.doi.org/10.1186/1744-9081-10-5] [PMID: 24524628]
[74]
Fu, S.; Hirte, H.; Welch, S.; Ilenchuk, T.T.; Lutes, T.; Rice, C.; Fields, N.; Nemet, A.; Dugourd, D.; Piha-Paul, S.; Subbiah, V.; Liu, L.; Gong, J.; Hong, D.; Stewart, J.M. Erratum to: First-in-human phase I study of SOR-C13, a TRPV6 calcium channel inhibitor, in patients with advanced solid tumors. Invest. New Drugs, 2017, 35(3), 397.
[http://dx.doi.org/10.1007/s10637-017-0455-y] [PMID: 28389981]
[75]
Chen, X.; Sun, W.; Gianaris, N.G.; Riley, A.M.; Cummins, T.R.; Fehrenbacher, J.C.; Obukhov, A.G. Furanocoumarins are a novel class of modulators for the transient receptor potential vanilloid type 1 (TRPV1) channel. J. Biol. Chem., 2014, 289(14), 9600-9610.
[http://dx.doi.org/10.1074/jbc.M113.536862] [PMID: 24569998]
[76]
Marwaha, L.; Bansal, Y.; Singh, R.; Saroj, P.; Sodhi, R.K.; Kuhad, A. Niflumic acid, a TRPV1 channel modulator, ameliorates stavudine-induced neuropathic pain. Inflammopharmacology, 2016, 24(6), 319-334.
[http://dx.doi.org/10.1007/s10787-016-0285-0] [PMID: 27757590]
[77]
Gonzales, C.B.; Kirma, N.B.; De La Chapa, J.J.; Chen, R.; Henry, M.A.; Luo, S.; Hargreaves, K.M. Vanilloids induce oral cancer apoptosis independent of TRPV1. Oral Oncol., 2014, 50(5), 437-447.
[http://dx.doi.org/10.1016/j.oraloncology.2013.12.023] [PMID: 24434067]
[78]
Kym, P.R.; Kort, M.E.; Hutchins, C.W. Analgesic potential of TRPV1 antagonists. Biochem. Pharmacol., 2009, 78(3), 211-216.
[http://dx.doi.org/10.1016/j.bcp.2009.02.014] [PMID: 19481638]
[79]
Chung, G.; Im, S.T.; Kim, Y.H.; Jung, S.J.; Rhyu, M.R.; Oh, S.B. Activation of transient receptor potential ankyrin 1 by eugenol. Neuroscience, 2014, 261, 153-160.
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.047] [PMID: 24384226]
[80]
Sherkheli, M.A.; Schreiner, B.; Haq, R.; Werner, M.; Hatt, H. Borneol inhibits TRPA1, a proinflammatory and noxious pain-sensing cation channel. Pak. J. Pharm. Sci., 2015, 28(4), 1357-1363.
[PMID: 26142526]
[81]
Ham, H.Y.; Hong, C.W.; Lee, S.N.; Kwon, M.S.; Kim, Y.J.; Song, D.K. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling. Toxicol. Appl. Pharmacol., 2012, 258(1), 82-88.
[http://dx.doi.org/10.1016/j.taap.2011.10.010] [PMID: 22036725]
[82]
Thiel, G.; Backes, T.M.; Welck, J.; Steinhausen, S.; Fischer, A.L.; Langfermann, D.S.; Ulrich, M.; Wissenbach, U.; Rössler, O.G. Pharmacological inhibition of TRPM8-induced gene transcription. Biochem. Pharmacol., 2019, 170, 113678.
[http://dx.doi.org/10.1016/j.bcp.2019.113678] [PMID: 31654626]
[83]
Marwaha, L.; Bansal, Y.; Singh, R.; Saroj, P.; Bhandari, R.; Kuhad, A. TRP channels: Potential drug target for neuropathic pain. Inflammopharmacology, 2016, 24(6), 305-317.
[http://dx.doi.org/10.1007/s10787-016-0288-x] [PMID: 27757589]
[84]
Andrews, M.D.; af Forselles, K.; Beaumont, K.; Galan, S.R.G.; Glossop, P.A.; Grenie, M.; Jessiman, A.; Kenyon, A.S.; Lunn, G.; Maw, G.; Owen, R.M.; Pryde, D.C.; Roberts, D.; Tran, T.D. Discovery of a selective TRPM8 antagonist with clinical efficacy in cold-related pain. ACS Med. Chem. Lett., 2015, 6(4), 419-424.
[http://dx.doi.org/10.1021/ml500479v] [PMID: 25893043]
[85]
Nazıroğlu, M.; Braidy, N. Thermo-sensitive TRP channels: Novel targets for treating chemotherapy-induced peripheral pain. Front. Physiol., 2017, 8, 1040.
[http://dx.doi.org/10.3389/fphys.2017.01040] [PMID: 29326595]
[86]
Jin, Y. La3+ Alters the response properties of neurons in the mouse primary somatosensory cortex to low-temperature noxious stimulation of the dental pulp. Biochem. Insights, 2015, 8s1(S1)(Suppl. 1), BCI.S30752.
[http://dx.doi.org/10.4137/BCI.S30752] [PMID: 26604777]
[87]
Sághy, É. Szőke, É.; Payrits, M.; Helyes, Z.; Börzsei, R.; Erostyák, J.; Jánosi, T.Z.; Sétáló, G., Jr; Szolcsányi, J. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals. Pharmacol. Res., 2015, 100, 101-116.
[http://dx.doi.org/10.1016/j.phrs.2015.07.028] [PMID: 26238178]
[88]
Fragai, M.; Comito, G.; Di Cesare Mannelli, L.; Gualdani, R.; Calderone, V.; Louka, A.; Richichi, B.; Francesconi, O.; Angeli, A.; Nocentini, A.; Gratteri, P.; Chiarugi, P.; Ghelardini, C.; Tadini-Buoninsegni, F.; Supuran, C.T.; Nativi, C. Lipoyl-Homotaurine Derivative (ADM_12) reverts oxaliplatin-induced neuropathy and reduces cancer cells malignancy by inhibiting carbonic anhydrase IX (CAIX). J. Med. Chem., 2017, 60(21), 9003-9011.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01237] [PMID: 29048889]
[89]
Gualdani, R.; Ceruti, S.; Magni, G.; Merli, D.; Di Cesare Mannelli, L.; Francesconi, O.; Richichi, B.; la Marca, G.; Ghelardini, C.; Moncelli, M.R.; Nativi, C. Lipoic-based TRPA1/TRPV1 antagonist to treat orofacial pain. ACS Chem. Neurosci., 2015, 6(3), 380-385.
[http://dx.doi.org/10.1021/cn500248u] [PMID: 25546551]
[90]
Gold, M.S.; Gebhart, G.F. Nociceptor sensitization in pain pathogenesis. Nat. Med., 2010, 16(11), 1248-1257.
[http://dx.doi.org/10.1038/nm.2235] [PMID: 20948530]
[91]
Moran, M.M. TRP channels as potential drug targets. Annu. Rev. Pharmacol. Toxicol., 2018, 58(1), 309-330.
[http://dx.doi.org/10.1146/annurev-pharmtox-010617-052832] [PMID: 28945977]
[92]
Baranidharan, G.; Bhaskar, A.K. Use of topical capsaicin for pain relief.TRP channels as therapeutic targets; Szallasi, A., Ed.; Elsevier Academic Press: Amsterdam, 2015, pp. 89-98.
[http://dx.doi.org/10.1016/B978-0-12-420024-1.00005-9]
[93]
Melo Júnior, J.M.A.; Damasceno, M.B.M.V.; Santos, S.A.A.R.; Barbosa, T.M.; Araújo, J.R.C.; Vieira-Neto, A.E.; Wong, D.V.T.; Lima-Júnior, R.C.P.; Campos, A.R. Acute and neuropathic orofacial antinociceptive effect of eucalyptol. Inflammopharmacology, 2017, 25(2), 247-254.
[http://dx.doi.org/10.1007/s10787-017-0324-5] [PMID: 28210904]
[94]
Di Stefano, G.; Yuan, J.H.; Cruccu, G.; Waxman, S.G.; Dib-Hajj, S.D.; Truini, A. Familial trigeminal neuralgia - a systematic clinical study with a genomic screen of the neuronal electrogenisome. Cephalalgia: An Int. J. Headache, 2020, 40(8), 767-777.