Synthesis and Characterization of a Julolidine-based Electro-optic Molecular Glass

Page: [2 - 9] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Aim: Organic Electro-optic (EO) materials have recently gained considerable attention owing to their advantages compared to inorganic EO materials. Among different kinds of organic EO materials, organic EO molecular glass exhibits desired prospect because of its high chromophore loading density and large macroscopic EO activity.

Introduction: The objective of this study is to design and synthesize a novel organic EO molecular glass JMG utilizing julolidine moiety as the electron donor, thiophene moiety as the conjugated bridge, trifluoromethyl substituted tricyanofuran derivate (Ph-CF3-TCF) as the electron acceptor.

Methods: The JMG’s structure was characterized through NMR and HRMS. The photophysical property, glass transition temperature, first hyperpolarizability (β) and dipole moment (μ) of JMG were determined through UV-vis spectra, DSC test and DFT calculation.

Results: JMG’s Tg reached to 79°C and it can form high-quality optical film. The theoretical calculation shows that the first hyperpolarizability (β) and dipole moment (μ) of JMG were calculated to 730×10-30 esu and 21.898 D. After connecting poling with the poling voltage of 49 V/μm at 90℃ for 10 min, the highest EO coefficient (r33) of the poled JMG films reached to 147 pm/V.

Conclusion: A novel julolidine-based NLO chromophore with two tert-butyldiphenylsilyl (TBDPS) groups was successfully prepared and characterized. TBDPS group is introduced as the film-forming group, and it also plays the role of isolation group, which can suppress the electrostatic interaction between chromophores, improve the poling efficiency and further enhance the EO activity. The excellent performances endow JMG with potential applications in device fabrication.

Graphical Abstract

[1]
Xu, H.; Elder, D.L.; Johnson, L.E.; Heni, W.; de Coene, Y.; De Leo, E.; Destraz, M.; Meier, N.; Vander Ghinst, W.; Hammond, S.R.; Clays, K.; Leuthold, J.; Dalton, L.R.; Robinson, B.H. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic–organic hybrid devices. Mater. Horiz., 2022, 9(1), 261-270.
[http://dx.doi.org/10.1039/D1MH01206A] [PMID: 34590657]
[2]
Xu, H.; Elder, D.L.; Johnson, L.E.; de Coene, Y.; Hammond, S.R.; Vander Ghinst, W.; Clays, K.; Dalton, L.R.; Robinson, B.H. Electro-optic activity in excess of 1000 pm V -1 achieved via theory-guided organic chromophore design. Adv. Mater., 2021, 33(45), 2104174.
[http://dx.doi.org/10.1002/adma.202104174] [PMID: 34545643]
[3]
Koch, U.; Uhl, C.; Hettrich, H.; Fedoryshyn, Y.; Hoessbacher, C.; Heni, W.; Baeuerle, B.; Bitachon, B.I.; Josten, A.; Ayata, M.; Xu, H.; Elder, D.L.; Dalton, L.R.; Mentovich, E.; Bakopoulos, P.; Lischke, S.; Krüger, A.; Zimmermann, L.; Tsiokos, D.; Pleros, N.; Möller, M.; Leuthold, J. A monolithic bipolar CMOS electronic–plasmonic high-speed transmitter. Nat. Electron., 2020, 3(6), 338-345.
[http://dx.doi.org/10.1038/s41928-020-0417-9]
[4]
Dalton, L.R.; Sullivan, P.A.; Bale, D.H. Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev., 2010, 110(1), 25-55.
[http://dx.doi.org/10.1021/cr9000429] [PMID: 19848381]
[5]
Jiang, L.; Wu, J.; Chen, K.; Zheng, Y.; Deng, G.; Zhang, X.; Li, Z.; Chiang, K.S. Polymer waveguide Mach-Zehnder interferometer coated with dipolar polycarbonate for on-chip nitroaromatics detection. Sens. Actuators B Chem., 2020, 305, 127406.
[http://dx.doi.org/10.1016/j.snb.2019.127406]
[6]
Xu, H.; Liu, F.; Elder, D.L.; Johnson, L.E.; de Coene, Y.; Clays, K.; Robinson, B.H.; Dalton, L.R. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from diels–alder cross-linkable binary molecular glasses. Chem. Mater., 2020, 32(4), 1408-1421.
[http://dx.doi.org/10.1021/acs.chemmater.9b03725]
[7]
Xu, H.; Johnson, L.E.; de Coene, Y.; Elder, D.L.; Hammond, S.R.; Clays, K.; Dalton, L.R.; Robinson, B.H. Bis(4-dialkylaminophenyl)heteroarylamino donor chromophores exhibiting exceptional hyperpolarizabilities. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(8), 2721-2728.
[http://dx.doi.org/10.1039/D0TC05700B]
[8]
Miura, H.; Qiu, F.; Spring, A.M.; Kashino, T.; Kikuchi, T.; Ozawa, M.; Nawata, H.; Odoi, K.; Yokoyama, S. High thermal stability 40 GHz electro-optic polymer modulators. Opt. Express, 2017, 25(23), 28643-28649.
[http://dx.doi.org/10.1364/OE.25.028643]
[9]
Xu, H.; Liu, J.; Liu, J.; Yu, C.; Zhai, Z.; Qin, G.; Liu, F. Self-assembled binary multichromophore dendrimers with enhanced electro-optic coefficients and alignment stability. Mater. Chem. Front., 2020, 4(1), 168-175.
[http://dx.doi.org/10.1039/C9QM00508K]
[10]
Xu, H.; Elder, D.L.; Johnson, L.E.; Robinson, B.H.; Dalton, L.R. Molecular engineering of structurally diverse dendrimers with large electro-optic activities. ACS Appl. Mater. Interfaces, 2019, 11(23), 21058-21068.
[http://dx.doi.org/10.1021/acsami.9b05306] [PMID: 31117459]
[11]
Cho, M.J.; Choi, D.H.; Sullivan, P.A.; Akelaitis, A.J.P.; Dalton, L.R. Recent progress in second-order nonlinear optical polymers and dendrimers. Prog. Polym. Sci., 2008, 33(11), 1013-1058.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.007]
[12]
Liu, J.; Gao, W.; Kityk, I.V.; Liu, X.; Zhen, Z. Optimization of polycyclic electron-donors based on julolidinyl structure in push–pull chromophores for second order NLO effects. Dyes Pigments, 2015, 122, 74-84.
[http://dx.doi.org/10.1016/j.dyepig.2015.06.007]
[13]
Wu, J.; Wang, W.; Wang, N.; He, J.; Deng, G.; Li, Z.; Zhang, X.; Xiao, H.; Chen, K. Structure–property analysis of julolidine-based nonlinear optical chromophores for the optimization of microscopic and macroscopic nonlinearity. Phys. Chem. Chem. Phys., 2018, 20(36), 23606-23615.
[http://dx.doi.org/10.1039/C8CP04470H] [PMID: 30191222]
[14]
Deng, G.; Xu, H.; Kuang, L.; He, C.; Li, B.; Yang, M.; Zhang, X.; Li, Z.; Liu, J. Novel nonlinear optical chromophores based on coumarin: Synthesis and properties studies. Opt. Mater., 2019, 88, 218-222.
[http://dx.doi.org/10.1016/j.optmat.2018.11.035]
[15]
Deng, G.; Chen, Y.; Zheng, D.; Zhu, J.; Huang, H.; Sun, K.; Zhang, X.; Li, Z.; Liu, J. Synthesis and comparative studies of coumarin-based nonlinear optical chromophores with different conjugated electron bridge. J. Mater. Sci. Mater. Electron., 2020, 31(12), 9224-9230.
[http://dx.doi.org/10.1007/s10854-020-03453-0]
[16]
Deng, G.; Wang, Q.; Yang, M.; Li, B.; Han, T.; Chang, B.; Li, X.; Zhang, X.; Li, Z. Synthesis and modifications of electron-withdrawing groups based on multi-cyano heterocyclics. Mini Rev. Org. Chem., 2019, 16(3), 208-215.
[http://dx.doi.org/10.2174/1570193X15666180412151523]
[17]
Varejão, J.O.S.; Varejão, E.V.V.; Fernandes, S.A. Synthesis and derivatization of julolidine: A powerful heterocyclic structure. Eur. J. Org. Chem., 2019, 2019(27), 4273-4310.
[http://dx.doi.org/10.1002/ejoc.201900398]
[18]
Wu, J.; Bo, S.; Liu, J.; Zhou, T.; Xiao, H.; Qiu, L.; Zhen, Z.; Liu, X. Synthesis of novel nonlinear optical chromophore to achieve ultrahigh electro-optic activity. Chem. Commun., 2012, 48(77), 9637-9639.
[http://dx.doi.org/10.1039/c2cc34747d] [PMID: 22908120]
[19]
Wu, J.; Peng, C.; Xiao, H.; Bo, S.; Qiu, L.; Zhen, Z.; Liu, X. Donor modification of nonlinear optical chromophores: Synthesis, characterization, and fine-tuning of chromophores’ mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest–host electro-optic materials. Dyes Pigments, 2014, 104, 15-23.
[http://dx.doi.org/10.1016/j.dyepig.2013.12.023]
[20]
Zhang, A.; Xiao, H.; Peng, C.; Bo, S.; Xu, H.; Zhang, M.; Deng, G.; Zhen, Z.; Liu, X. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity. RSC Advances, 2014, 4(110), 65088-65097.
[http://dx.doi.org/10.1039/C4RA10078F]
[21]
Deng, G.; Bo, S.; Zhou, T.; Zhang, R.; Liu, J.; Liu, X.; Zhen, Z.; Qiu, L. Hydrogen-bonded network: An effective approach to improve the thermal stability of organic/polymer electro-optic materials. Sci. China Chem., 2013, 56(2), 169-173.
[http://dx.doi.org/10.1007/s11426-012-4799-z]
[22]
Deng, G.; Bo, S.; Zhou, T.; Huang, H.; Wu, J.; Liu, J.; Liu, X.; Zhen, Z.; Qiu, L. Facile synthesis and electro-optic activities of new polycarbonates containing tricyanofuran-based nonlinear optical chromophores. J. Polym. Sci. A Polym. Chem., 2013, 51(13), 2841-2849.
[http://dx.doi.org/10.1002/pola.26673]
[23]
Shirota, Y. Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications. J. Mater. Chem., 2005, 15(1), 75-93.
[http://dx.doi.org/10.1039/B413819H]
[24]
Shirota, Y. Organic materials for electronic and optoelectronic devices. J. Mater. Chem., 2000, 10(1), 1-25.
[http://dx.doi.org/10.1039/a908130e]
[25]
Deng, G.; Xu, H.; Zhou, Z.; Zhao, Z.; Wu, J.; Zhang, X.; Sun, K.; Li, Z.; Zheng, Y. Monolithic nonlinear optical chromophores with extended conjugate bridge: Large refractive index, high thermal and electro-optic stability. Dyes Pigments, 2019, 164, 97-104.
[http://dx.doi.org/10.1016/j.dyepig.2019.01.015]
[26]
Kim, T.D.; Kang, J.W.; Luo, J.; Jang, S.H.; Ka, J.W.; Tucker, N.; Benedict, J.B.; Dalton, L.R.; Gray, T.; Overney, R.M.; Park, D.H.; Herman, W.N.; Jen, A.K.Y. Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. J. Am. Chem. Soc., 2007, 129(3), 488-489.
[http://dx.doi.org/10.1021/ja067970s] [PMID: 17227001]
[27]
Jin, W.; Johnston, P.V.; Elder, D.L.; Manner, K.T.; Garrett, K.E.; Kaminsky, W.; Xu, R.; Robinson, B.H.; Dalton, L.R. Structure–function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2016, 4(15), 3119-3124.
[http://dx.doi.org/10.1039/C6TC00358C]
[28]
Xu, H.; Wang, N.; Zhang, X.; Li, Z.; Deng, G. Monolithic NLO chromophores with different pendant groups and matrix-assisted-poling effect: Synthesis and characterization. Dyes Pigments, 2018, 157, 230-237.
[http://dx.doi.org/10.1016/j.dyepig.2018.04.061]
[29]
Zhang, Q.; Zhou, Q.; Wu, S.; Xu, X.; Huang, H.; Deng, G.; Zhang, X.; Sun, K.; Li, Z. Synthesis and characterization of a novel monolithic electro-optic molecular glass. Mater. Lett., 2020, 277, 128324.
[http://dx.doi.org/10.1016/j.matlet.2020.128324]
[30]
Liu, S.; Haller, M.A.; Ma, H.; Dalton, L.R.; Jang, S.H.; Jen, A.K.Y. Focused microwave-assisted synthesis of 2,5-dihydrofuran derivatives as electron acceptors for highly efficient nonlinear optical chromophores. Adv. Mater., 2003, 15(78), 603-607.
[http://dx.doi.org/10.1002/adma.200304813]
[31]
Sullivan, P.A.; Rommel, H.; Liao, Y.; Olbricht, B.C.; Akelaitis, A.J.P.; Firestone, K.A.; Kang, J.W.; Luo, J.; Davies, J.A.; Choi, D.H.; Eichinger, B.E.; Reid, P.J.; Chen, A.; Jen, A.K.Y.; Robinson, B.H.; Dalton, L.R. Theory-guided design and synthesis of multichromophore dendrimers: An analysis of the electro-optic effect. J. Am. Chem. Soc., 2007, 129(24), 7523-7530.
[http://dx.doi.org/10.1021/ja068322b] [PMID: 17523637]
[32]
Li, Z.; Wu, W.; Li, Q.; Yu, G.; Xiao, L.; Liu, Y.; Ye, C.; Qin, J.; Li, Z. High-generation second-order nonlinear optical (NLO) dendrimers: Convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew. Chem. Int. Ed., 2010, 49(15), 2763-2767.
[http://dx.doi.org/10.1002/anie.200906946] [PMID: 20217881]
[33]
Deng, G.; Chen, H.; Wang, J.; Chen, K.; Li, L.; Zhang, S.; Sun, K.; Li, Z.; Liu, J. Molecular engineering of organic small-molecule photothermal agents by changing the donor group for photothermal therapy and photoacoustic imaging of tumors. Mater. Chem. Front., 2022, 6(9), 1180-1187.
[http://dx.doi.org/10.1039/D2QM00096B]
[34]
Chen, H.; Yu, L.; Gong, C.; Huang, Y.; Wang, L.; Du, X.; Li, Z.; Liu, J.; Zhao, X.; Deng, G. Nanogel loading 808 nm laser-activated organic dyes with a special D- π - a structure and the regulation of their photothermal property by non-conjugated modification. Sens. Actuators B Chem., 2022, 362, 131817.
[http://dx.doi.org/10.1016/j.snb.2022.131817]
[35]
Teng, C.C.; Man, H.T. Simple reflection technique for measuring the electro-optic coefficient of poled polymers. Appl. Phys. Lett., 1990, 56(18), 1734-1736.
[http://dx.doi.org/10.1063/1.103107]