Research and Progress of Inorganic Infrared Electrochromic Materials and Devices

Page: [117 - 129] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Electrochromic materials can dynamically change their optical properties (such as transmittance, absorbance, and reflectance under the action of an applied voltage, and their research and application in the visible band have been widely concerned. In recent years, with the continuous development of electrochromic technology, the related research has been gradually extended to the infrared region.

Objective: This invited review aims to provide an overview of the current status of several inorganic infrared electrochromic materials, to provide some references for future research, and to promote the research and application of electrochromic technology in the infrared region.

Methods: This review summarizes various research results in the field of infrared electrochromic, which includes a detailed literature review and patent search. Starting from the key performance parameters and device structure characteristics of infrared electrochromic devices (ECDs), the research and progress of several types of inorganic infrared electrochromic materials, including metal oxides, plasma nanocrystals, and carbon nanomaterials, are mainly presented, and feasible optimization directions are also discussed.

Conclusion: We believe that the potential of these materials for civilian and military applications, for example, infrared electrochromic smart windows, infrared stealth/disguise, and thermal control of spacecraft, can be fully exploited by optimizing the materials and their devices to improve their performance.

Graphical Abstract

[1]
Granqvist CG. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014; 564: 1-38.
[http://dx.doi.org/10.1016/j.tsf.2014.02.002]
[2]
Granqvist CG, Arvizu MA. Bayrak Pehlivan İ, Qu HY, Wen RT, Niklasson GA. Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review. Electrochim Acta 2018; 259: 1170-82.
[http://dx.doi.org/10.1016/j.electacta.2017.11.169]
[3]
Kondo Y, Tanabe H, Kudo H, Nakano K, Otake T. Electrochromic type e-paper using poly(1H-Thieno[3,4-d]Imidazol-2(3H)-One) derivatives by a novel printing fabrication process. Materials 2011; 4(12): 2171-82.
[http://dx.doi.org/10.3390/ma4122171] [PMID: 28824131]
[4]
Cannavale A, Cossari P, Eperon GE, et al. Forthcoming perspectives of photoelectrochromic devices: A critical review. Energy Environ Sci 2016; 9(9): 2682-719.
[http://dx.doi.org/10.1039/C6EE01514J]
[5]
Cai G, Eh ALS, Ji L, Lee PS. Recent advances in electrochromic smart fenestration. Adv Sustain Syst 2017; 1(12): 1700074.
[http://dx.doi.org/10.1002/adsu.201700074]
[6]
Wang Z, Wang X, Cong S, Geng F, Zhao Z. Fusing electrochromic technology with other advanced technologies: A new roadmap for future development. Mater Sci Eng Rep 2020; 140: 100524.
[http://dx.doi.org/10.1016/j.mser.2019.100524]
[7]
Ning H, Zhang G, Yao R. et al. Preparing electrochromic automobile windscreen glass comprises e.g. preparing patterned transparent conductive film by inkjet printing on glass substrate, annealing, curing film, and preparing tungsten(VI) oxide electrochromic layer. C.N. Patent 109574515B, 2020.
[8]
Eh ALS, Tan AWM, Cheng X, Magdassi S, Lee PS. Recent advances in flexible electrochromic devices: Prerequisites, challenges, and prospects. Energy Technol 2018; 6(1): 33-45.
[http://dx.doi.org/10.1002/ente.201700705]
[9]
Niu J, Wang Y, Zou X, et al. Infrared electrochromic materials, devices and applications. Appl Mater Today 2021; 24: 101073.
[http://dx.doi.org/10.1016/j.apmt.2021.101073]
[10]
Nundy S, Mesloub A, Alsolami BM, Ghosh A. Electrically actuated visible and near-infrared regulating switchable smart window for energy positive building: A review. J Clean Prod 2021; 301: 126854.
[http://dx.doi.org/10.1016/j.jclepro.2021.126854]
[11]
Cannavale A, Ayr U, Fiorito F, Martellotta F. Smart electrochromic windows to enhance building energy efficiency and visual comfort. Energies 2020; 13(6): 1449.
[http://dx.doi.org/10.3390/en13061449]
[12]
Zhang S, Cao S, Zhang T, Fisher A, Lee JY. Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ Sci 2018; 11(10): 2884-92.
[http://dx.doi.org/10.1039/C8EE01718B]
[13]
Sun Y, Wang Y, Zhang C, et al. Flexible mid-infrared radiation modulator with multilayer graphene thin film by ionic liquid gating. ACS Appl Mater Interfaces 2019; 11(14): 13538-44.
[http://dx.doi.org/10.1021/acsami.8b21900] [PMID: 30896153]
[14]
Moghimi MJ, Lin G, Jiang H. Broadband and ultrathin infrared stealth sheets. Adv Eng Mater 2018; 20(11): 1800038.
[http://dx.doi.org/10.1002/adem.201800038]
[15]
Xu G, Zhang L, Wang B, et al. A visible-to-infrared broadband flexible electrochromic device based polyaniline for simultaneously variable optical and thermal management. Sol Energy Mater Sol Cells 2020; 208: 110356.
[http://dx.doi.org/10.1016/j.solmat.2019.110356]
[16]
Yang J, Zhang X, Zhang X, Wang L, Feng W, Li Q. Beyond the visible: Bioinspired infrared adaptive materials. Adv Mater 2021; 33(14): 2004754.
[http://dx.doi.org/10.1002/adma.202004754] [PMID: 33624900]
[17]
Jia C, Li Y, Weng X. Infrared stealth control system useful for array electrochromic device, has image collecting module for driving infrared photoelectric searcher to collect image information, and array electrochromic device set with array arranged unit. C.N. Patent 113340154A, 2021.
[18]
Yen HJ, Liou GS. Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polym Chem 2018; 9(22): 3001-18.
[http://dx.doi.org/10.1039/C8PY00367J]
[19]
Chuang YW, Yen HJ, Wu JH, Liou GS. Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications. ACS Appl Mater Interfaces 2014; 6(5): 3594-9.
[http://dx.doi.org/10.1021/am405803z] [PMID: 24456516]
[20]
Yen HJ, Liou GS. Enhanced near-infrared electrochromism in triphenylamine-based aramids bearing phenothiazine redox centers. J Mater Chem 2010; 20(44): 9886-94.
[http://dx.doi.org/10.1039/c0jm01889a]
[21]
Zhao J, Zhang L, Wang B, Li Y. Improving control capability of infrared emission rate of polyaniline film by doping rare earth ion, comprises preparing blending polymer solution, naturally drying at room temperature, utilizing acid to dry gold substrate, and taking cleaned silver/silver chloride electrode. C.N. Patent 114592225A, 2022.
[22]
Brooke R, Mitraka E, Sardar S, et al. Infrared electrochromic conducting polymer devices. J Mater Chem C Mater Opt Electron Devices 2017; 5(23): 5824-30.
[http://dx.doi.org/10.1039/C7TC00257B]
[23]
Simayi R, Murat A, Imerhasan M, Mijit M, Mahmut M. Low band gap polymers based on the electrochemical polymerization of Phenazine: Studies on the color changing ability in near-infrared region. J Polym Res 2020; 27(10): 293.
[http://dx.doi.org/10.1007/s10965-020-02266-3]
[24]
Kung YR, Cao SY, Hsiao SH. Electrosynthesis and electrochromism of a new crosslinked polydithienylpyrrole with diphenylpyrenylamine subunits. Polymers 2020; 12(12): 2777.
[http://dx.doi.org/10.3390/polym12122777] [PMID: 33255477]
[25]
Bergeron BV, White KC, Boehme JL, Gelb AH, Joshi PB. Variable absorptance and emittance devices for thermal control. J Phys Chem C 2008; 112(3): 832-8.
[http://dx.doi.org/10.1021/jp076336d]
[26]
Bessière A, Marcel C, Morcrette M, et al. Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control. J Appl Phys 2002; 91(3): 1589-94.
[http://dx.doi.org/10.1063/1.1430543]
[27]
Gu H, Guo C, Zhang S, et al. Highly efficient, near-infrared and visible light modulated electrochromic devices based on polyoxometalates and W18 O49 nanowires. ACS Nano 2018; 12(1): 559-67.
[http://dx.doi.org/10.1021/acsnano.7b07360] [PMID: 29294270]
[28]
Wang Y, Mao Q, Chen C. et al. Thiophene-based color-changing camouflage device used in e.g. intelligent window, comprises electrochromic device consisting of polyethylene terephthalate-indium tin oxide (PET-ITO) layer, color-changing layers, and semi-solid electrolyte layer, and double electrochromic layer. C.N. Patent 114518675A, 2022.
[29]
Park H, Kim DS, Hong SY, et al. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale 2017; 9(22): 7631-40.
[http://dx.doi.org/10.1039/C7NR02147J] [PMID: 28540957]
[30]
Stekovic D, Arkook B, Li G, Li W, Bekyarova E, Itkis ME. High modulation speed, depth, and coloration efficiency of carbon nanotube thin film electrochromic device achieved by counter electrode impedance matching. Adv Mater Interfaces 2018; 5(20): 1800861.
[http://dx.doi.org/10.1002/admi.201800861]
[31]
Demiryont H, Moorehead D. Electrochromic emissivity modulator for spacecraft thermal management. Sol Energy Mater Sol Cells 2009; 93(12): 2075-8.
[http://dx.doi.org/10.1016/j.solmat.2009.02.025]
[32]
Sauvet K, Sauques L, Rougier A. Electrochromic properties of WO3 as a single layer and in a full device: From the visible to the infrared. J Phys Chem Solids 2010; 71(4): 696-9.
[http://dx.doi.org/10.1016/j.jpcs.2009.12.069]
[33]
Bessière A, Beluze L, Morcrette M, Lucas V, Viana B, Badot JC. Control of powder microstructure for improved infrared reflectance modulation of an electrochromic plastic device. Chem Mater 2003; 15(13): 2577-83.
[http://dx.doi.org/10.1021/cm021752q]
[34]
Yu G, Dai Q, Meng Z, Meng F, Jia J. Electrochromic infrared radiation device used in electrochromic infrared radiation hollow energy-saving window, has lower and upper electrode layers, anode and cathode color change layers, ion transport layer and protective layer. CN Patent 112068378B, 2022.
[35]
Bakacak PK, Tüzemen S. Kocabaş C. New practical device structure for graphen-based electrochromic devices. Opt Mater 2021; 122: 111675.
[http://dx.doi.org/10.1016/j.optmat.2021.111675]
[36]
Thakur VK, Ding G, Ma J, Lee PS, Lu X. Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 2012; 24(30): 4071-96.
[http://dx.doi.org/10.1002/adma.201200213] [PMID: 22581710]
[37]
Zhang X, Tian Y, Li W, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Sol Energy Mater Sol Cells 2019; 200: 109916.
[http://dx.doi.org/10.1016/j.solmat.2019.109916]
[38]
Li W, Zhang X, Chen X, et al. Long life all-solid-state electrochromic devices by annealing. Sol Energy Mater Sol Cells 2021; 224: 110992.
[http://dx.doi.org/10.1016/j.solmat.2021.110992]
[39]
Wang SC, Liu KY, Huang JL. Tantalum oxide film prepared by reactive magnetron sputtering deposition for all-solid-state electrochromic device. Thin Solid Films 2011; 520(5): 1454-9.
[http://dx.doi.org/10.1016/j.tsf.2011.08.046]
[40]
Liu Q, Dong G, Chen Q, et al. Charge-transfer kinetics and cyclic properties of inorganic all-solid-state electrochromic device with remarkably improved optical memory. Sol Energy Mater Sol Cells 2018; 174: 545-53.
[http://dx.doi.org/10.1016/j.solmat.2017.09.012]
[41]
Zhang S, Zhang Q, Zhang Y, Chen Z, Watanabe M, Deng Y. Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Prog Mater Sci 2016; 77: 80-124.
[http://dx.doi.org/10.1016/j.pmatsci.2015.10.001]
[42]
Ye YS, Rick J, Hwang BJ. Ionic liquid polymer electrolytes. J Mater Chem A Mater Energy Sustain 2013; 1(8): 2719-43.
[http://dx.doi.org/10.1039/C2TA00126H]
[43]
Kim YM, Choi WY, Kwon JH, Lee JK, Moon HC. Functional ion gels: Versatile electrolyte platforms for electrochemical applications. Chem Mater 2021; 33(8): 2683-705.
[http://dx.doi.org/10.1021/acs.chemmater.1c00330]
[44]
Zhang G, Zhang J, Qiu T, et al. Fabrication of flexible electrochromic film based on amorphous isopolytungstate by low-temperature inkjet-printed process with a solution crystallization kinetic-controlled strategy. Chem Eng J 2022; 427: 131840.
[http://dx.doi.org/10.1016/j.cej.2021.131840]
[45]
Shi M, Qiu T, Tang B, et al. Temperature-controlled crystal size of wide band gap nickel oxide and its application in electrochromism. Micromachines 2021; 12(1): 80.
[http://dx.doi.org/10.3390/mi12010080] [PMID: 33466688]
[46]
Ning H, Zhang G, Yao R, et al. Preparing tungsten(VI) oxide electrochromic film comprises e.g. using concentrated ammonia to prepare nano tungsten oxide into precursor solution, dropping precursor solution onto rotating substrate and increasing rotation speed. C.N. Patent 111039573B, 2022.
[47]
Hale JS, Woollam JA. Prospects for IR emissivity control using electrochromic structures 1Presentented at the ICMCTF ’97 Conference, San Diego, CA, USA, April 1997. 1. Thin Solid Films 1999; 339(1-2): 174-80.
[http://dx.doi.org/10.1016/S0040-6090(98)01335-2]
[48]
Shi Y, Sun M, Zhang Y, et al. Rational design of oxygen deficiency-controlled tungsten oxide electrochromic films with an exceptional memory effect. ACS Appl Mater Interfaces 2020; 12(29): 32658-65.
[http://dx.doi.org/10.1021/acsami.0c06786] [PMID: 32610893]
[49]
Zhang X, Dou S, Li W, et al. Preparation of monolayer hollow spherical tungsten oxide films with enhanced near infrared electrochromic performances. Electrochim Acta 2019; 297: 223-9.
[http://dx.doi.org/10.1016/j.electacta.2018.11.179]
[50]
Wang Z, Gong W, Wang X, et al. Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition. ACS Appl Mater Interfaces 2020; 12(30): 33917-25.
[http://dx.doi.org/10.1021/acsami.0c08270] [PMID: 32578418]
[51]
Chein Sheng Ly K, Zhang H, Liu X, et al. Visible‐to‐MIR broadband modulating electrochromic metal oxides‐based coating for thermal management. J Am Ceram Soc 2021; 104(5): 2143-57.
[http://dx.doi.org/10.1111/jace.17668]
[52]
Tang K, Zhang Y, Shi Y, et al. Crystalline WO3 nanowires array sheathed with sputtered amorphous shells for enhanced electrochromic performance. Appl Surf Sci 2019; 498: 143796.
[http://dx.doi.org/10.1016/j.apsusc.2019.143796]
[53]
Zhou J, Wei Y, Luo G, Zheng J, Xu C. Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices. J Mater Chem C Mater Opt Electron Devices 2016; 4(8): 1613-22.
[http://dx.doi.org/10.1039/C5TC03750F]
[54]
Goei R, Ong AJ, Tan JH, et al. Nd–Nb Co-doped SnO2 /α-WO3 electrochromic materials: Enhanced stability and switching properties. ACS Omega 2021; 6(40): 26251-61.
[http://dx.doi.org/10.1021/acsomega.1c03260] [PMID: 34660984]
[55]
Yang C, Chen JF, Zeng X, Cheng D, Cao D. Design of the alkali-metal-doped WO3 as a near-infrared shielding material for smart window. Ind Eng Chem Res 2014; 53(46): 17981-8.
[http://dx.doi.org/10.1021/ie503284x]
[56]
Wang WQ, Yao ZJ, Wang XL, Xia XH, Gu CD, Tu JP. Niobium doped tungsten oxide mesoporous film with enhanced electrochromic and electrochemical energy storage properties. J Colloid Interface Sci 2019; 535: 300-7.
[http://dx.doi.org/10.1016/j.jcis.2018.10.006] [PMID: 30316116]
[57]
Ding J, Liu Z, Wei A, Chen TP, Zhang H. Study of electrochromic characteristics in the near-infrared region of electrochromic devices based on solution-processed amorphous WO3 films. Mater Sci Semicond Process 2018; 88: 73-8.
[http://dx.doi.org/10.1016/j.mssp.2018.07.034]
[58]
Yang L, Ge D, Zhao J, Ding Y, Kong X, Li Y. Improved electrochromic performance of ordered macroporous tungsten oxide films for IR electrochromic device. Sol Energy Mater Sol Cells 2012; 100: 251-7.
[http://dx.doi.org/10.1016/j.solmat.2012.01.028]
[59]
Cai GF, Tu JP, Zhou D, Wang XL, Gu CD. Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Sol Energy Mater Sol Cells 2014; 124: 103-10.
[http://dx.doi.org/10.1016/j.solmat.2014.01.042]
[60]
Niklasson GA, Granqvist CG. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J Mater Chem 2007; 17(2): 127-56.
[http://dx.doi.org/10.1039/B612174H]
[61]
Heda NL, Ahuja BL. Electronic properties and electron momentum density of monoclinic WO3. Comput Mater Sci 2013; 72: 49-53.
[http://dx.doi.org/10.1016/j.commatsci.2013.02.004]
[62]
Qu H, Zhang X, Pan L, et al. One-pot preparation of crystalline-amorphous double-layer structured WO 3 films and their electrochromic properties. Electrochim Acta 2014; 148: 46-52.
[http://dx.doi.org/10.1016/j.electacta.2014.10.017]
[63]
Yuan G, Hua C, Huang L, et al. Optical characterization of the coloration process in electrochromic amorphous and crystalline WO3 films by spectroscopic ellipsometry. Appl Surf Sci 2017; 421: 630-5.
[http://dx.doi.org/10.1016/j.apsusc.2016.10.176]
[64]
Zhou H, Qian Z, Tang D, Xu J, Liu X, Fan T. Preparing electrochromic thin film device having adjustable light performance in the visible to mid-infrared waveband comprises e.g. pre-treating substrate, depositing tungsten trioxide layer, annealing, and depositing metal oxide. C.N. Patent 111913329A, 2021.
[65]
Zhao Y, Zhang X, Chen X, et al. Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances. ACS Sustain Chem Eng 2020; 8(31): 11658-66.
[http://dx.doi.org/10.1021/acssuschemeng.0c03141]
[66]
Cai G, Wang X, Zhou D, et al. Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region. RSC Advances 2013; 3(19): 6896-905.
[http://dx.doi.org/10.1039/c3ra40675j]
[67]
Huang W L, Lin C H, Lin Y F, Liu C H. Material used for forming infrared-absorbing conductive structure, comprises cesiumconductive carbon co-doped composite tungsten oxide. A.U. Pantent 2017202562A1, 2017.
[68]
Sun X, Radovanovic PV, Cui B. Advances in spinel Li4 Ti5 O12 anode materials for lithium-ion batteries. New J Chem 2015; 39(1): 38-63.
[http://dx.doi.org/10.1039/C4NJ01390E]
[69]
Prakash AS, Manikandan P, Ramesha K, Sathiya M, Tarascon J-M, Shukla AK. Solution-combustion synthesized nanocrystalline Li4 Ti5 O12 as high-rate performance li-ion battery anode. Chem Mater 2010; 22(9): 2857-63.
[http://dx.doi.org/10.1021/cm100071z]
[70]
Yan H, Zhang D. Qilu, Duo X, Sheng X. A review of spinel lithium titanate (Li4 Ti5 O12) as electrode material for advanced energy storage devices. Ceram Int 2021; 47(5): 5870-95.
[http://dx.doi.org/10.1016/j.ceramint.2020.10.241]
[71]
Jamin C, Traina K, Eskenazi D, et al. Effect of freeze-drying and self-ignition process on the microstructural and electrochemical properties of Li4Ti5O12. Mater Res Bull 2013; 48(11): 4641-6.
[http://dx.doi.org/10.1016/j.materresbull.2013.07.035]
[72]
Ohzuku T, Ueda A, Yamamoto N. Zero‐strain insertion material of Li [Li1/3Ti5/3] O4 for rechargeable lithium cells. J Electrochem Soc 1995; 142(5): 1431-5.
[http://dx.doi.org/10.1149/1.2048592]
[73]
Yu X, Wang R, He Y, Hu Y, Li H, Huang X. Electrochromic behavior of transparent Li4Ti5O12/FTO electrode. Electrochem Solid-State Lett 2010; 13(8): J99.
[http://dx.doi.org/10.1149/1.3430658]
[74]
Mandal J, Du S, Dontigny M, Zaghib K, Yu N, Yang Y. Li4Ti5O12: A visible‐to‐infrared broadband electrochromic material for optical and thermal management. Adv Funct Mater 2018; 28(36): 1802180.
[http://dx.doi.org/10.1002/adfm.201802180]
[75]
Joshi Y, Saksena A, Hadjixenophontos E, Schneider JM, Schmitz G. Electrochromic behavior and phase transformation in Li4+x Ti5 O12 upon Lithium-Ion Deintercalation/Intercalation. ACS Appl Mater Interfaces 2020; 12(9): 10616-25.
[http://dx.doi.org/10.1021/acsami.9b19683] [PMID: 32041397]
[76]
Li M, Gould T, Su Z, Li S, Pan F, Zhang S. Electrochromic properties of Li4TiO12: From visible to infrared spectrum. Appl Phys Lett 2019; 115(7): 073902.
[http://dx.doi.org/10.1063/1.5099330]
[77]
Wang T, Wang M, Huang Q, Yang J, Wang S, Diao X. Preparation of lithium titanate thin film for electrochromic smart window by sol-gel spin coating method. J Inorg Mater 2021; 36(5): 471-8.
[http://dx.doi.org/10.15541/jim20200584]
[78]
Li X, Ding N, Lu Y, Yin XJ. One-step microwave-assisted synthesis of indium tin oxide nanoparticles for nir-selective dynamic window applications. ChemistrySelect 2018; 3(29): 8553-9.
[http://dx.doi.org/10.1002/slct.201801618]
[79]
Mashkov O, Körfer J, Eigen A, et al. Effect of ligand treatment on the tuning of infrared plasmonic indium tin oxide nanocrystal electrochromic devices. Adv Eng Mater 2020; 22(9): 2000112.
[http://dx.doi.org/10.1002/adem.202000112]
[80]
Maho A, Comeron Lamela L, Henrist C, et al. Solvothermally-synthesized tin-doped indium oxide plasmonic nanocrystals spray-deposited onto glass as near-infrared electrochromic films. Sol Energy Mater Sol Cells 2019; 200: 110014.
[http://dx.doi.org/10.1016/j.solmat.2019.110014]
[81]
Auguié B, Barnes WL. Collective resonances in gold nanoparticle arrays. Phys Rev Lett 2008; 101(14): 143902.
[http://dx.doi.org/10.1103/PhysRevLett.101.143902] [PMID: 18851529]
[82]
Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals. Chem Rev 2018; 118(6): 3121-207.
[http://dx.doi.org/10.1021/acs.chemrev.7b00613] [PMID: 29400955]
[83]
Genç A, Patarroyo J, Sancho-Parramon J, et al. Tuning the plasmonic response up: Hollow cuboid metal nanostructures. ACS Photonics 2016; 3(5): 770-9.
[http://dx.doi.org/10.1021/acsphotonics.5b00667]
[84]
Yang HU, D’Archangel J, Sundheimer ML, Tucker E, Boreman GD, Raschke MB. Optical dielectric function of silver. Phys Rev B Condens Matter Mater Phys 2015; 91(23): 235137.
[http://dx.doi.org/10.1103/PhysRevB.91.235137]
[85]
Shen Y, Zhou J, Liu T, et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 2013; 4(1): 2381.
[http://dx.doi.org/10.1038/ncomms3381] [PMID: 23979039]
[86]
Runnerstrom EL, Llordés A, Lounis SD, Milliron DJ. Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem Commun (Camb) 2014; 50(73): 10555-72.
[http://dx.doi.org/10.1039/C4CC03109A] [PMID: 24935022]
[87]
Mattox TM, Ye X, Manthiram K, Schuck PJ, Alivisatos AP, Urban JJ. Chemical control of plasmons in metal chalcogenide and metal oxide nanostructures. Adv Mater 2015; 27(38): 5830-7.
[http://dx.doi.org/10.1002/adma.201502218] [PMID: 26173628]
[88]
Liu Y, Liu M, Swihart MT. Plasmonic Copper sulfide-based materials: A brief introduction to their synthesis, doping, alloying, and applications. J Phys Chem C 2017; 121(25): 13435-47.
[http://dx.doi.org/10.1021/acs.jpcc.7b00894]
[89]
Schimpf AM, Knowles KE, Carroll GM, Gamelin DR. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals. Acc Chem Res 2015; 48(7): 1929-37.
[http://dx.doi.org/10.1021/acs.accounts.5b00181] [PMID: 26121552]
[90]
Wang Y, Runnerstrom EL, Milliron DJ. Switchable Materials for Smart Windows. Annu Rev Chem Biomol Eng 2016; 7(1): 283-304.
[91]
Llordés A, Garcia G, Gazquez J, Milliron DJ. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 2013; 500(7462): 323-6.
[http://dx.doi.org/10.1038/nature12398] [PMID: 23955232]
[92]
Llordés A, Wang Y, Fernandez-Martinez A, et al. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nat Mater 2016; 15(12): 1267-73.
[http://dx.doi.org/10.1038/nmat4734] [PMID: 27548708]
[93]
Garcia G, Buonsanti R, Runnerstrom EL, et al. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett 2011; 11(10): 4415-20.
[http://dx.doi.org/10.1021/nl202597n] [PMID: 21859093]
[94]
Pattathil P, Giannuzzi R, Manca M. Self-powered NIR-selective dynamic windows based on broad tuning of the localized surface plasmon resonance in mesoporous ITO electrodes. Nano Energy 2016; 30: 242-51.
[http://dx.doi.org/10.1016/j.nanoen.2016.10.013]
[95]
Garcia G, Buonsanti R, Llordes A, Runnerstrom EL, Bergerud A, Milliron DJ. Near-infrared spectrally selective plasmonic electrochromic thin films. Adv Opt Mater 2013; 1(3): 215-20.
[http://dx.doi.org/10.1002/adom.201200051]
[96]
Cao S, Zhang S, Zhang T, Fisher A, Lee JY. Metal-doped TiO2 colloidal nanocrystals with broadly tunable plasmon resonance absorption. J Mater Chem C Mater Opt Electron Devices 2018; 6(15): 4007-14.
[http://dx.doi.org/10.1039/C8TC00185E]
[97]
Dahlman CJ, Tan Y, Marcus MA, Milliron DJ. Spectroelectrochemical signatures of capacitive charging and ion insertion in doped anatase titania nanocrystals. J Am Chem Soc 2015; 137(28): 9160-6.
[http://dx.doi.org/10.1021/jacs.5b04933] [PMID: 26154107]
[98]
Barawi M, De Trizio L, Giannuzzi R, Veramonti G, Manna L, Manca M. Dual band electrochromic devices based on Nb-Doped TiO2 nanocrystalline electrodes. ACS Nano 2017; 11(4): 3576-84.
[http://dx.doi.org/10.1021/acsnano.6b06664] [PMID: 28328197]
[99]
Cao S, Zhang S, Zhang T, Lee JY. Fluoride-assisted synthesis of plasmonic colloidal Ta-Doped TiO2 nanocrystals for near-infrared and visible-light selective electrochromic modulation. Chem Mater 2018; 30(14): 4838-46.
[http://dx.doi.org/10.1021/acs.chemmater.8b02196]
[100]
Ayranci R. Başkaya G, Güzel M, Bozkurt S, Şen F, Ak M. Carbon based nanomaterials for high performance optoelectrochemical systems. ChemistrySelect 2017; 2(4): 1548-55.
[http://dx.doi.org/10.1002/slct.201601632]
[101]
Yanagi K, Moriya R, Yomogida Y, et al. Electrochromic carbon electrodes: Controllable visible color changes in metallic single-wall carbon nanotubes. Adv Mater 2011; 23(25): 2811-4.
[http://dx.doi.org/10.1002/adma.201100549] [PMID: 21520465]
[102]
Wu Y, La-o-vorakiat C, Qiu X, et al. Graphene terahertz modulators by ionic liquid gating. Adv Mater 2015; 27(11): 1874-9.
[http://dx.doi.org/10.1002/adma.201405251] [PMID: 25648826]
[103]
Wang Y, Liu H, Wang S, Cai M, Ma L. Optical transport properties of graphene surface plasmon polaritons in mid-infrared band. Crystals 2019; 9(7): 354.
[http://dx.doi.org/10.3390/cryst9070354]
[104]
Polat EO. Balcı O, Kocabas C. Graphene based flexible electrochromic devices. Sci Rep 2014; 4(1): 6484.
[http://dx.doi.org/10.1038/srep06484] [PMID: 25270391]
[105]
Salihoglu O, Uzlu HB, Yakar O, et al. Graphene-Based Adaptive Thermal Camouflage. Nano Lett 2018; 18(7): 4541-8.
[http://dx.doi.org/10.1021/acs.nanolett.8b01746] [PMID: 29947216]
[106]
Ergoktas MS, Bakan G, Steiner P, et al. Graphene-enabled adaptive infrared textiles. Nano Lett 2020; 20(7): 5346-52.
[http://dx.doi.org/10.1021/acs.nanolett.0c01694] [PMID: 32551694]
[107]
Berger FJ, Higgins TM, Rother M, et al. From broadband to electrochromic notch filters with printed monochiral Carbon nanotubes. ACS Appl Mater Interfaces 2018; 10(13): 11135-42.
[http://dx.doi.org/10.1021/acsami.8b00643] [PMID: 29521086]
[108]
Wan J, Xu Y, Ozdemir B, et al. Tunable broadband nanocarbon transparent conductor by electrochemical intercalation. ACS Nano 2017; 11(1): 788-96.
[http://dx.doi.org/10.1021/acsnano.6b07191] [PMID: 28033469]
[109]
Moser ML, Li G, Chen M, Bekyarova E, Itkis ME, Haddon RC. Fast electrochromic device based on single-walled carbon nanotube thin films. Nano Lett 2016; 16(9): 5386-93.
[http://dx.doi.org/10.1021/acs.nanolett.6b01564] [PMID: 27531707]
[110]
Wang F, Itkis ME, Bekyarova E, Haddon RC. Charge-compensated, semiconducting single-walled carbon nanotube thin film as an electrically configurable optical medium. Nat Photonics 2013; 7(6): 459-65.
[http://dx.doi.org/10.1038/nphoton.2013.66]
[111]
Sun Y, Chang H, Hu J, et al. Large‐scale multifunctional carbon nanotube thin film as effective mid‐infrared radiation modulator with long‐term stability. Adv Opt Mater 2021; 9(3): 2001216.
[http://dx.doi.org/10.1002/adom.202001216]
[112]
Lan L, Ning H, Peng J. et al. Printed transparent carbon nano tube optoelectronic H/M and application thereat in photoelectric device. C.N. Patent 105607373A, 2016.
[113]
Hansen SF, Lennquist A. Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern. Nat Nanotechnol 2020; 15(1): 3-4.
[http://dx.doi.org/10.1038/s41565-019-0613-9] [PMID: 31925393]