Evaluation of BMP-2 as a Differentiating and Radiosensitizing Agent for Colorectal Cancer Stem Cells

Page: [83 - 93] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Despite effective clinical responses, a large proportion of patients undergo resistance to radiotherapy. The low response rate to current treatments in different stages of colorectal cancer depends on the prominent role of stem cells in cancer.

Objective: In the present study, the role of BMP-2 as an ionizing radiation-sensitive factor in colorectal cancer cells was investigated.

Methods: A sphere formation assay was used for the enrichment of HCT-116 cancer stem cells (CSCs). The effects of combination therapy (BMP-2+ radiation) on DNA damage response (DDR), proliferation, and apoptosis were evaluated in HCT-116 and CSCs. Gene expressions of CSCs and epithelialmesenchymal transition (EMT) markers were also evaluated.

Results: We found that the sphere formation assay showed a significant increase in the percentage of CSCs. Moreover, expression of CSCs markers, EMT-related genes, and DNA repair proteins significantly decreased in HCT-116 cells compared to the CSCs group after radiation. In addition, BMP-2 promoted the radiosensitivity of HCT-116 cells by decreasing the survival rate of the treated cells at 2, 4, and 6 Gy compared to the control group in HCT-116 cells.

Conclusion: Our findings indicated that BMP-2 could affect numerous signaling pathways involved in radioresistance. Therefore, BMP-2 can be considered an appealing therapeutic target for the treatment of radioresistant human colorectal cancer.

Graphical Abstract

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 can-cers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Hasan Abdali M, Afshar S, Sedighi Pashaki A, et al. Investigating the effect of radiosensitizer for ursolic acid and kamolonol acetate on HCT-116 cell line. Bioorg Med Chem 2020; 28(1): 115152.
[http://dx.doi.org/10.1016/j.bmc.2019.115152] [PMID: 31771799]
[3]
Geng L, Wang J. Molecular effectors of radiation resistance in colorectal cancer. Precis Radiat Oncol 2017; 1(1): 27-33.
[http://dx.doi.org/10.1002/pro6.5]
[4]
Afshar S, Sedighi Pashaki A, Najafi R, et al. Cross-resistance of acquired radioresistant colorectal cancer cell line to gefitinib and regoraf-enib. Iran J Med Sci 2020; 45(1): 50-8.
[PMID: 32038059]
[5]
Duldulao MP, Lee W, Streja L, et al. Distribution of residual cancer cells in the bowel wall after neoadjuvant chemoradiation in patients with rectal cancer. Dis Colon Rectum 2013; 56(2): 142-9.
[http://dx.doi.org/10.1097/DCR.0b013e31827541e2] [PMID: 23303141]
[6]
Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol 2013; 3: 113.
[http://dx.doi.org/10.3389/fonc.2013.00113] [PMID: 23675572]
[7]
Morgan MA, Lawrence TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res 2015; 21(13): 2898-904.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-3229] [PMID: 26133775]
[8]
Eriksson D, Stigbrand T. Radiation-induced cell death mechanisms. Tumour Biol 2010; 31(4): 363-72.
[http://dx.doi.org/10.1007/s13277-010-0042-8] [PMID: 20490962]
[9]
Sun Z, Liu C, Jiang WG, Ye L. Deregulated bone morphogenetic proteins and their receptors are associated with disease progression of gastric cancer. Comput Struct Biotechnol J 2020; 18: 177-88.
[http://dx.doi.org/10.1016/j.csbj.2019.12.014] [PMID: 31988704]
[10]
Mitra A, Mishra L, Li S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 2015; 6(13): 10697-711.
[http://dx.doi.org/10.18632/oncotarget.4037] [PMID: 25986923]
[11]
Kozovska Z, Gabrisova V, Kucerova L. Colon cancer: Cancer stem cells markers, drug resistance and treatment. Biomed Pharmacother 2014; 68(8): 911-6.
[http://dx.doi.org/10.1016/j.biopha.2014.10.019] [PMID: 25458789]
[12]
Zhang Y, Chen X, Qiao M, et al. Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells. Oncol Rep 2014; 32(3): 1013-20.
[http://dx.doi.org/10.3892/or.2014.3308] [PMID: 24993644]
[13]
Shirai Y, Ehata S, Yashiro M, Yanagihara K, Hirakawa K, Miyazono K. Bone morphogenetic protein-2 and -4 play tumor suppressive roles in human diffuse-type gastric carcinoma. Am J Pathol 2011; 179(6): 2920-30.
[http://dx.doi.org/10.1016/j.ajpath.2011.08.022] [PMID: 21996676]
[14]
Ruiu R, Rolih V, Bolli E, et al. Fighting breast cancer stem cells through the immune-targeting of the xCT cystine–glutamate antiporter. Cancer Immunol Immunother 2019; 68(1): 131-41.
[http://dx.doi.org/10.1007/s00262-018-2185-1] [PMID: 29947961]
[15]
Rahimi A, Amiri I, Roushandeh AM, et al. Sublethal concentration of H2O2 enhances the protective effect of mesenchymal stem cells in rat model of spinal cord injury. Biotechnol Lett 2018; 40(3): 609-15.
[http://dx.doi.org/10.1007/s10529-017-2499-7] [PMID: 29288352]
[16]
Karkhane M, et al. Cancer stem cells: cell heterogeneity in cancer and nanotechnology approaches for their treatment. J Mazandaran Univ Med Sci 2016; 25(133): 361-75.
[17]
Das PK, Islam F, Lam AK. The roles of cancer stem cells and therapy resistance in colorectal carcinoma. Cells 2020; 9(6): 1392.
[http://dx.doi.org/10.3390/cells9061392] [PMID: 32503256]
[18]
Krause M, Dubrovska A, Linge A, Baumann M. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific tar-gets for combined treatments. Adv Drug Deliv Rev 2017; 109: 63-73.
[http://dx.doi.org/10.1016/j.addr.2016.02.002] [PMID: 26877102]
[19]
Jing N, Gao WQ, Fang YX. Regulation of formation, stemness and therapeutic resistance of cancer stem cells. Front Cell Dev Biol 2021; 9: 641498.
[http://dx.doi.org/10.3389/fcell.2021.641498] [PMID: 33898430]
[20]
Vermeulen L. de Sousa e Melo F, Richel DJ, Medema JP. The developing cancer stem-cell model: Clinical challenges and opportunities. Lancet Oncol 2012; 13(2): e83-9.
[http://dx.doi.org/10.1016/S1470-2045(11)70257-1] [PMID: 22300863]
[21]
Ren F, Sheng W-Q, Du X. CD133: A cancer stem cells marker, is used in colorectal cancers. World J Gastroenterol 2013; 19(17): 2603-11.
[http://dx.doi.org/10.3748/wjg.v19.i17.2603] [PMID: 23674867]
[22]
Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 2007; 104(24): 10158-63.
[http://dx.doi.org/10.1073/pnas.0703478104] [PMID: 17548814]
[23]
Kim BR, Oh SC, Lee DH, et al. BMP-2 induces motility and invasiveness by promoting colon cancer stemness through STAT3 activation. Tumour Biol 2015; 36(12): 9475-86.
[http://dx.doi.org/10.1007/s13277-015-3681-y] [PMID: 26124007]
[24]
Nickel J, Mueller TD. Specification of BMP Signaling. Cells 2019; 8(12): 1579.
[http://dx.doi.org/10.3390/cells8121579] [PMID: 31817503]
[25]
Farnsworth RH, Karnezis T, Shayan R, et al. A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth. Cancer Res 2011; 71(20): 6547-57.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-0200] [PMID: 21868759]
[26]
Irshad S, Bansal M, Guarnieri P, et al. Bone morphogenetic protein and Notch signalling crosstalk in poor-prognosis, mesenchymal-subtype colorectal cancer. J Pathol 2017; 242(2): 178-92.
[http://dx.doi.org/10.1002/path.4891] [PMID: 28299802]
[27]
Davis H, Raja E, Miyazono K, Tsubakihara Y, Moustakas A. Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev 2016; 27: 81-92.
[http://dx.doi.org/10.1016/j.cytogfr.2015.11.009] [PMID: 26678814]
[28]
Wakefield LM, Hill CS. Beyond TGFβ: roles of other TGFβ superfamily members in cancer. Nat Rev Cancer 2013; 13(5): 328-41.
[http://dx.doi.org/10.1038/nrc3500] [PMID: 23612460]
[29]
Brunen D, Willems S, Kellner U, Midgley R, Simon I, Bernards R. TGF-β: An emerging player in drug resistance. Cell Cycle 2013; 12(18): 2960-8.
[http://dx.doi.org/10.4161/cc.26034] [PMID: 23974105]
[30]
Wang Z, Shen Z, Li Z, et al. Activation of the BMP-BMPR pathway conferred resistance to EGFR-TKIs in lung squamous cell carcinoma patients with EGFR mutations. Proc Natl Acad Sci USA 2015; 112(32): 9990-5.
[http://dx.doi.org/10.1073/pnas.1510837112] [PMID: 26216950]
[31]
Fukuda T, Fukuda R, Koinuma D, Moustakas A, Miyazono K, Heldin CH. BMP2-induction of FN14 promotes protumorigenic signaling in gynecologic cancer cells. Cell Signal 2021; 87: 110146.
[http://dx.doi.org/10.1016/j.cellsig.2021.110146] [PMID: 34517088]
[32]
Olivares-Urbano MA, Griñán-Lisón C, Marchal JA, Núñez MI. CSC radioresistance: A therapeutic challenge to improve radiotherapy ef-fectiveness in cancer. Cells 2020; 9(7): 1651.
[http://dx.doi.org/10.3390/cells9071651] [PMID: 32660072]
[33]
Schulz A, Meyer F, Dubrovska A, Borgmann K. Cancer stem cells and radioresistance: DNA repair and beyond. Cancers 2019; 11(6): 862.
[http://dx.doi.org/10.3390/cancers11060862] [PMID: 31234336]
[34]
de Jesús K-AA, Xu X. Mechanisms of radioresistance in hepatocellular carcinoma. Oncology 2017; 3(4): 165-70.
[35]
Samadi P, Soleimani M, Nouri F, Rahbarizadeh F, Najafi R, Jalali A. An integrative transcriptome analysis reveals potential predictive, prognostic biomarkers and therapeutic targets in colorectal cancer. BMC Cancer 2022; 22(1): 835.
[http://dx.doi.org/10.1186/s12885-022-09931-4] [PMID: 35907803]
[36]
Bach DH, Park HJ, Lee SK. The dual role of bone morphogenetic proteins in cancer. Mol Ther Oncolytics 2018; 8: 1-13.
[http://dx.doi.org/10.1016/j.omto.2017.10.002] [PMID: 29234727]
[37]
Zabkiewicz C, Resaul J, Hargest R, Jiang WG, Ye L. Bone morphogenetic proteins, breast cancer, and bone metastases: Striking the right balance. Endocr Relat Cancer 2017; 24(10): R349-66.
[http://dx.doi.org/10.1530/ERC-17-0139] [PMID: 28733469]
[38]
Wang X, Zhang F, Yang J, et al. The chemotherapeutic effect of docetaxel, cisplatin and fluorouracil regimen on gastric cancer stem cells. J Nanosci Nanotechnol 2017; 17(2): 983-9.
[http://dx.doi.org/10.1166/jnn.2017.12591] [PMID: 29671949]
[39]
Wang L, Park P, Zhang H, et al. BMP-2 inhibits the tumorigenicity of cancer stem cells in human osteosarcoma OS99-1 cell line. Cancer Biol Ther 2011; 11(5): 457-63.
[http://dx.doi.org/10.4161/cbt.11.5.14372] [PMID: 21178508]
[40]
Wang L, Park P, La Marca F, Than KD, Lin CY. BMP-2 inhibits tumor-initiating ability in human renal cancer stem cells and induces bone formation. J Cancer Res Clin Oncol 2015; 141(6): 1013-24.
[http://dx.doi.org/10.1007/s00432-014-1883-0] [PMID: 25431339]
[41]
Pretzsch E, et al. Mechanisms of metastasis in colorectal cancer and metastatic organotropism: Hematogenous versus peritoneal spread. J Oncol 2019.
[http://dx.doi.org/10.1155/2019/7407190]
[42]
Kang MH, Kim JS, Seo JE, Oh SC, Yoo YA. BMP2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Exp Cell Res 2010; 316(1): 24-37.
[http://dx.doi.org/10.1016/j.yexcr.2009.10.010] [PMID: 19835871]
[43]
Cai Z, Cao Y, Luo Y, Hu H, Ling H. Signalling mechanism(s) of epithelial–mesenchymal transition and cancer stem cells in tumour thera-peutic resistance. Clin Chim Acta 2018; 483: 156-63.
[http://dx.doi.org/10.1016/j.cca.2018.04.033] [PMID: 29709449]
[44]
Bastos LGR, de Marcondes PG, de-Freitas-Junior JCM, et al. Progeny from irradiated colorectal cancer cells acquire an EMT-like pheno-type and activate Wnt/β-catenin pathway. J Cell Biochem 2014; 115(12): 2175-87.
[http://dx.doi.org/10.1002/jcb.24896] [PMID: 25103643]
[45]
Chang L, Graham PH, Hao J, et al. Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy. Cancer Metastasis Rev 2014; 33(2-3): 469-96.
[http://dx.doi.org/10.1007/s10555-014-9493-5] [PMID: 24445654]
[46]
Takahashi H, Nakamura K, Usami A, et al. Possible role of nuclear β-catenin in resistance to preoperative chemoradiotherapy in locally advanced rectal cancer. Histopathology 2017; 71(2): 227-37.
[http://dx.doi.org/10.1111/his.13227] [PMID: 28370249]
[47]
Zhao Y, Yi J, Tao L, et al. Wnt signaling induces radioresistance through upregulating HMGB1 in esophageal squamous cell carcinoma. Cell Death Dis 2018; 9(4): 433.
[http://dx.doi.org/10.1038/s41419-018-0466-4] [PMID: 29567990]
[48]
Zhao Y, Tao L, Yi J, Song H, Chen L. The role of canonical Wnt signaling in regulating Radioresistance. Cell Physiol Biochem 2018; 48(2): 419-32.
[http://dx.doi.org/10.1159/000491774] [PMID: 30021193]
[49]
Shrivastav M, Miller CA, De Haro LP, et al. DNA-PKcs and ATM co-regulate DNA double-strand break repair. DNA Repair 2009; 8(8): 920-9.
[http://dx.doi.org/10.1016/j.dnarep.2009.05.006] [PMID: 19535303]
[50]
Wang W, et al. XRRA1 targets ATM/CHK1/2-mediated DNA repair in colorectal cancer. BioMed Res Int 2017; 5718968: 2017.
[51]
Carruthers R, Ahmed SU, Strathdee K, et al. Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol Oncol 2015; 9(1): 192-203.
[http://dx.doi.org/10.1016/j.molonc.2014.08.003] [PMID: 25205037]
[52]
Skvortsov S, et al. Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. In: Seminars in cancer biology. Elsevier 2015.
[53]
Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in hu-man pancreatic cancer. Cell Stem Cell 2007; 1(3): 313-23.
[http://dx.doi.org/10.1016/j.stem.2007.06.002] [PMID: 18371365]
[54]
Simeone DM. Pancreatic cancer stem cells: implications for the treatment of pancreatic cancer. Clin Cancer Res 2008; 14(18): 5646-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0584] [PMID: 18794070]
[55]
Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. nature 2006; 444(1): 756-60.
[http://dx.doi.org/10.1038/nature05236]
[56]
Hardee ME, Marciscano AE, Medina-Ramirez CM, et al. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res 2012; 72(16): 4119-29.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0546] [PMID: 22693253]
[57]
Bouquet F, Pal A, Pilones KA, et al. TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 2011; 17(21): 6754-65.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0544] [PMID: 22028490]
[58]
Zuo ZQ, Chen KG, Yu XY, et al. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 2016; 82: 48-59.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.014] [PMID: 26751819]
[59]
Sachdeva R, Wu M, Johnson K, et al. BMP signaling mediates glioma stem cell quiescence and confers treatment resistance in glioblasto-ma. Sci Rep 2019; 9(1): 14569.
[http://dx.doi.org/10.1038/s41598-019-51270-1] [PMID: 31602000]
[60]
Centurione L, Aiello FB. DNA repair and cytokines: TGF-β, IL-6, and thrombopoietin as different biomarkers of radioresistance. Front Oncol 2016; 6: 175.
[http://dx.doi.org/10.3389/fonc.2016.00175] [PMID: 27500125]
[61]
Sun X, He Z, Guo L, et al. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res 2021; 40(1): 149.
[http://dx.doi.org/10.1186/s13046-021-01932-8] [PMID: 33931075]
[62]
Zhang Z, Fan Y, Xie F, et al. Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat Commun 2017; 8(1): 2116.
[http://dx.doi.org/10.1038/s41467-017-02029-7] [PMID: 29235476]
[63]
Yang T, Huang T, Zhang D, et al. TGF-β receptor inhibitor LY2109761 enhances the radiosensitivity of gastric cancer by inactivating the TGF-β/SMAD4 signaling pathway. Aging 2019; 11(20): 8892-910.
[http://dx.doi.org/10.18632/aging.102329] [PMID: 31631064]
[64]
Du S, et al. Attenuation of the DNA damage response by transforming growth factor-Beta inhibitors enhances radiation sensitivity of non–small-cell lung Cancer cells in vitro and in vivo. Int J Rad Oncol Biol Phy 2015; 91(1): 91-9.
[http://dx.doi.org/10.1016/j.ijrobp.2014.09.026]