Recent Advancements in Light-responsive Supercapacitors

Page: [74 - 88] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

With so many of our daily activities related to electricity, from telecommunication to laptops and computers, the use of electric energy has skyrocketed in today's technology-based world. Energy output must rise to meet rising energy demand. Still, as fossil fuels are running out, we must turn to more renewable energy sources, particularly solar energy, which can be harnessed and converted to electricity by solar-powered cells. The issues, however, are brought about by the sunlight's unpredictable energy output. The energy produced by solar cells should therefore be stored using energy storage technologies. This notion led to the development of the photo-supercapacitor, a device that combines a solar cell with a supercapacitor to store the energy generated by the solar cells. However, recently researchers developed light-responsive materials for supercapacitors that could be used directly as electrode materials and deposited on various transparent and conductive substrates. Such light-responsive supercapacitors could be operated directly by shining solar light without using any solar cell. A light-responsive supercapacitor's efficiency is primarily influenced by the active materials used in its electrode fabrication. The main components of high-energy conversion, which improves a light-responsive supercapacitor's performance and shelf life, are photoactive materials, counter electrodes, compatible electrolytes, and transparent substrate performances. Furthermore, light-responsive supercapacitors are cutting-edge and promising energy storage devices that can self-charge under light illumination by converting light to electrical energy and storing it for later use. They are considered a novel approach to energy issues in electrical transportation, electronic equipment, and on-chip energy storage devices. Thus, this review paper opens up an avenue for the direct utilization of photoactive nanomaterials for electrochemical energy storage and demonstrates the substantial potential for the fabrication of advanced light-responsive supercapacitors. This study also covers the fundamentals of how this exciting field works, the historical trajectory of how far it has come, and the promising prospects for its future.

Graphical Abstract

[1]
Qiao, H.; Zheng, F.; Jiang, H.; Dong, K. The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries. Sci. Total Environ., 2019, 671, 722-731.
[http://dx.doi.org/10.1016/j.scitotenv.2019.03.336] [PMID: 30939325]
[2]
Giamalaki, M.; Tsoutsos, T. Sustainable siting of solar power installations in Mediterranean using a GIS/AHP approach. Renew. Energy, 2019, 141, 64-75.
[http://dx.doi.org/10.1016/j.renene.2019.03.100]
[3]
Abu Nayem, S.M.; Ahmad, A.; Shaheen Shah, S.; Saeed Alzahrani, A.; Saleh Ahammad, A.J.; Aziz, M.A. High performance and long-cycle life rechargeable aluminum ion battery: Recent progress, perspectives and challenges. Chem. Rec., 2022, 22(12), e202200181.
[http://dx.doi.org/10.1002/tcr.202200181] [PMID: 36094785]
[4]
Shah, S.S.; Aziz, M.A.; Yamani, Z.H. Recent progress in carbonaceous and redox-active nanoarchitectures for hybrid supercapacitors: Performance evaluation, challenges, and future prospects. Chem. Rec., 2022, 22(7), e202200018.
[http://dx.doi.org/10.1002/tcr.202200018] [PMID: 35426239]
[5]
Shaheen Shah, S.; Abu Nayem, S.M.; Sultana, N.; Saleh Ahammad, A.J.; Abdul Aziz, M. Preparation of sulfur-doped carbon for supercapacitor applications: A review. ChemSusChem, 2022, 15(1), e202101282.
[http://dx.doi.org/10.1002/cssc.202101282] [PMID: 34747127]
[6]
Yaseen, M.; Khattak, M.A.K.; Humayun, M.; Usman, M.; Shah, S.S.; Bibi, S.; Hasnain, B.S.U.; Ahmad, S.M.; Khan, A.; Shah, N.; Tahir, A.A.; Ullah, H. A review of supercapacitors: Materials design, modification, and applications. Energies, 2021, 14(22), 7779.
[http://dx.doi.org/10.3390/en14227779]
[7]
Shah, S.S.; Aziz, M.A.; Mahfoz, W.; Al-Betar, A-R. Conducting polymers based nanocomposites for supercapacitors. In: Nanostructured Materials for Supercapacitors; Thomas, S.; Gueye, A.B.; Gupta, R.K., Eds.; Springer: Cham, 2022, Vol. 1, pp. 485-511.
[http://dx.doi.org/10.1007/978-3-030-99302-3_22]
[8]
Shah, S.S.; Das, H.T.; Barai, H.R.; Aziz, M.A. Boosting the electrochemical performance of polyaniline by one-step electrochemical deposition on nickel foam for high-performance asymmetric supercapacitor. Polymers, 2022, 14(2), 270.
[http://dx.doi.org/10.3390/polym14020270] [PMID: 35054676]
[9]
Hasan, M.M.; Islam, T.; Shah, S.S.; Awal, A.; Aziz, M.A.; Ahammad, A.J.S. Recent advances in carbon and metal based supramolecular technology for supercapacitor applications. Chem. Rec., 2022, 22(7), e202200041.
[http://dx.doi.org/10.1002/tcr.202200041] [PMID: 35426220]
[10]
Deb Nath, N.C.; Shah, S.S.; Qasem, M.A.A.; Zahir, M.H.; Aziz, M.A. Defective carbon nanosheets derived from Syzygium cumini leaves for electrochemical energy-storage. ChemistrySelect, 2019, 4(31), 9079-9083.
[http://dx.doi.org/10.1002/slct.201900891]
[11]
Hasan, M.M.; Islam, T.; Shah, S.S.; Aziz, M.A.; Awal, A.; Hossain, M.D.; Ehsan, M.A.; Ahammad, A.J.S. Supporting electrolyte interaction with the AACVD synthesized Rh thin film influences the OER activity. Int. J. Hydrogen Energy, 2022, 47(67), 28740-28751.
[http://dx.doi.org/10.1016/j.ijhydene.2022.06.212]
[12]
Aziz, M.A.; Shah, S.S.; Nayem, S.M.A.; Shaikh, M.N.; Hakeem, A.S.; Bakare, I.A. Peat soil-derived silica doped porous graphitic carbon with high yield for high-performance all-solid-state symmetric supercapacitors. J. Energy Storage, 2022, 50, 104278.
[http://dx.doi.org/10.1016/j.est.2022.104278]
[13]
Islam, T.; Hasan, M.M.; Shah, S.S.; Karim, M.R.; Al-Mubaddel, F.S.; Zahir, M.H.; Dar, M.A.; Hossain, M.D.; Aziz, M.A.; Ahammad, A.J.S. High yield activated porous coal carbon nanosheets from Boropukuria coal mine as supercapacitor material: Investigation of the charge storing mechanism at the interfacial region. J. Energy Storage, 2020, 32, 101908.
[http://dx.doi.org/10.1016/j.est.2020.101908]
[14]
Shah, S.S.; Alfasane, M.A.; Bakare, I.A.; Aziz, M.A.; Yamani, Z.H. Polyaniline and heteroatoms–enriched carbon derived from Pithophora polymorpha composite for high performance supercapacitor. J. Energy Storage, 2020, 30, 101562.
[http://dx.doi.org/10.1016/j.est.2020.101562]
[15]
Shah, S.S.; Cevik, E.; Aziz, M.A.; Qahtan, T.F.; Bozkurt, A.; Yamani, Z.H. Jute sticks derived and commercially available activated carbons for symmetric supercapacitors with bio-electrolyte: A comparative study. Synth. Met., 2021, 277, 116765.
[http://dx.doi.org/10.1016/j.synthmet.2021.116765]
[16]
Mohamedkhair, A.K.; Aziz, M.A.; Shah, S.S.; Shaikh, M.N.; Jamil, A.K.; Qasem, M.A.A.; Buliyaminu, I.A.; Yamani, Z.H. Effect of an activating agent on the physicochemical properties and supercapacitor performance of naturally nitrogen-enriched carbon derived from Albizia procera leaves. Arab. J. Chem., 2020, 13(7), 6161-6173.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.017]
[17]
Shakil, R.; Shaikh, M.N.; Shah, S.S.; Reaz, A.H.; Roy, C.K.; Chowdhury, A.N.; Aziz, M.A. Development of a novel bio-based redox electrolyte using pivalic acid and ascorbic acid for the activated carbon-based supercapacitor fabrication. Asian J. Org. Chem., 2021, 10(8), 2220-2230.
[http://dx.doi.org/10.1002/ajoc.202100314]
[18]
Faisal, M.M.; Ali, S.R.; Shah, S.S.; Iqbal, M.W.; Pushpan, S.; Aziz, M.A.; Pineda Aguilar, N.; Alcalá, R.M.M.; Loredo, S.L.; Sanal, K.C. Redox-active anomalous electrochemical performance of mesoporous nickel manganese sulfide nanomaterial as an anode material for supercapattery devices. Ceram. Int., 2022, 48(19), 28565-28577.
[http://dx.doi.org/10.1016/j.ceramint.2022.06.170]
[19]
Shah, S.S.; Aziz, M.A.; Cevik, E.; Ali, M.; Gunday, S.T.; Bozkurt, A.; Yamani, Z.H. Sulfur nano-confinement in hierarchically porous jute derived activated carbon towards high-performance supercapacitor: Experimental and theoretical insights. J. Energy Storage, 2022, 56, 105944.
[http://dx.doi.org/10.1016/j.est.2022.105944]
[20]
Shaheen Shah, S.; Aziz, M.A.; Al-Betar, A.R.; Mahfoz, W. Electrodeposition of polyaniline on high electroactive indium tin oxide nanoparticles-modified fluorine doped tin oxide electrode for fabrication of high-performance hybrid supercapacitor. Arab. J. Chem., 2022, 15(9), 104058.
[http://dx.doi.org/10.1016/j.arabjc.2022.104058]
[21]
Ashraf, M.; Shah, S.S.; Khan, I.; Aziz, M.A.; Ullah, N.; Khan, M.; Adil, S.F.; Liaqat, Z.; Usman, M.; Tremel, W.; Tahir, M.N. A high-performance asymmetric supercapacitor based on tungsten oxide nanoplates and highly reduced graphene oxide electrodes. Chemistry, 2021, 27(23), 6973-6984.
[http://dx.doi.org/10.1002/chem.202005156] [PMID: 33609404]
[22]
Li, X.L.; Long, K.C.; Zhang, G.; Zou, W.T.; Jiang, S.Q.; Zhang, D.Y.; Zhou, J.Q.; Liu, M.J.; Yang, G.J. Lead-free perovskite-based bifunctional device for both photoelectric conversion and energy storage. ACS Appl. Energy Mater., 2021, 4(8), 7952-7958.
[http://dx.doi.org/10.1021/acsaem.1c01272]
[23]
Nguyen, D.C.T.; Shin, J.; Kim, S.K.; Lee, S.H. Solar-powered supercapacitors integrated with a shared electrode. ACS Appl. Energy Mater., 2021, 4(12), 14014-14021.
[http://dx.doi.org/10.1021/acsaem.1c02813]
[24]
Miyasaka, T.; Murakami, T.N. The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy. Appl. Phys. Lett., 2004, 85(17), 3932-3934.
[http://dx.doi.org/10.1063/1.1810630]
[25]
Sun, Y.; Yan, X. Recent advances in dual-functional devices integrating solar cells and supercapacitors. Sol. RRL, 2017, 1(3-4), 1700002.
[http://dx.doi.org/10.1002/solr.201700002]
[26]
Pu, X.; Hu, W.; Wang, Z.L. Toward wearable self-charging power systems: The integration of energy-harvesting and storage devices. Small, 2018, 14(1), 1702817.
[http://dx.doi.org/10.1002/smll.201702817] [PMID: 29194960]
[27]
Singh, B.; Padha, B.; Verma, S.; Satapathi, S.; Gupta, V.; Arya, S. Recent advances, challenges, and prospects of piezoelectric materials for self-charging supercapacitor. J. Energy Storage, 2022, 47, 103547.
[http://dx.doi.org/10.1016/j.est.2021.103547]
[28]
Yan, T.; Li, Z.; Cao, F.; Chen, J.; Wu, L.; Fang, X. An all-organic self-powered photodetector with ultraflexible dual-polarity output for biosignal detection. Adv. Mater., 2022, 34(30), 2201303.
[http://dx.doi.org/10.1002/adma.202201303] [PMID: 35653221]
[29]
Peng, L.; Hu, L.; Fang, X. Energy harvesting for nanostructured self-powered photodetectors. Adv. Funct. Mater., 2014, 24(18), 2591-2610.
[http://dx.doi.org/10.1002/adfm.201303367]
[30]
Song, W.; Chen, J.; Li, Z.; Fang, X. Self-powered MXene/GaN van der waals heterojunction ultraviolet photodiodes with superhigh efficiency and stable current outputs. Adv. Mater., 2021, 33(27), 2101059.
[http://dx.doi.org/10.1002/adma.202101059] [PMID: 34046946]
[31]
Yin, Y.; Feng, K.; Liu, C.; Fan, S. A polymer supercapacitor capable of self-charging under light illumination. J. Phys. Chem. C, 2015, 119(16), 8488-8491.
[http://dx.doi.org/10.1021/acs.jpcc.5b00655]
[32]
Pankratova, G.; Pankratov, D.; Hasan, K.; Åkerlund, H.E.; Albertsson, P.Å.; Leech, D.; Shleev, S.; Gorton, L. Supercapacitive photo-bioanodes and biosolar cells: A novel approach for solar energy harnessing. Adv. Energy Mater., 2017, 7(12), 1602285.
[http://dx.doi.org/10.1002/aenm.201602285]
[33]
Zhu, M.; Huang, Y.; Huang, Y.; Pei, Z.; Xue, Q.; Li, H.; Geng, H.; Zhi, C. Capacitance enhancement in a semiconductor nanostructure-based supercapacitor by solar light and a self-powered supercapacitor-photodetector system. Adv. Funct. Mater., 2016, 26(25), 4481-4490.
[http://dx.doi.org/10.1002/adfm.201601260]
[34]
Qi, D.; Liu, Y.; Liu, Z.; Zhang, L.; Chen, X. Design of architectures and materials in in-plane micro-supercapacitors: Current status and future challenges. Adv. Mater., 2017, 29(5), 1602802.
[http://dx.doi.org/10.1002/adma.201602802] [PMID: 27859675]
[35]
Miyasaka, T.; Watanabe, T.; Fujishima, A.; Honda, K. Highly efficient quantum conversion at chlorophyll a–lecithin mixed monolayer coated electrodes. Nature, 1979, 277(5698), 638-640.
[http://dx.doi.org/10.1038/277638a0]
[36]
Zhang, Q.; Cao, G. Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today, 2011, 6(1), 91-109.
[http://dx.doi.org/10.1016/j.nantod.2010.12.007]
[37]
Ng, C.H.; Lim, H.N.; Hayase, S.; Harrison, I.; Pandikumar, A.; Huang, N.M. Potential active materials for photo-supercapacitor: A review. J. Power Sources, 2015, 296, 169-185.
[http://dx.doi.org/10.1016/j.jpowsour.2015.07.006]
[38]
Yu, P.; Zhang, Z.; Zheng, L.; Teng, F.; Hu, L.; Fang, X. A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv. Energy Mater., 2016, 6(20), 1601111.
[http://dx.doi.org/10.1002/aenm.201601111]
[39]
Zhang, B.; Shi, R.; Zhang, Y.; Pan, C. CNTs/TiO2 composites and its electrochemical properties after UV light irradiation. Prog. Nat. Sci., 2013, 23(2), 164-169.
[http://dx.doi.org/10.1016/j.pnsc.2013.03.002]
[40]
Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature, 1997, 388(6641), 431-432.
[http://dx.doi.org/10.1038/41233]
[41]
Thompson, T.L.; Yates, J.T. Jr Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev., 2006, 106(10), 4428-4453.
[http://dx.doi.org/10.1021/cr050172k] [PMID: 17031993]
[42]
Lechene, B.P.; Clerc, R.; Arias, A.C. Theoretical analysis and characterization of the energy conversion and storage efficiency of photo-supercapacitors. Sol. Energy Mater. Sol. Cells, 2017, 172, 202-212.
[http://dx.doi.org/10.1016/j.solmat.2017.07.034]
[43]
Martinez Suarez, C.; Hernández, S.; Russo, N. BiVO4 as photocatalyst for solar fuels production through water splitting: A short review. Appl. Catal. A Gen., 2015, 504, 158-170.
[http://dx.doi.org/10.1016/j.apcata.2014.11.044]
[44]
Usman, M.; Humayun, M.; Shah, S.S.; Ullah, H.; Tahir, A.A.; Khan, A.; Ullah, H. Bismuth-graphene nanohybrids: Synthesis, reaction mechanisms, and photocatalytic applications—a review. Energies, 2021, 14(8), 2281.
[http://dx.doi.org/10.3390/en14082281]
[45]
Roy, A.; Majumdar, P.; Sengupta, P.; Kundu, S.; Shinde, S.; Jha, A.; Pramanik, K.; Saha, H. A photoelectrochemical supercapacitor based on a single BiVO4-RGO bilayer photocapacitive electrode. Electrochim. Acta, 2020, 329, 135170.
[http://dx.doi.org/10.1016/j.electacta.2019.135170]
[46]
Wee, G.; Salim, T.; Lam, Y.M.; Mhaisalkar, S.G.; Srinivasan, M. Printable photo-supercapacitor using single-walled carbon nanotubes. Energy Environ. Sci., 2011, 4(2), 413-416.
[http://dx.doi.org/10.1039/C0EE00296H]
[47]
Solís-Cortés, D.; Navarrete-Astorga, E.; Schrebler, R.; Peinado-Pérez, J.J.; Martín, F.; Ramos-Barrado, J.R.; Dalchiele, E.A. A solid-state integrated photo-supercapacitor based on ZnO nanorod arrays decorated with Ag2S quantum dots as the photoanode and a PEDOT charge storage counter-electrode. RSC Advances, 2020, 10(10), 5712-5721.
[http://dx.doi.org/10.1039/C9RA10635A] [PMID: 35497434]
[48]
Altaf, C.T.; Coskun, O.; Kumtepe, A.; Rostas, A.M.; Iatsunskyi, I.; Coy, E.; Erdem, E.; Sankir, M.; Sankir, N.D. Photo-supercapacitors based on nanoscaled ZnO. Sci. Rep., 2022, 12(1), 11487.
[http://dx.doi.org/10.1038/s41598-022-15180-z] [PMID: 35798769]
[49]
Tang, Z.; Dai, J.; Wei, W.; Gao, Z.; Liang, Z.; Wu, C.; Zeng, B.; Xu, Y.; Chen, G.; Luo, W.; Yuan, C.; Dai, L. In situ generation of ultrathin MoS2 nanosheets in carbon matrix for high energy density photo-responsive supercapacitors. Adv. Sci., 2022, 9(24), 2201685.
[http://dx.doi.org/10.1002/advs.202201685] [PMID: 35798314]
[50]
Pant, B.; Park, M.; Park, S-J. Recent advances in TiO2 films prepared by sol-gel methods for photocatalytic degradation of organic pollutants and antibacterial activities. Coatings, 2019, 9(10), 613.
[http://dx.doi.org/10.3390/coatings9100613]
[51]
Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B, 2019, 244, 1021-1064.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.080]
[52]
Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J. Power Sources, 2009, 190(2), 578-586.
[http://dx.doi.org/10.1016/j.jpowsour.2009.01.052]
[53]
Suprayogi, T.; Masrul, M.Z.; Diantoro, M.; Taufiq, A.; Fuad, A.; Hidayat, A. The effect of annealing temperature of ZnO compact layer and TiO2 mesoporous on photo-supercapacitor performance. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 515, 012006.
[http://dx.doi.org/10.1088/1757-899X/515/1/012006]
[54]
Karim, M.R.; Mohammad, A.; Cho, M.H.; Yoon, T. Synergistic performance of FE3O4/SNO2/RGO nanocomposite for supercapacitor and visible light-responsive photocatalysis. Int. J. Energy Res., 2022, 46(5), 6517-6528.
[http://dx.doi.org/10.1002/er.7588]
[55]
Kavitha, M.K.; Rolland, L.; Johnson, L.; John, H.; Jayaraj, M.K. Visible light responsive superhydrophilic TiO2/reduced graphene oxide coating by vacuum-assisted filtration and transfer method for self-cleaning application. Mater. Sci. Semicond. Process., 2020, 113, 105011.
[http://dx.doi.org/10.1016/j.mssp.2020.105011]
[56]
Manjakkal, L.; Núñez, C.G.; Dang, W.; Dahiya, R. Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy, 2018, 51, 604-612.
[http://dx.doi.org/10.1016/j.nanoen.2018.06.072]
[57]
Roy, S.; Thakur, P.; Hoque, N.A.; Bagchi, B.; Sepay, N.; Khatun, F.; Kool, A.; Das, S. Electroactive and high dielectric folic acid/pvdf composite film rooted simplistic organic photovoltaic self-charging energy storage cell with superior energy density and storage capability. ACS Appl. Mater. Interfaces, 2017, 9(28), 24198-24209.
[http://dx.doi.org/10.1021/acsami.7b05540] [PMID: 28654268]
[58]
Zong, L.; Li, X.; Zhu, L.; You, J.; Li, Z.; Gao, H.; Li, M.; Li, C. Photo-responsive heterojunction nanosheets of reduced graphene oxide for photo-detective flexible energy devices. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(13), 7736-7744.
[http://dx.doi.org/10.1039/C8TA11442K]
[59]
Liu, Z.; Wang, H.I.; Narita, A.; Chen, Q.; Mics, Z.; Turchinovich, D.; Kläui, M.; Bonn, M.; Müllen, K. Photoswitchable micro-supercapacitor based on a diarylethene-graphene composite film. J. Am. Chem. Soc., 2017, 139(28), 9443-9446.
[http://dx.doi.org/10.1021/jacs.7b04491] [PMID: 28650642]