The Applications of 2D Materials for Electrochemical Biosensing, Drug Delivery, and Environmental Monitoring

Page: [1426 - 1447] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Two-dimensional (2D) nanomaterials (NMs) have diverse mechanical, chemical and optical properties due to which they have received a lot of attention in various fields such as biosensors, imaging, tissue engineering, drug delivery, etc. A thorough understanding of the synthetic procedure, physical properties and electrochemical properties of 2D materials will be quite useful in the development of novel and high-efficient electrocatalysts for the electroanalytical application of our interest. This review article summarises the synthesis and application of graphene, graphitic carbon nitride, transition metal dichalcogenides and phosphorene for electrochemical biosensing, drug delivery application and environmental monitoring. Numerous synthetic approaches which have been adopted to synthesize the 2D materials have been covered and discussed. Also, the reasons behind the catalytic activity of various types of 2D materials and their application as electrode modifier for the development of an efficient biosensor for the point-of-care analysis of biomolecule and drug delivery and environmental monitoring have been discussed in detail. This review article will give valuable information and future insights to the researchers working in the field of biosensor, drug delivery and environmental monitoring. We anticipate that this review may be of significance for the field to understand the properties as well as the electroanalytical applications of 2D materials, especially in biosensing, drug and environmental monitoring.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68, 394-424.
[2]
Hayes, B.; Murphy, C.; Crawley, A.; O’Kennedy, R. Developments in point-of-care diagnostic technology for cancer detection. Diagnostics, 2018, 8, 39.
[3]
Sandbhor Gaikwad, P.; Banerjee, R. Advances in point-of-care diagnostic devices in cancers. Analyst, 2018, 143, 1326-1348.
[4]
Ludwig, J.A.; Weinstein, J.N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer, 2005, 5, 845-856.
[5]
Chang, Y.; Sun, J.; Dong, L.; Jiao, F.; Chang, S.; Wang, Y.; Liao, J.; Shang, Y.; Wu, W.; Qi, Y.; Shan, C.X. Self-powered multi-color display based on stretchable self-healing alternating current electroluminescent devices. Nano Energy, 2022, 95, 107061.
[6]
Sun, J.; Li, N.; Dong, L.; Niu, X.; Zhao, M.; Xu, Z.; Zhou, H.; Shan, C.X.; Pan, C. Interfacial-engineering enhanced performance and stability of ZnO nanowire-based perovskite solar cells. Nanotechnology, 2021, 32, 475204.
[7]
Sun, J.; Hua, Q.; Zhou, R.; Li, D.; Guo, W.; Li, X.; Hu, G.; Shan, C.X.; Meng, Q.; Dong, L.; Pan, C.; Wang, Z.L. Piezo-phototronic effect enhanced efficient flexible perovskite solar cells. ACS Nano, 2019, 13 4, 4507-4513.
[8]
Sun, J.; Hua, Q.; Zhao, M.; Dong, L.; Chang, Y.; Wu, W.; Li, J.; Chen, Q.; Xi, J.; Hu, W.; Pan, C.; Shanz, C. Stable ultrathin perovskite/polyvinylidene fluoride composite films for imperceptible multi-color fluorescent anti-counterfeiting labels. Adv. Mater. Technol., 2021, 6, 2100229.
[9]
Khan, A.A.; Yu, Z.; Khan, U.; Dong, L. Solution processed tri-layer structure for high-performance perovskite photodetector. Nanoscale Res. Lett., 2018, 13, 399.
[10]
Dong, L.; Cao, G.; Ma, Y.; Jia, X.; Ye, G.; Guan, S. Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotube arrays. Trans. Nonferrous Met. Soc. China, 2009, 19, 1583.
[11]
Sudha, P.N.; Sangeetha, K.; Vijayalakshmi, K.; Barhoum, A. Nanomaterials history, classification, unique properties, production and market, in book Emerging Applications of Nanoparticles and Architecture Nanostructures. Elsevier 2018, 341-384.
[12]
Sekunowo, O.I.; Durowaye, S.I.; Lawal, G.I. An overview of nano-particles effect on mechanical properties of composites. Int. J. Mech. Aero. Ind. Mech. Manuf. Eng., 2015, 9, 1-7.
[13]
Pokropivny, V.; Skorokhod, V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C, 2007, 27, 990-993.
[14]
Wang, Z. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006, 312, 242-246.
[15]
She, G.; Zhang, X.; Shi, W.; Fan, X.; Chang, J. Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Electrochem. Commun., 2007, 9, 2784-2788.
[16]
Yamano, A.; Takata, K.; Kozuka, H. Ferroelectric domain structures of 0.4-µm-thick Pb(Zr,Ti)O3 films prepared by polyvinylpyrrolidone-assisted Sol-Gel method. J. Appl. Phys., 2012, 111, 054109.
[17]
Qi, Y.; Jafferis, N.; Lyons, K.; Lee, C.; Ahmad, H.; McAlpine, M. Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett., 2010, 10, 524-528.
[18]
Liu, J.L.; Bashir, S. Advanced Nanomaterials and Their Applications in Renewabel Energy, Elsevier, Amsterdam, The Netherlands. 2015, (Chapter 1).
[19]
Cai, X.; Luo, Y.; Lio, B.; Cheng, H.M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev., 2018, 6224.
[19a]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced materials., 2011, 23, 4248-4253.
[20]
Alam, S.; Chowdhury, M.A.; Shahid, A.; Alam, R.; Rahim, A. Synthesis of emerging two-dimensional (2D) materials-Advances, challenges and prospects. FlatChem, 2021, 100305.
[21]
BBhuyan. M. S.A.; Uddin, M.N.; Islam, M.M.; Bipasha, F.A.; Hossain, S. S. Synthesis of graphene. Int. Nano Lett., 2016, 6, 65-83.
[22]
Mbayachi, V. B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E. R.; Khan, A. U. Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 2021, 100163.
[23]
Yan, Y.; Nashath, F.Z.; Chen, S.; Manickam, S.; Lim, S.S.; Zhao, H.; Lester, E.; Wu, T.; Pang, C.H. Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnol. Rev., 2020, 1284-1314.
[24]
Shams, S.; Zhang, R.; Zhu, J. (2015) Graphene synthesis: a Review. Materials Science-Poland, 2015, 33, 566-578.
[24a]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666-669.
[25]
Noorden, R.V. Production: Beyond sticky tape. Nature, 2012, 483, S32-S33.
[25]
Wang, Z. Progress on preparation of graphene and its application. Mater. Sci. Eng., 2017, 242, 012032.
[25a]
Boehm, H.P.; Clauss, A.; Fischer, G.O.; Hofmann, U. The adsor tion behavior of very thin carbon films. Z. Anorg. Allg. Chem., 1962, 316, 119-127.
[26]
Santhiran, A.; Iyngaran, P.; Abiman, P.; Kuganathan, N. Graphene Synthesis and Its Recent Advances in Applications-A Review. Journal of Carbon Research., 2021, 7, 76.
[27]
Beitollahi, H.; Safaei, M.; Tajik, S. Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review. Int. J. Nanodimens., 2019, 10, 125-140.
[27a]
Brodie, B.C. XIII. On the atomic weight of graphite. Philosophical transactions of the Royal Society of London, 1859, 249-259.
[27b]
Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft., 1898, 1481-1487.
[27c]
Eizenberg, M.; Blakely, J.M. Carbon monolayer phase condensation on Ni (111). Surface Science. 1979, 82, 228-236. [27d] Li, Y.; Chen, Q.; Xu, K.; Kaneko, T.; Hatakeyama, R. Synthesis of graphene nanosheets from petroleum asphalt by pulsed arc discharge in water. Chemical Engineering Journal., 2013, 215, 45-49.
[28]
Baig, N.; Kawde, A.N. A novel, fast and cost-effective graphene-modified graphite pencil electrode for trace quantification of L-tyrosine. Anal. Methods, 2015, 7, 9535-9541.
[29]
Briman, M.; Joshi, V. Carbon-based electrodes with graphene modification, 2015.
[30]
Gevaerd, A.; Watanabe, E.Y.; Fernandes, K.; Papi, M.A.P.; Banks, C.E.; Bergamini, F.M.; Junior, L.H.M. Electrochemically Reduced Graphene Oxide as Screen‐printed Electrode Modifier for Fenamiphos Determination. Electroanalyais, 2020, 32, 1689-1695.
[31]
Zhang, L.; Wang, H.; Shen, W.; Qin, Z.; Wang, J.; Fan, W. Controlled synthesis of graphitic carbon nitride and its catalytic properties in Knoevenagel condensations. J. Catal., 2016, 344, 293-302.
[32]
Bagheri, H.; Afkhami, A.; Khoshsafar, H.; Rezaei, M.; Sabounchei, S.J.; Sarlakifar, M. Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode. Anal. Chim. Acta, 2015, 870, 56-66.
[32a]
Xing, H.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Wang, W.; Zhang, Y.; Yang, T. Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. Journal of Electroanalytical Chemistry., 2016, 760, 52-58.
[32b]
Chen, D.; Tian, C.; Li, X.; Li, Z.; Han, Z.; Zhai, C.; Quan, Y.; Cui, R.; Zhang, G. Electrochemical determination of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous platinum-yttrium and graphene. Mikrochim. Acta, 2018, 185, 1-7.
[33]
Rauf, S.; Mishra, G.K.; Azhar, J.; Mishra, R.K.; Goud, K.Y.; Nawaz, M.A.H.; Hayat, A. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Anal. Biochem., 2018, 545, 13-19.
[33a]
Ekabutr, P.; Klinkajon, W.; Sangsanoh, P.; Chailapakul, O.; Niamlang, P.; Khampieng, T.; Supaphol, P. Electrospinning: a carbonized gold/graphene/PAN nanofiber for high performance biosensing. Anal. Methods, 2018, 10, 874-883.
[33b]
Arvand, M.; Sanayeei, M.; Hemmati, S. Label-free electrochemical DNA biosensor for guanine and adenine by ds-DNA/poly (L-cysteine)/Fe3O4 nanoparticles-graphene oxide nanocomposite modified electrode. Biosens. Bioelectron., 2018, 102, 70-79.
[34]
Mahmodi, M.H.; Beitollahi, H.; Dehghannoudeh, G.; Forootanfar, H. Electrochemical determination of amsacrine at a ds-DNA modified graphene carbon paste electrode and its application as a label-free electrochemical biosensor. Int. J. Electrochem. Sci., 2017, 12, 9958-9971.
[34a]
Movlaee, K.; Ganjali, M.R.; Aghazadeh, M.; Beitollahi, H.; Hosseini, M.; Shahabi, S.; Norouzi, P. Graphene nanocomposite modified glassy carbon electrode: As a sensing platform for simultaneous determination of methyldopa and uric acid. Int. J. Electrochem. Sci., 2017, 12, 305-315.
[35]
Li, X.; Zou, R.; Niu, Y.; Shao, T.; Chen, Y.; Sun, W.; He, M. (2018), Voltammetric determination of bergenin with graphene modified glassy carbon electrode. Int. J. Electrochem. Sci., 2018, 13, 1976-1984.
[36]
Ganjali, M.R.; Dourandish, Z.; Beitollahi, H.; Tajik, S.; Hajiaghababaei, L.; Larijani, B. (2018), Highly sensitive determination of theophylline based on graphene quantum dots modified electrode. Int. J. Electrochem. Sci., 2018, 13, 2448-2461.
[36a]
Baccarin, M.; Cervini, P.; Cavalheiro, E.T. Comparative performances of a bare graphite-polyurethane composite electrode unmodified and modified with grapheme and carbon nanotubes in the electrochemical determination of escitalopram. Talanta, 2018, 178, 1024-1032.
[36b]
Dourandish, Z.; Beitollahi, H. Electrochemical sensing of isoproterenol using graphite screen-printed electrode modified with graphene quantum dots. Anal. Bioanal. Electrochem., 2018, 10, 192-202.
[36c]
Chaiyo, S.; Mehmeti, E.; Siangproh, W.; Hoang, T.L.; Nguyen, H.P.; Chailapakul, O.; Kalcher, K. Non-enzymatic electrochemical detection of glucose with a disposable paper-based sensor using a cobalt phthalocyanine–ionic liquid–graphene composite. Biosensors and Bioelectronics. 2018,102,113-120. [36d] Hashemi, P.; Bagheri, H.; Afkhami, A.; Amidi, S.; Madrakian, T. Graphene nanoribbon/FePt bimetallic nanoparticles/uric acid as a novel magnetic sensing layer of screen-printed electrode for sensitive determination of ampyra. Talanta. 2018 176, 350-359. [36e] Kahlouche, K.; Jijie, R.; Hosu, I.; Barras, A.; Gharbi, T.; Yahiaoui, R.; Herlem, G.; Ferhat, M.; Szunerits, S.; Boukherroub, R. Controlled modification of electrochemical microsystems with polyethylenimine/reduced graphene oxide using electrophoretic deposition: Sensing of dopamine levels in meat samples. Talanta, 2018, 178, 432-440.
[36f]
Pruneanu, S.; Biris, A.R.; Pogacean, F.; Socaci, C.; Coros, M.; Rosu, M.C.; Watanabe, F.; Biris, A.S. The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochim. Acta, 2015, 154, 197-204.
[36g]
Zhang, X.; Liao, Q.; Chu, M.; Liu, S.; Zhang, Y. Structure effect on graphene-modified enzyme electrode glucose sensors. Biosens. Bioelectron., 2014, 52, 281-287.
[36h]
Zhou, S.; Guo, P.; Li, J.; Meng, L.; Gao, H.; Yuan, X.; Wu, D. An electrochemical method for evaluation the cytotoxicity of fluorene on reduced graphene oxide quantum dots modified electrode. Sens. Actuators B Chem., 2018, 255, 2595-2600.
[36i]
Chen, J.; Fu, B.; Liu, T.; Yan, Z.; Li, K. (2018), A graphene oxide-DNA electrochemical sensor based on glassy carbon electrode for sensitive determination of methotrexate. Electroanalys., 2018, 30, 288-295.
[37]
Wang, H.; Zhang, S.; Li, S.; Qu, J. Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta, 2018, 178, 188-194.
[38]
Zhang, L.; Wang, H.; Shen, W.; Qin, Z.; Wang, J.; Fan, W. Controlled synthesis of graphitic carbon nitride and its catalytic properties in Knoevenagel condensations. Journal of Catalysis, 2016, 344, 293-302.
[39]
Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S.Z. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci., 2012, 5, 6717-6731.
[40]
Liu, Z.; Wang, C.; Zhu, Z.; Lou, Q.; Shen, C.; Chen, Y.; Sun, J.; Ye, Y.; Zang, J.; Dong, L.; Shan, C.X. Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter, 2021, 4, 1625.
[41]
Dante, R.C.; Ramos, P.M.; Guimaraes, A.C.; Gil, J.M. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid. Materials Chemistry and Physics, 2011, 130, 1094-1102.
[42]
Iqbal, W.; Yang, B.; Zhao, X.; Rauf, M.; Waqas, M.; Gong, Y.; Zhang, J.; Mao, Y. Controllable synthesis of graphitic carbon nitride NMs for solar energy conversion, and environmental remediation: The road travelled and the way forward. Catal. Sci. Technol., 2018, 8, 4576-4599.
[43]
Li, C.; Yang, X.; Yang, B.; Yan, Y.; Qian, Y. Synthesis and characterization of nitrogen-rich graphitic carbon nitride. Mater. Chem. Phys., 2007, 103, 427-432.
[44]
Mo, Z.; She, X.; Li, Y.; Liu, L.; Huang, L.; Chen, Z.; Zhang, Q.; Xu, H.; Li, H. Synthesis of g-C3N4 at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Advances, 2015, 5, 101552-101562.
[45]
Zhang, G.; Zhang, J.; Zhang, M.; Wang, X. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J. Mater. Chem., 2012, 22, 8083-8091.
[46]
Martin, D.J.; Qiu, K.; Shevlin, S.A.; Handoko, A.D.; Chen, X.; Guo, Z.; Tang, J. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed., 2014, 53, 9240-9245.
[47]
Zhai, H.S.; Cao, L.; Xia, X.H. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chinese Chemical Letters, 2013, 24, 103-106.
[48]
Yan, H.; Chen, Y.; Xu, S. Synthesis of graphitic carbon nitride by directly heatingsulfuric acid treated melamine for enhanced photocatalytic H2 production from water under visible light. Int. J. Hydrogen Energy, 2012, 37, 125-133.
[49]
Li, G.; Shi, J.; Zhang, G.; Fang, Y.; Anpo, M.; Wang, X. The facile synthesis of graphitic carbon nitride from amino acid and urea for photocatalytic H2 production. Res. Chem. Intermed., 2017, 43, 5137-5152.
[50]
Jun, Y-S.; Hong, W.H.; Antonietti, M.; Thomas, A. Mesoporous, 2D hexagonal carbon nitride and nitanium nitride/carbon composites. Adv. Mater., 2009, 21, 4270-4274.
[51]
Park, S.S.; Chu, S-W.; Xue, C.; Zhao, D.; Ha, C-S. Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent. J. Mater. Chem., 2011, 21, 10801-10807.
[52]
Vinu, A.; Ariga, K.; Mori, T.; Nakanishi, T.; Hishita, S.; Golberg, D.; Bando, Y. Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride. Adv. Mater., 2005, 17, 1648-1652.
[53]
Bian, S-W.; Ma, Z.; Song, W-G. Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter. J. Phys. Chem. C, 2009, 113, 8668-8672.
[54]
Wang, J.; Zhang, C.; Shen, Y.; Zhou, Z.; Yu, J.; Li, Y.; Wei, W.; Liu, S.; Zhang, Y. Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. J. Mater. Chem. A, 2015, 3, 5126-5131.
[55]
Veerakumar, P.; Rajkumar, C.; Chen, S.M.; Thirumalraj, B.; Lin, K.C. Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. J. Electroanal. Chem., 2018, 826, 207-216.
[56]
Vinoth, S.; Devi, K.S.S.; Pandikumar, A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trac-Trend. Anal. Chem., 2021, 140, 116274.
[57]
Idris, A.O.; Oseghe, E.O.; Msagati, T.A.M.; Kuvarega, A.T.; Feleni, U.; Mamba, B. Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing. Sensors, 2020, 20, 5743.
[58]
Amiri, M.; Salehniya, H.; Habibi-yangjeh, A. Graphitic carbon nitride/chitosan composite for adsorption and electrochemical determination of mercury in real samples. Ind. Eng. Chem. Res., 2016, 55(29), 8114-8122.
[59]
Zhang, J.; Zhu, Z.; Di, J.; Long, Y.; Li, W.; Tu, Y. A sensitive sensor for trace Hg2+ determination based on ultrathin g-C3N4 modified glassy carbon electrode. Electrochim. Acta, 2015, 186, 192-200.
[60]
Zou, J.; Mao, D.; Li, N.; Ph, D.; Jiang, J.; Ph, D. Applied Surface Science Reliable and selective lead-ion sensor of sulfur-doped graphitic carbon nitride nano flakes. Appl. Surf. Sci., 2020, 506, 144672.
[61]
Hatamie, A.; Jalilian, P.; Rezvani, E.; Kakavand, A.; Simchi, A. Fast and ultra-sensitive voltammetric detection of lead ions by two-dimensional graphitic carbon nitride (g-C3N4) nanolayers as glassy carbon electrode modifier. Measurment, 2019, 134, 679-687.
[61a]
Li, Y.; Cheng, C.; Yang, Y.; Dun, X.; Gao, J.; Jin, X.J. A novel electrochemical sensor based on CuO/H-C3N4/rGO nanocomposite for efficient electrochemical sensing nitrite. Journal of Alloys and Compounds., 2019, 798, 764-772.
[61b]
Wang, S.; Liu, M.; He, S.; Zhang, S.; Lv, X.; Song, H.; Han, J.; Chen, D. Protonated carbon nitride induced hierarchically ordered Fe2O3/HC3N4/rGO architecture with enhanced electrochemical sensing of nitrite. Sensors and Actuators B: Chemical, 2018, 260, 490-498.
[61c]
Mohammad, A.; Ahmad, K.; Qureshi, A.; Tauqeer, M.; Mobin, S.M. Zinc oxidegraphitic carbon nitride nanohybrid as an efficient ele trochemical sensor and photocatalyst. Sensors and Actuators B: Chemical., 2018, 277, 467-476.
[61d]
Vinoth, S.; Sampathkumar, P.; Giribabu, K.; Pandikumar, A. Ultrasonically assisted synthesis of barium stannate incorporated graphitic carbon nitride nanocomposite and its analytical performance in electrochemical sensing of 4-nitrophenol. Ultrasonics Sonochemistry., 2020, 62, 104855.
[61e]
Rajkumar, C.; Veerakumar, P.; Chen, S.M.; Thirumalraj, B.; Lin, K.C. Ultrathin sulfurdoped graphitic carbon nitride nanosheets as metal-free catalyst for electrochemical sensing and catalytic removal of 4-nitrophenol. ACS Sustainable Chemistry & Engineering., 2018, 6, 16021-16031.
[61f]
Vinoth, S.; Rajaitha, P.M.; Pandikumar, A. In-situ pyrolytic processed zinc stannate incorporated graphitic carbon nitride nanocomposite for selective and sensitive electrochemical determination of nitrobenzene. Composites Science and Technology, 2020, 195, 108192.
[62]
Selvarajan, S.; Suganthi, A.; Rajarajan, M. Ultrasonics - sonochemistry Fabrication of g-C3N4/NiO heterostructured nanocomposite modi fi ed glassy carbon electrode for quercetin biosensor. Ultrason. Sonochem., 2018, 41, 651-660.
[63]
Zhu, Z.; Pan, T.Y.; Hsieh, C.Y.; Wu, R.J. Fabrication of novel Ag/g-C3N4 electrode for resveratrol sensors. J. Chin. Chem. Soc., 2020, 67, 1195-1200.
[63a]
Jahani, P.M.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Di Bartolomeo, A. Screenprinted graphite electrode modified with Co3O4 nanoparticles and 2D graphitic carbon nitride as an effective electrochemical sensor for 4-aminophenol detection. Nanotechnology, 2022, 33, 395702.
[64]
Jahani, P.M.; Beitollahi, H.; Nejad, F.G.; Dourandish, Z.; Bartolomeo, A.D. Screen-printed Graphite Electrode Modified with Co3O4 Nanoparticles and 2D Graphitic Carbon Nitride as an Effective Electrochemical Sensor for 4-Aminophenol Detection. Nanotechnology, 2022, 33, 395702.
[65]
Tian, J.; Liu, Q.; Ge, C.; Xing, Z.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application. Nanoscale, 2013, 5, 8921-8924.
[65a]
Tashkhourian, J.; Nami-Ana, S.F.; Shamsipur, M. A new bifunctional nanostructure based on Two-Dimensional nanolayered of Co(OH)2 exfoliated graphitic carbon nitride as a high performance enzyme-less glucose sensor: Impedimetric and amperometric detection. Analytica Chimica Acta, 2018, 1034, 63-73.
[66]
Tashkhourian, J.; Ana, S. F. N.; Shamsipur, M. A New Bifunctional Nanostructure Based on Two‐Dimensional Nanolayered of Co(OH)2 Exfoliated Graphitic Carbon Nitride as a High Performance Enzyme-Lesz Glucose Sensor: Impedimetric and Amperometric Detection Analytica Chimica Acta 2018, 63-73.
[67]
Zou, J.; Wu, S.; Liu, Y.; Sun, Y.; Cao, Y.; Hsu, J.P.; Shen, A.T. Wee, Jiang, J. An ultrasensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon N. Y., 2018, 130, 652-663.
[68]
Yola, M.L.; Atar, N. Development of molecular imprinted sensor including graphitic carbon nitride/N-doped carbon dots composite for novel recognition of epinephrine, Compos. B Eng., 2019, 175, 107113.
[69]
Zhu, J.; Nie, W.; Wang, Q.; Li, J.; Li, H.; Wen, W.; Bao, T.; Xiong, H.; Zhang, X.; Wang, S. In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon, 2018, 129, 29-37.
[70]
Dai, G.; Xie, J.; Li, C.; Liu, S. Flower-like Co3O4/graphitic carbon nitride nanocomposite based electrochemical sensor and its highly sensitive electrocatalysis of hydrazine. J. Alloys Compd., 2017, 727, 43-51.
[71]
Mohammad, A.; Khan, M.E.; Cho, M.H. Sulfur-doped-graphitic-carbon nitride (S-g C3N4) for low-cost electrochemical sensing of hydrazine. J. Alloys Compd., 2020, 816, 152522.
[72]
Ansari, S.; Ansari, M.S.; Devnani, H.; Satsangee, S.P.; Jain, R. CeO2/g-C3N4 nanocomposite: a perspective for electrochemical sensing of anti-depressant drug, Sensor. Actuator. Biol. Chem., 2018, 273, 1226-1236.
[73]
Balasubramanian, P.; Annalakshmi, M.; Chen, S.M.; Chen, T.W. Sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone. Ultrason. Sonochem., 2019, 50, 96-104.
[74]
Chen, T.W.; Rajaji, U.; Chen, S.M.; Lou, B.S.; Al-Zaqri, N.; Alsalme, A.; Alharthi, F.A.; Lee, S.Y.; Chang, W.H. A sensitive electrochemical determination of chemotherapy agent using graphitic carbon nitride covered vanadium oxide nanocomposite; sonochemical approach. Ultrason. Sonochem., 2019, 58, 104664.
[75]
Fu, L.; Xie, K.; Wu, D.; Wang, A.; Zhang, H.; Ji, Z. Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride. Mater. Chem. Phys., 2020, 242, 122462.
[76]
Wang, B.; Ye, C.; Zhong, X.; Chai, Y.; Chen, S.; Yuan, R. Electrochemical biosensor for organophosphate pesticides and Huperzine-A detection based on Pd wormlike nanochains/graphitic carbon nitride nanocomposites and acetylcholinesterase. Electroanalysis, 2016, 28, 304-311.
[77]
Choi, W.; Choudhary, N.; Han, G.H.; Park, J.D.; Lee, Y.H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today, 2017, 20, 116-130.
[78]
Seo, B.; Jung, G. Y.; Sa, Y. J.; Jeong, H. Y.; Cheon, J. Y.; Lee, J. H.; Kim, H. Y.; Kim, J. C.; Shin, H. S.; Kwak, S. K.; Joo, S. H. Monolayer-Precision Synthesis of Molybdenum Sulfide Nanoparticles and Their Nanoscale Size Effects in the Hydrogen Evolution Reaction ACS Nano, 2015, 3728-3739.
[79]
Zhong, W.; Deng, S.; Wang, K.; Li, G.; Li, G.; Chen, R.; Kwok, H.S. Feasible Route for a Large Area Few-Layer MoS2 with Magnetron Sputtering. NMs, 2018, 8, 590.
[80]
Zhao, W.; Jiang, T.; Shan, Y.; Ding, H.; Shi, J.; Chu, H.; Lu, A. Direct Exfoliation of Natural SiO2-Containing Molybdenite in Isopropanol: A Cost-Efficient Solution for Large-Scale Production of MoS2 Nanosheetes. NMs, 2018, 8, 843.
[81]
Vattikuti, S.V.P.; Byon, C. Synthesis and Characterization of Molybdenum Disulfide Nanoflowers and Nanosheets: Nanotribology. J. Nanomater., 2015, 2015, 710462.
[82]
Vilian, A.T.E.; Bose, D.; Kang, S.M.; Krishnan, U.M.; Huh, Y.S.; Han, Y.K. Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Mikrochim. Acta, 2019, 186, 203.
[83]
Rees, J.D.; Gorby, Y.A.; Sawyer, S.M. Synthesis and characteriza-tion of molybdenum disulfide nanoparticles in Shewanella onei-densis MR-1 biofilms. Biointerphases, 2020, 15(4), 041006.
[84]
Tucker, M.D.; Barton, L.L.; Thomson, B.M. Reduction and Immobilization of Molybdenum by Desulfovibrio desulfuricans. J. Environ. Qual., 1997, 26, 1146-1152.
[85]
Duphil, D.; Bastide, S.; Clement, C.L. Chemical synthesis of molybdenum disulfide nanoparticles in an organic solution. J. Mater. Chem., 2002, 12, 2430-2432.
[86]
Nguyen, E.P.; Carey, B.J.; Daeneke, T.; Ou, J.Z.; Latham, K.; Zhuiykov, S.; Kalantar-zadeh, K. Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2. Chem. Mater., 2015, 27, 53-59.
[87]
Zribi, R.; Foti, A.; Donato, M.G.; Gucciardi, P.G.; Neri, G. Fabrication of a Novel Electrochemical Sensor Based on Carbon Cloth Matrix Functionalized with MoO3 and 2D-MoS2 Layers for Riboflavin Determination. Sensors, 2021, 21, 1371.
[88]
Govea, R.R.; Hickey, D.P.; Morales, R.G.; Delgado, M.R.; Rovira, M.A.D.; Minteer, S.D.; Soto, N.O.; Garcia, A.G. MoS2 nanostructured materials for electrode modification in the development of a laccase based amperometric biosensor for non-invasive dopamine detection. Microchem. J., 2020, 155, 104792.
[89]
Guo, C.; Wang, C.; Sun, H.; Dai, D.; Gao, H. A simple electrochemical sensor based on rGO/MoS2/CS modified GCE for highly sensitive detection of Pb(ii) in tobacco leaves. RSC Advances, 2021, 11, 29590-29597.
[90]
Wang, H.; Chen, P. F, Wen.; Y, Zhu.; Zhang, Y. (2015) Flower-like Fe2O3@MoS2 nanocomposite decorated glassy carbon electrode for the determination of nitrite. Sens. Actuators B., 2015, 220, 749-754.
[90a]
Ghanei-Motlagh, M.; Taher, M.A. A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosensors and Bioelectronics, 2018, 109, 279-285.
[91]
Yang, Y.; Zhang, J.; Li, Y.W.; Shan, Q.; Wu, W. Ni nanosheets evenly distributed on MoS2 for selective electrochemical detection of nitrite. Colloids Surf. A, 2021, 625, 126865.
[92]
Madhuvilakku, R.; Alagar, S.; Mariappan, R.; Piraman, S. Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal. Chim. Acta, 2020, 1093, 93-105.
[93]
Huang, K.J.; Liu, Y.J.; Liu, Y.M.; Wang, L.L. Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination. J. Hazard. Mater., 2014, 276, 207-215.
[93a]
Lin, D.; Li, Y.; Zhang, P.; Zhang, W.; Ding, J.; Li, J.; Wei, G.; Su, Z. Fast preparation of MoS2 nanoflowers decorated with platinum nanoparticles for electrochemical detection of hydrogen peroxide. RSC Advances, 2016, 6, 52739-52745.
[94]
Alfambra, A.M.P.; Casero, E.; Vazquez, L.; Quintana, C.; Pozo, M.D.; Dominguez, M.D.P. MoS2 nanosheets for improving analytical performance of lactate biosensors. Sens. Actuators B Chem., 2018, 274, 310-317.
[95]
Zribi, R.; Maalej, R.; Gillibert, R.; Donato, M.G.; Marago, O.M.; Gucciardi, P.G.; Leonardi, S.G.; Neri, G. Exfoliated 2D-MoS2 nanosheets on carbon and gold screen printed electrodes for enzyme-free electrochemical sensing of tyrosine. Sens. Actuators B Chem., 2020, 303, 127229.
[96]
Altuntas, D.B.; Kuralay, F. MoS2/Chitosan/GOx-Gelatin modified graphite surface: Preparation, characterization and its use for glucose determination. Mater. Sci. Eng. B, 2021, 270, 115215.
[97]
Mani, V.; Govindasamy, M. S-M, Chen.; R, Karthik Huang S-T (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Mikrochim. Acta, 183, 7, 2267-2275.
[98]
Vijayaraj, K.; Dinakaran, T.; Lee, Y.; Kim, S.; Kim, H.S.; Lee, J.; Chang, S-C. (2017) One-step construction of a molybdenum disulfide/multi-walled carbon nanotubes/polypyrrole nanocomposite biosensor for the ex-vivo detection of dopamine in mouse brain tissue. Biochem. Biophys. Res. Commun., 2017, (494), 181-187.
[99]
Pramoda, K. U, Moses, K.; Maitra, Rao, C. Superior performance of a MoS2-RGO composite and a Borocarbonitride in the electrochemical detection of dopamine, uric acid and adenine. Electroanalysis, 2015, 272015, 18920898.
[100]
Cheng, M.; Zhang, X.; Wang, M.; Huang, H. J, Ma. A facile electrochemical sensor based on well-dispersed graphene-molybdenum disulfide modified electrode for highly sensitive detection of dopamine. J. Electroanal. Chem., 2017, 786, 1-7.
[101]
Dolinska, J.; Chidambaram, A.; Adamkiewicz, W.; Estili, M.; Lisowski, W.; Iwan, M.; Palys, B.; Sudholter, E.J.; Marken, F. M, Opallo. Synthesis and characterization of porous carbon-MoS2 nanohybrid materials: electrocatalytic performance towards selected biomolecules. J. Mater. Chem. B, 2016, 4(8), 1448-1457.
[102]
Chekin, F.; Teodorescu, F.; Coffinier, Y.; Pan, G-H.; Barras, A.; Boukherroub, R.; Szunerits, S. MoS2/reduced graphene oxide as active hybrid material for the electrochemical detection of folic acid in human serum. Biosens. Bioelectron., 2016, 85, 807-813.
[102a]
Yang, T.; Chen, H.; Ge, T.; Wang, J.; Li, W.; Jiao, K. Highly sensitive determination of chloramphenicol based on thin-layered MoS2/polyaniline nanocomposite. Talanta, 2015, 144, 1324-1328.
[102b]
Zhang, Y.; Liu, Z.; Zou, L.; Ye, B. A new voltammetry sensor platform for eriocitrin based on CoS2-MoS2-PDDA-GR nanocomposite. Talanta, 2018, 189, 345-352.
[103]
Mehmandoust, M.; Cakar, S.; Ozacar, M.; Salmanpour, S.; Erk, N. Electrochemical Sensor for Facile and Highly Selective Determination of Antineoplastic Agent in Real Samples Using Glassy Carbon Electrode Modified by 2D-MoS2 NFs/TiO2 NPs. Top. Catal., 2021, 65, 564-576.
[104]
Wang, Y.; Wang, Y. D, Wu.; H, Ma.; Y, Zhang.; D. Fan.; Pa, X.; Du, B.; Wei, Q. Label-free electrochemical immunosensor based on flower-like Ag/MoS2/rGO nanocomposites for ultrasensitive detection of carcinoembryonic antigen. Sens. Actuators B Chem., 2018, 255, 125-132.
[104a]
Shuai, H.L.; Huang, K.J.; Chen, Y.X.; Fang, L.X.; Jia, M.P. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification. Biosensors and Bioelectronics, 2017, 89, 989-997.
[105]
Sumathi, C.; Muthukumaran, P.; Thivya, P.; Wilson, J.; Ravi, G. DNA mediated electrocatalytic enhancement of α-Fe2O3-PEDOT-C-MoS2 hybrid nanostructures for riboflavin detection on screen printed electrode. RSC Advances, 2016, 6(85), 81500-81509.
[105a]
Wang, X.; Nan, F.; Zhao, J.; Yang, T.; Ge, T.; Jiao, K. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosensors and Bioelectronics, 2015, 64, 386-391.
[105b]
Shim, J.; Banerjee, S.; Qiu, H.; Smithe, K.K.; Estrada, D.; Bello, J.; Pop, E.; Schulten, K.; Bashir, R. Detection of methylation on dsDNA using nanopores in a MoS2 membrane. Nanoscale, 2017, 9, 14836-14845.
[105c]
Tian, L.; Qi, J.; Qian, K.; Oderinde, O.; Cai, Y.; Yao, C.; Song, W.; Wang, Y. An ultrasensitive electrochemical cytosensor based on the magnetic field assisted binanozymes synergistic catalysis of Fe3O4 nanozyme and reduced grapheme oxide/molybdenum disulfide nanozyme. Sensors and Actuators B: Chemical, 2018, 260, 676-684.
[106]
Soni, A.; Pandey, C.M.; Pandey, M.K.; Sumana, G. Highly efficient Polyaniline-MoS2 hybrid nanostructures-based biosensor for cancer biomarker detection. Anal. Chim. Acta, 2019, 1055, 26-35.
[107]
Zhang, X.; Hu, R.; Zhang, K.; Bai, R.; Li, D.; Yang, Y. An ultrasensitive label-free immunoassay for C-reactive protein detection in human serum based on electron transfer. Anal. Methods, 2016, 8(32), 6202-6207.
[108]
He, B. A sandwich-type electrochemical biosensor for alpha-fetoprotein based on au nanoparticles decorating a hollow molybdenum disulfide microbox coupled with a hybridization chain reaction. New J. Chem., 2017, 41(19), 11353-11360.
[109]
Sofer, Z.; Sedmidubsky, D.; Huber, S.; Luxa, J.; Bous, D.; Boothroyd, C.; Pumera, M. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties. Angew. Chem., 2016, 128, 3443-3447.
[110]
Li, P.; Zhang, D.; Liu, J.; Chang, H.; Sun, Y.; Yin, N. Air-Stable Black Phosphorus Devices for Ion Sensing. ACS Appl. Mater. Interfaces, 2015, 7, 24396-24402.
[111]
Kumar, V.; Brent, J.R.; Shorie, M.; Kaur, H.; Chadha, G.; Thomas, A.G.; Lewis, E.A.; Rooney, A.P. Nguyen, Lan.; Zhong, X. Li.; Burke, M. G.; Haigh, S. J.; Walton, A.; McNaughter, P. D.; Tedstone, A. A.; Savjani, N.; Muryn, C. A.; O’Brien, P.; Ganguli, A. K.; Lewis, D. J.; Sabherwal, P. Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker. ACS Appl. Mater. Interfaces, 2016, 8, 22860-22868.
[112]
Liu, G.; Tsai, H-I.; Zeng, X.; Qi, J.; Luo, M.; Wang, X.; Mei, L.; Deng, W. Black phosphorus nanosheets-based stable drug delivery system via drug-self-stabilization for combined photothermal and chemo cancer therapy. Chem. Eng. J., 2019, 375, 121917.