Role of Autophagy and Mitophagy in Neurodegenerative Disorders

Page: [367 - 383] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Autophagy is a self-destructive cellular process that removes essential metabolites and waste from inside the cell to maintain cellular health. Mitophagy is the process by which autophagy causes disruption inside mitochondria and the total removal of damaged or stressed mitochondria, hence enhancing cellular health. The mitochondria are the powerhouses of the cell, performing essential functions such as ATP (adenosine triphosphate) generation, metabolism, Ca2+ buffering, and signal transduction. Many different mechanisms, including endosomal and autophagosomal transport, bring these substrates to lysosomes for processing. Autophagy and endocytic processes each have distinct compartments, and they interact dynamically with one another to complete digestion. Since mitophagy is essential for maintaining cellular health and using genetics, cell biology, and proteomics techniques, it is necessary to understand its beginning, particularly in ubiquitin and receptor-dependent signalling in injured mitochondria. Despite their similar symptoms and emerging genetic foundations, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have all been linked to abnormalities in autophagy and endolysosomal pathways associated with neuronal dysfunction. Mitophagy is responsible for normal mitochondrial turnover and, under certain physiological or pathological situations, may drive the elimination of faulty mitochondria. Due to their high energy requirements and post-mitotic origin, neurons are especially susceptible to autophagic and mitochondrial malfunction. This article focused on the importance of autophagy and mitophagy in neurodegenerative illnesses and how they might be used to create novel therapeutic approaches for treating a wide range of neurological disorders.

Graphical Abstract

[1]
Schon EA, Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 2003; 111(3): 303-12.
[http://dx.doi.org/10.1172/JCI200317741] [PMID: 12569152]
[2]
Isik AT. Late onset Alzheimer’s disease in older people. Clin Interv Aging 2010; 5: 307-11.
[http://dx.doi.org/10.2147/CIA.S11718] [PMID: 21103401]
[3]
Abdullah S, Choudhury T. Sensing technologies for monitoring serious mental illnesses. IEEE Multimed 2018; 25(1): 61-75.
[http://dx.doi.org/10.1109/MMUL.2018.011921236]
[4]
Thrall JH. Prevalence and costs of chronic disease in a health care system structured for treatment of acute illness. Radiology 2005; 235(1): 9-12.
[http://dx.doi.org/10.1148/radiol.2351041768] [PMID: 15798162]
[5]
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40(4): 1385-439.
[http://dx.doi.org/10.1002/med.21662] [PMID: 32043639]
[6]
Rajawat YS, Hilioti Z, Bossis I. Aging: Central role for autophagy and the lysosomal degradative system. Ageing Res Rev 2009; 8(3): 199-213.
[http://dx.doi.org/10.1016/j.arr.2009.05.001] [PMID: 19427410]
[7]
Bonam SR, Wang F, Muller S. Lysosomes as a therapeutic target. Nat Rev Drug Discov 2019; 18(12): 923-48.
[http://dx.doi.org/10.1038/s41573-019-0036-1] [PMID: 31477883]
[8]
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11(9): 709-30.
[http://dx.doi.org/10.1038/nrd3802] [PMID: 22935804]
[9]
Zheng Q, Huang T, Zhang L, et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front Aging Neurosci 2016; 8: 303.
[http://dx.doi.org/10.3389/fnagi.2016.00303] [PMID: 28018215]
[10]
Wang K, Klionsky DJ. Mitochondria removal by autophagy. Autophagy 2011; 7(3): 297-300.
[http://dx.doi.org/10.4161/auto.7.3.14502] [PMID: 21252623]
[11]
Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun 2020; 8(1): 189.
[http://dx.doi.org/10.1186/s40478-020-01062-w] [PMID: 33168089]
[12]
Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol 2010; 12(9): 823-30.
[http://dx.doi.org/10.1038/ncb0910-823] [PMID: 20811354]
[13]
Guan JL, Simon AK, Prescott M, et al. Autophagy in stem cells. Autophagy 2013; 9(6): 830-49.
[http://dx.doi.org/10.4161/auto.24132] [PMID: 23486312]
[14]
Schulz JB, Matthews RT, Klockgether T, Dichgans J, Beal MF. The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Molecular and cellular biochemistry 1997 Sep 1997; 174: 193-7.
[http://dx.doi.org/10.1007/978-1-4615-6111-8_30]
[15]
Chung SY, Kishinevsky S, Mazzulli JR, et al. Parkin and PINK1 patient iPSC-derived midbrain dopamine neurons exhibit mitochondrial dysfunction and α-synuclein accumulation. Stem Cell Reports 2016; 7(4): 664-77.
[http://dx.doi.org/10.1016/j.stemcr.2016.08.012] [PMID: 27641647]
[16]
Bernardini JP, Lazarou M, Dewson G. Parkin and mitophagy in cancer. Oncogene 2017; 36(10): 1315-27.
[http://dx.doi.org/10.1038/onc.2016.302] [PMID: 27593930]
[17]
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 2020; 15(1): 30.
[http://dx.doi.org/10.1186/s13024-020-00376-6] [PMID: 32471464]
[18]
Wang Y, Liu N, Lu B. Mechanisms and roles of mitophagy in neurodegenerative diseases. CNS Neurosci Ther 2019; 25(7): cns.13140.
[http://dx.doi.org/10.1111/cns.13140] [PMID: 31050206]
[19]
Meyer JS, Xu G, Thornby J, Chowdhury MH, Quach M. Is mild cognitive impairment prodromal for vascular dementia like Alzheimer’s disease? Stroke 2002; 33(8): 1981-5.
[http://dx.doi.org/10.1161/01.STR.0000024432.34557.10] [PMID: 12154249]
[20]
O'Neill C, Anderton B, Brion JP, et al. Neurofibrillary tangles and tau phosphorylation. InBiochemical Society Symposia 2001 Feb 1; 67: 81-8. Portland Press
[21]
Marques C, Burg T, Scekic-Zahirovic J, Fischer M, Rouaux C. Upper and lower motor neuron degenerations are somatotopically related and temporally ordered in the Sod1 mouse model of amyotrophic lateral sclerosis. Brain Sci 2021; 11(3): 369.
[http://dx.doi.org/10.3390/brainsci11030369] [PMID: 33805792]
[22]
Di Meco A, Curtis ME, Lauretti E, Praticò D. Autophagy dysfunction in Alzheimer’s disease: mechanistic insights and new therapeutic opportunities. Biol Psychiatry 2020; 87(9): 797-807.
[http://dx.doi.org/10.1016/j.biopsych.2019.05.008] [PMID: 31262433]
[23]
Hou X, Watzlawik JO, Fiesel FC, Springer W. Autophagy in Parkinson’s disease. J Mol Biol 2020; 432(8): 2651-72.
[http://dx.doi.org/10.1016/j.jmb.2020.01.037] [PMID: 32061929]
[24]
Guo F, Liu X, Cai H, Le W. Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 2018; 28(1): 3-13.
[http://dx.doi.org/10.1111/bpa.12545] [PMID: 28703923]
[25]
Jasielski PP. Piędel F, Szumna K, Madras D, Rocka A. Deep brain stimulation in Parkinson’s disease - the review. J Educ Health Sport 2020; 10(4): 41-6.
[http://dx.doi.org/10.12775/JEHS.2020.10.04.005]
[26]
Tremor Smaga S. Am Fam Physician 2003; 68(8): 1545-52.
[PMID: 14596441]
[27]
Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting gene-environment interaction to detect genetic associations. Hum Hered 2007; 63(2): 111-9.
[http://dx.doi.org/10.1159/000099183] [PMID: 17283440]
[28]
Poewe W. Non-motor symptoms in Parkinson’s disease. Eur J Neurol 2008; 15(s1) (Suppl. 1): 14-20.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02056.x] [PMID: 18353132]
[29]
Weintraub D, Comella CL, Horn S. Parkinson’s disease--Part 1: Pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 2008; 14(2): S40-8.
[PMID: 18402507]
[30]
Martino D, Stamelou M, Bhatia KP. The differential diagnosis of Huntington’s disease-like syndromes: ‘red flags’ for the clinician. J Neurol Neurosurg Psychiatry 2013; 84(6): 650-6.
[http://dx.doi.org/10.1136/jnnp-2012-302532] [PMID: 22993450]
[31]
Zhang Y, Chen X, Zhao Y, Ponnusamy M, Liu Y. The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease. Rev Neurosci 2017; 28(8): 861-8.
[http://dx.doi.org/10.1515/revneuro-2017-0013] [PMID: 28704199]
[32]
Crowell V, Houghton R, Tomar A, Fernandes T, Squitieri F. Modeling Manifest Huntington’s Disease Prevalence Using Diagnosed Incidence and Survival Time. Neuroepidemiology 2021; 55(5): 361-8.
[http://dx.doi.org/10.1159/000516767] [PMID: 34350853]
[33]
Keon M, Musrie B, Dinger M, Brennan SE, Santos J, Saksena NK. Destination amyotrophic lateral sclerosis. Front Neurol 2021; 12: 596006.
[http://dx.doi.org/10.3389/fneur.2021.596006] [PMID: 33854469]
[34]
Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature 2016; 539(7628): 197-206.
[http://dx.doi.org/10.1038/nature20413] [PMID: 27830784]
[35]
Cook C, Petrucelli L. Genetic convergence brings clarity to the enigmatic red line in ALS. Neuron 2019; 101(6): 1057-69.
[http://dx.doi.org/10.1016/j.neuron.2019.02.032] [PMID: 30897357]
[36]
Burk K, Pasterkamp RJ. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol 2019; 137(6): 859-77.
[http://dx.doi.org/10.1007/s00401-019-01964-7] [PMID: 30721407]
[37]
Gautam M, Jara JH, Kocak N, et al. Mitochondria, ER, and nuclear membrane defects reveal early mechanisms for upper motor neuron vulnerability with respect to TDP-43 pathology. Acta Neuropathol 2019; 137(1): 47-69.
[http://dx.doi.org/10.1007/s00401-018-1934-8] [PMID: 30450515]
[38]
Andrade-Tomaz M, de Souza I, Rocha CRR, Gomes LR. The role of chaperone-mediated autophagy in cell cycle control and its implications in cancer. Cells 2020; 9(9): 2140.
[http://dx.doi.org/10.3390/cells9092140] [PMID: 32971884]
[39]
Sanjuan MA, Milasta S, Green DR. Toll-like receptor signaling in the lysosomal pathways. Immunol Rev 2009; 227(1): 203-20.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00732.x] [PMID: 19120486]
[40]
Nieto-Torres JL, Hansen M. Macroautophagy and aging: The impact of cellular recycling on health and longevity. Mol Aspects Med 2021; 82: 101020.
[http://dx.doi.org/10.1016/j.mam.2021.101020] [PMID: 34507801]
[41]
Oku M, Sakai Y. Three distinct types of microautophagy based on membrane dynamics and molecular machineries. BioEssays 2018; 40(6): 1800008.
[http://dx.doi.org/10.1002/bies.201800008] [PMID: 29708272]
[42]
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[43]
Noda T, Fujita N, Yoshimori T. The late stages of autophagy: how does the end begin? Cell Death Differ 2009; 16(7): 984-90.
[http://dx.doi.org/10.1038/cdd.2009.54] [PMID: 19424283]
[44]
Maccioni RB, Muñoz JP, Barbeito L. The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch Med Res 2001; 32(5): 367-81.
[http://dx.doi.org/10.1016/S0188-4409(01)00316-2] [PMID: 11578751]
[45]
Chen Y, Wang H, Ying Z, Gao Q. Ibudilast enhances the clearance of SOD1 and TDP-43 aggregates through TFEB-mediated autophagy and lysosomal biogenesis: The new molecular mechanism of ibudilast and its implication for neuroprotective therapy. Biochem Biophys Res Commun 2020; 526(1): 231-8.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.051] [PMID: 32204915]
[46]
Essick EE, Sam F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid Med Cell Longev 2010; 3(3): 168-77.
[http://dx.doi.org/10.4161/oxim.3.3.12106] [PMID: 20716941]
[47]
Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014; 505(7483): 335-43.
[http://dx.doi.org/10.1038/nature12985] [PMID: 24429632]
[48]
Hood DA, Hood DA. The role of mitochondrial fusion and fission in skeletal muscle function and dysfunction. Front Biosci 2015; 20(1): 157-72.
[http://dx.doi.org/10.2741/4303] [PMID: 25553445]
[49]
Esteves AR, Gozes I, Cardoso SM. The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842(1): 7-21.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.003] [PMID: 24120997]
[50]
Hu B, Li H, Zhang X. A balanced act: The effects of GH–GHR–IGF1 Axis on mitochondrial function. Front Cell Dev Biol 2021; 9: 630248.
[http://dx.doi.org/10.3389/fcell.2021.630248] [PMID: 33816476]
[51]
Giorgi C, Marchi S, Pinton P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat Rev Mol Cell Biol 2018; 19(11): 713-30.
[http://dx.doi.org/10.1038/s41580-018-0052-8] [PMID: 30143745]
[52]
Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age‐related macular degeneration: A review of major disease mechanisms. Clin Exp Ophthalmol 2020; 48(8): 1043-56.
[http://dx.doi.org/10.1111/ceo.13834] [PMID: 32710488]
[53]
Harper JW, Ordureau A, Heo JM. Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol 2018; 19(2): 93-108.
[http://dx.doi.org/10.1038/nrm.2017.129] [PMID: 29358684]
[54]
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11(1): 36.
[http://dx.doi.org/10.1186/s40035-022-00308-y] [PMID: 35787292]
[55]
Guo M. Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(11): a009944.
[http://dx.doi.org/10.1101/cshperspect.a009944] [PMID: 23024178]
[56]
Schon EA, Przedborski S. Mitochondria: the next (neurode)generation. Neuron 2011; 70(6): 1033-53.
[http://dx.doi.org/10.1016/j.neuron.2011.06.003] [PMID: 21689593]
[57]
Tran M, Reddy PH. Defective autophagy and mitophagy in aging and Alzheimer’s disease. Front Neurosci 2021; 14: 612757.
[http://dx.doi.org/10.3389/fnins.2020.612757] [PMID: 33488352]
[58]
Valionyte E, Yang Y, Roberts SL, Kelly J, Lu B, Luo S. Lowering Mutant Huntingtin Levels and Toxicity: Autophagy-Endolysosome Pathways in Huntington’s Disease. J Mol Biol 2020; 432(8): 2673-91.
[http://dx.doi.org/10.1016/j.jmb.2019.11.012] [PMID: 31786267]
[59]
Ye J, Jiang Z, Chen X, Liu M, Li J, Liu N. The role of autophagy in pro-inflammatory responses of microglia activation via mitochondrial reactive oxygen species in vitro. J Neurochem 2017; 142(2): 215-30.
[http://dx.doi.org/10.1111/jnc.14042] [PMID: 28407242]
[60]
Anekonda TS, Quinn JF. Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: The case for isradipine. Biochim Biophys Acta Mol Basis Dis 2011; 1812(12): 1584-90.
[http://dx.doi.org/10.1016/j.bbadis.2011.08.013] [PMID: 21925266]
[61]
Liu T, Wu B, Wang Y, et al. Particulate matter 2.5 induces autophagy via inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells. Mol Med Rep 2015; 12(2): 1914-22.
[http://dx.doi.org/10.3892/mmr.2015.3577] [PMID: 25845384]
[62]
Obara K, Ohsumi Y. Dynamics and function of PtdIns(3) P in autophagy. Autophagy 2008; 4(7): 952-4.
[http://dx.doi.org/10.4161/auto.6790] [PMID: 18769109]
[63]
Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. ATG16L1 meets ATG9 in recycling endosomes. Autophagy 2014; 10(1): 182-4.
[http://dx.doi.org/10.4161/auto.27174] [PMID: 24257061]
[64]
Shao Y, Gao Z, Feldman T, Jiang X. Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. Autophagy 2007; 3(1): 10-6.
[http://dx.doi.org/10.4161/auto.3270] [PMID: 16963840]
[65]
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 2008; 118(6): 2190-9.
[http://dx.doi.org/10.1172/JCI33585] [PMID: 18497889]
[66]
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19(1): 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[67]
Steele JW, Gandy S. Latrepirdine (Dimebon ®), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model. Autophagy 2013; 9(4): 617-8.
[http://dx.doi.org/10.4161/auto.23487] [PMID: 23380933]
[68]
Yang Y, Chen S, Zhang Y, et al. Induction of autophagy by spermidine is neuroprotective via inhibition of caspase 3-mediated Beclin 1 cleavage. Cell Death Dis 2017; 8(4): e2738-8.
[http://dx.doi.org/10.1038/cddis.2017.161] [PMID: 28383560]
[69]
Liu D, Pitta M, Jiang H, et al. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol Aging 2013; 34(6): 1564-80.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.11.020] [PMID: 23273573]
[70]
Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 2010; 285(12): 9100-13.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[71]
Vingtdeux V, Chandakkar P, Zhao H, d’Abramo C, Davies P, Marambsud P. Novel synthetic small‐molecule activators of AMPK as enhancers of autophagy and amyloid‐β peptide degradation. FASEB J 2011; 25(1): 219-31.
[http://dx.doi.org/10.1096/fj.10-167361] [PMID: 20852062]
[72]
Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson’s disease: A promising direction of therapeutic strategies. Bosn J Basic Med Sci 2021; 21(4): 422-33.
[PMID: 33357211]
[73]
Forlenza OV, de Paula VJ, Machado-Vieira R, Diniz BS, Gattaz WF. Does lithium prevent Alzheimer’s disease? Drugs Aging 2012; 29(5): 335-42.
[http://dx.doi.org/10.2165/11599180-000000000-00000] [PMID: 22500970]
[74]
Lonskaya I, Hebron ML, Algarzae NK, Desforges N, Moussa CEH. Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson’s disease. Neuroscience 2013; 232: 90-105.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.018] [PMID: 23262240]
[75]
Djajadikerta A, Keshri S, Pavel M, Prestil R, Ryan L, Rubinsztein DC. Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol 2020; 432(8): 2799-821.
[http://dx.doi.org/10.1016/j.jmb.2019.12.035] [PMID: 31887286]
[76]
Li JQ, Tan L, Yu JT. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener 2014; 9(1): 47.
[http://dx.doi.org/10.1186/1750-1326-9-47] [PMID: 25391693]
[77]
Rideout HJ, Stefanis L. The neurobiology of LRRK2 and its role in the pathogenesis of Parkinson’s disease. Neurochem Res 2014; 39(3): 576-92.
[http://dx.doi.org/10.1007/s11064-013-1073-5] [PMID: 23729298]
[78]
Jiang TF, Zhang YJ, Zhou HY, et al. Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol 2013; 8(1): 356-69.
[http://dx.doi.org/10.1007/s11481-012-9431-7] [PMID: 23325107]
[79]
Filomeni G, Graziani I, De Zio D, et al. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 2012; 33(4): 767-85.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.05.021] [PMID: 20594614]
[80]
Deng YN, Shi J, Liu J, Qu QM. Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy. Neurochem Int 2013; 63(1): 1-9.
[http://dx.doi.org/10.1016/j.neuint.2013.04.005] [PMID: 23619395]
[81]
Park H, Kang JH, Lee S. Autophagy in neurodegenerative diseases: a hunter for aggregates. Int J Mol Sci 2020; 21(9): 3369.
[http://dx.doi.org/10.3390/ijms21093369] [PMID: 32397599]
[82]
Lin TK, Chen SD, Chuang YC, et al. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 2014; 15(1): 1625-46.
[http://dx.doi.org/10.3390/ijms15011625] [PMID: 24451142]
[83]
Bates GP, Dorsey R, Gusella JF, et al. Huntington disease. Nat Rev Dis Primers 2015; 1(1): 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[84]
Fan HC, Ho LI, Chi CS, et al. Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 2014; 23(4-5): 441-58.
[http://dx.doi.org/10.3727/096368914X678454] [PMID: 24816443]
[85]
Rami A. Review: Autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol Appl Neurobiol 2009; 35(5): 449-61.
[http://dx.doi.org/10.1111/j.1365-2990.2009.01034.x] [PMID: 19555462]
[86]
Espinos E, Lai R, Giuriato S. The Dual Role of Autophagy in Crizotinib-Treated ALK+ ALCL: From the Lymphoma Cells Drug Resistance to Their Demise. Cells 2021; 10(10): 2517.
[http://dx.doi.org/10.3390/cells10102517] [PMID: 34685497]
[87]
Sarkar S, Ravikumar B, Floto RA, Rubinsztein DC. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ 2009; 16(1): 46-56.
[http://dx.doi.org/10.1038/cdd.2008.110] [PMID: 18636076]
[88]
Rai SN, Singh BK, Rathore AS, et al. Quality control in huntington’s disease: a therapeutic target. Neurotox Res 2019; 36(3): 612-26.
[http://dx.doi.org/10.1007/s12640-019-00087-x] [PMID: 31297710]
[89]
Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol 2021; 22(11): 733-50.
[http://dx.doi.org/10.1038/s41580-021-00392-4] [PMID: 34302147]
[90]
Ryter SW, Mizumura K, Choi AMK. The impact of autophagy on cell death modalities. Int J Cell Biol 2014; 2014: 1-12.
[http://dx.doi.org/10.1155/2014/502676] [PMID: 24639873]
[91]
Ntsapi MC. The effects of nutrient deprivation on macroautophagic flux and chaperone-mediated autophagy in a model of alzheimer’s disease. Stellenbosch: Stellenbosch University 2018.
[92]
Hosseinpour-Moghaddam K, Caraglia M, Sahebkar A. Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. J Cell Physiol 2018; 233(9): 6524-43.
[http://dx.doi.org/10.1002/jcp.26583] [PMID: 29663416]
[93]
Fujikake N, Shin M, Shimizu S. Association between autophagy and neurodegenerative diseases. Front Neurosci 2018; 12: 255.
[http://dx.doi.org/10.3389/fnins.2018.00255] [PMID: 29872373]
[94]
Perera ND, Sheean RK, Lau CL, et al. Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy 2018; 14(3): 534-51.
[http://dx.doi.org/10.1080/15548627.2017.1385674] [PMID: 28980850]
[95]
Fifita JA, Williams KL, Sundaramoorthy V, et al. A novel amyotrophic lateral sclerosis mutation in OPTN induces ER stress and Golgi fragmentation in vitro. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18(1-2): 126-33.
[http://dx.doi.org/10.1080/21678421.2016.1218517] [PMID: 27534431]
[96]
Shen WC, Li HY, Chen GC, Chern Y, Tu P. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy 2015; 11(4): 685-700.
[http://dx.doi.org/10.4161/auto.36098] [PMID: 25484089]
[97]
Del Bo R, Tiloca C, Pensato V, et al. Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2011; 82(11): 1239-43.
[http://dx.doi.org/10.1136/jnnp.2011.242313] [PMID: 21613650]
[98]
Maruyama H, Kawakami H. Optineurin and amyotrophic lateral sclerosis. Geriatr Gerontol Int 2013; 13(3): 528-32.
[http://dx.doi.org/10.1111/ggi.12022] [PMID: 23279185]
[99]
Sundaramoorthy V, Walker AK, Tan V, et al. Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis. Hum Mol Genet 2015; 24(13): 3830-46.
[http://dx.doi.org/10.1093/hmg/ddv126] [PMID: 25859013]
[100]
Lattante S, de Calbiac H, Le Ber I, Brice A, Ciura S, Kabashi E. Sqstm1 knock-down causes a locomotor phenotype ameliorated by rapamycin in a zebrafish model of ALS/FTLD. Hum Mol Genet 2015; 24(6): 1682-90.
[http://dx.doi.org/10.1093/hmg/ddu580] [PMID: 25410659]
[101]
Coutts AS, La Thangue NB. Regulation of actin nucleation and autophagosome formation. Cell Mol Life Sci 2016; 73(17): 3249-63.
[http://dx.doi.org/10.1007/s00018-016-2224-z] [PMID: 27147468]
[102]
Lee JK, Shin JH, Lee JE, Choi EJ. Role of autophagy in the pathogenesis of amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852(11): 2517-24.
[http://dx.doi.org/10.1016/j.bbadis.2015.08.005] [PMID: 26264610]
[103]
Brady OA, Meng P, Zheng Y, Mao Y, Hu F. Regulation of TDP-43 aggregation by phosphorylation andp62/SQSTM1. J Neurochem 2011; 116(2): 248-59.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07098.x] [PMID: 21062285]
[104]
Gal J, Ström AL, Kwinter DM, et al. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem 2009; 111(4): 1062-73.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06388.x] [PMID: 19765191]
[105]
Catanese A, Olde Heuvel F, Mulaw M, et al. Retinoic acid worsens ATG10-dependent autophagy impairment in TBK1-mutant hiPSC-derived motoneurons through SQSTM1/p62 accumulation. Autophagy 2019; 15(10): 1719-37.
[http://dx.doi.org/10.1080/15548627.2019.1589257] [PMID: 30939964]
[106]
Teuling E, van Dis V, Wulf PS, et al. A novel mouse model with impaired dynein/dynactin function develops amyotrophic lateral sclerosis (ALS)-like features in motor neurons and improves lifespan in SOD1-ALS mice. Hum Mol Genet 2008; 17(18): 2849-62.
[http://dx.doi.org/10.1093/hmg/ddn182] [PMID: 18579581]
[107]
Strm A-L, Gal J, Shi P, Kasarskis EJ, Hayward LJ, Zhu H. Retrograde axonal transport and motor neuron disease. J Neurochem 2008; 106(2): 495-505.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05393.x] [PMID: 18384644]
[108]
Sadleir KR, Kandalepas PC, Buggia-Prévot V, Nicholson DA, Thinakaran G, Vassar R. Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathol 2016; 132(2): 235-56.
[http://dx.doi.org/10.1007/s00401-016-1558-9] [PMID: 26993139]
[109]
Lauranzano E. Study of Cyclophilin A function in models of Amyotrophic Lateral Sclerosis. United Kingdom: Open University 2013.
[110]
Castillo K, Nassif M, Valenzuela V, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 2013; 9(9): 1308-20.
[http://dx.doi.org/10.4161/auto.25188] [PMID: 23851366]
[111]
Sataranatarajan K, Ikeno Y, Bokov A, et al. Rapamycin increases mortality in db/db mice, a mouse model of type 2 diabetes. J Gerontol A Biol Sci Med Sci 2016; 71(7): 850-7.
[http://dx.doi.org/10.1093/gerona/glv170] [PMID: 26442901]
[112]
Zhang X, Chen S, Song L, et al. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy 2014; 10(4): 588-602.
[http://dx.doi.org/10.4161/auto.27710] [PMID: 24441414]
[113]
Soo KY, Sultana J, King AE, et al. ALS-associated mutant FUS inhibits macroautophagy which is restored by overexpression of Rab1. Cell Death Discov 2015; 1(1): 15030.
[http://dx.doi.org/10.1038/cddiscovery.2015.30] [PMID: 27551461]
[114]
Ichiyanagi N, Fujimori K, Yano M, et al. Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Reports 2016; 6(4): 496-510.
[http://dx.doi.org/10.1016/j.stemcr.2016.02.011] [PMID: 26997647]
[115]
Chen S, Zhang X, Song L, Le W. Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol 2012; 22(1): 110-6.
[http://dx.doi.org/10.1111/j.1750-3639.2011.00546.x] [PMID: 22150926]
[116]
Zhang X, Li L, Chen S, et al. Rapamycin treatment augments motor neuron degeneration in SOD1 G93A mouse model of amyotrophic lateral sclerosis. Autophagy 2011; 7(4): 412-25.
[http://dx.doi.org/10.4161/auto.7.4.14541] [PMID: 21193837]
[117]
Grimm A, Friedland K, Eckert A. Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer’s disease. Biogerontology 2016; 17(2): 281-96.
[http://dx.doi.org/10.1007/s10522-015-9618-4] [PMID: 26468143]
[118]
Castellani R, Hirai K, Aliev G, et al. Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res 2002; 70(3): 357-60.
[http://dx.doi.org/10.1002/jnr.10389] [PMID: 12391597]
[119]
Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 2019; 22(3): 401-12.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[120]
Shieh JCC, Huang PT, Lin YF. Alzheimer’s disease and diabetes: Insulin signaling as the bridge linking two pathologies. Mol Neurobiol 2020; 57(4): 1966-77.
[http://dx.doi.org/10.1007/s12035-019-01858-5] [PMID: 31900863]
[121]
Yuan T, Ma H, Liu W, et al. Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci 2016; 7(1): 26-33.
[http://dx.doi.org/10.1021/acschemneuro.5b00260] [PMID: 26559394]
[122]
Yan MH, Wang X, Zhu X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 2013; 62: 90-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.014] [PMID: 23200807]
[123]
Sharma C, Kim S, Nam Y, Jung UJ, Kim SR. Mitochondrial dysfunction as a driver of cognitive impairment in Alzheimer’s disease. Int J Mol Sci 2021; 22(9): 4850.
[http://dx.doi.org/10.3390/ijms22094850] [PMID: 34063708]
[124]
Martín-Maestro P, Gargini R, Perry G, Avila J, García-Escudero V. PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer’s disease. Hum Mol Genet 2016; 25(4): 792-806.
[http://dx.doi.org/10.1093/hmg/ddv616] [PMID: 26721933]
[125]
Cai Q, Jeong YY. Mitophagy in Alzheimer’s disease and other age-related neurodegenerative diseases. Cells 2020; 9(1): 150.
[http://dx.doi.org/10.3390/cells9010150] [PMID: 31936292]
[126]
Gegg ME, Burke D, Heales SJR, et al. Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains. Ann Neurol 2012; 72(3): 455-63.
[http://dx.doi.org/10.1002/ana.23614] [PMID: 23034917]
[127]
Carecho R, Carregosa D, dos Santos CN. Low molecular weight (poly) phenol metabolites across the blood-brain barrier: the underexplored journey. Brain Plast 2021; 6(2): 193-214.
[http://dx.doi.org/10.3233/BPL-200099] [PMID: 33782650]
[128]
Jayatunga DPW, Hone E, Bharadwaj P, et al. Targeting Mitophagy in Alzheimer’s Disease. J Alzheimers Dis 2020; 78(4): 1273-97.
[http://dx.doi.org/10.3233/JAD-191258] [PMID: 33285629]
[129]
D’Amico D, Andreux PA, Valdés P, Singh A, Rinsch C, Auwerx J. Impact of the natural compound urolithin a on health, disease, and aging. Trends Mol Med 2021; 27(7): 687-99.
[http://dx.doi.org/10.1016/j.molmed.2021.04.009] [PMID: 34030963]
[130]
Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. Aging (Albany NY) 2011; 3(8): 716-32.
[http://dx.doi.org/10.18632/aging.100361] [PMID: 21869457]
[131]
Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci 2015; 40(4): 200-10.
[http://dx.doi.org/10.1016/j.tibs.2015.02.003] [PMID: 25757399]
[132]
Nikoletopoulou V, Papandreou M-E, Tavernarakis N. Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ 2015; 22(3): 398-407.
[http://dx.doi.org/10.1038/cdd.2014.204] [PMID: 25526091]
[133]
Stefanis L. . α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(2): a009399.
[http://dx.doi.org/10.1101/cshperspect.a009399] [PMID: 22355802]
[134]
Praharaj PP, Naik PP, Panigrahi DP, et al. Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: its implication in cancer therapeutics. Cell Mol Life Sci 2019; 76(9): 1641-52.
[http://dx.doi.org/10.1007/s00018-018-2990-x] [PMID: 30539200]
[135]
Chen H, Zhao YF, Chen YX, Li YM. Exploring the roles of post-translational modifications in the pathogenesis of Parkinson’s disease using synthetic and semisynthetic modified α-synuclein. ACS Chem Neurosci 2019; 10(2): 910-21.
[http://dx.doi.org/10.1021/acschemneuro.8b00447] [PMID: 30628768]
[136]
Lin KJ, Lin KL, Chen SD, et al. The overcrowded crossroads: mitochondria, alpha-synuclein, and the endo-lysosomal system interaction in Parkinson’s disease. Int J Mol Sci 2019; 20(21): 5312.
[http://dx.doi.org/10.3390/ijms20215312] [PMID: 31731450]
[137]
Perfeito R, Lázaro DF, Outeiro TF, Rego AC. Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Mol Cell Neurosci 2014; 62: 51-9.
[http://dx.doi.org/10.1016/j.mcn.2014.08.002] [PMID: 25109238]
[138]
Li X, Huang L, Lan J, et al. Molecular mechanisms of mitophagy and its roles in neurodegenerative diseases. Pharmacol Res 2021; 163: 105240.
[http://dx.doi.org/10.1016/j.phrs.2020.105240] [PMID: 33053441]
[139]
Oh CK, Sultan A, Platzer J, et al. S-Nitrosylation of PINK1 attenuates PINK1/Parkin-dependent mitophagy in hiPSC-based Parkinson’s disease models. Cell Rep 2017; 21(8): 2171-82.
[http://dx.doi.org/10.1016/j.celrep.2017.10.068] [PMID: 29166608]
[140]
Maestro I, de la Ballina LR, Simonsen A, Boya P, Martinez A. Phenotypic Assay Leads to Discovery of Mitophagy Inducers with Therapeutic Potential for Parkinson’s Disease. ACS Chem Neurosci 2021; 12(24): 4512-23.
[http://dx.doi.org/10.1021/acschemneuro.1c00529] [PMID: 34846852]
[141]
Liu J, Liu W, Li R, Yang H. Mitophagy in Parkinson’s disease: from pathogenesis to treatment. Cells 2019; 8(7): 712.
[http://dx.doi.org/10.3390/cells8070712] [PMID: 31336937]
[142]
Šonský I. Vodička P, Vodičková Kepková K, Hansíková H. Mitophagy in Huntington’s disease. Neurochem Int 2021; 149: 105147.
[http://dx.doi.org/10.1016/j.neuint.2021.105147] [PMID: 34329735]
[143]
Malpartida AB, Williamson M, Narendra DP, Wade-Martins R, Ryan BJ. Mitochondrial dysfunction and mitophagy in Parkinson’s disease: from mechanism to therapy. Trends Biochem Sci 2021; 46(4): 329-43.
[http://dx.doi.org/10.1016/j.tibs.2020.11.007] [PMID: 33323315]
[144]
Kalia LV, Kalia SK, McLean PJ, Lozano AM, Lang AE. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann Neurol 2013; 73(2): 155-69.
[http://dx.doi.org/10.1002/ana.23746] [PMID: 23225525]
[145]
Patterson RB. Investigating the effects of autophagic perturbations on mitochondrial function in Parkinson’s Disease. University of Oxford 2019.
[146]
Ghavami S, Shojaei S, Yeganeh B, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2014; 112: 24-49.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.004] [PMID: 24211851]
[147]
Intihar TA, Martinez EA, Gomez-Pastor R. Mitochondrial dysfunction in Huntington’s disease; interplay between HSF1, p53 and PGC-1α transcription factors. Front Cell Neurosci 2019; 13: 103.
[http://dx.doi.org/10.3389/fncel.2019.00103] [PMID: 30941017]
[148]
Evans CS, Holzbaur ELF. Autophagy and mitophagy in ALS. Neurobiol Dis 2019; 122: 35-40.
[http://dx.doi.org/10.1016/j.nbd.2018.07.005] [PMID: 29981842]
[149]
Carmo C, Naia L, Lopes C, Rego AC. Mitochondrial Dysfunction in Huntington’s Disease. In: Polyglutamine Disorders Advances in Experimental Medicine and Biology. Cham: Springer 2018; p. 1049.
[http://dx.doi.org/10.1007/978-3-319-71779-1_3]
[150]
Anderson KM, Mosley RL. Therapeutic strategies in neurodegenerative diseases. Neuroimmune Pharmacology. Springer 2017; pp. 681-711.
[151]
Luisetto M, Almukhtar N, Rafa A, et al. Role of plants, environmental toxins and physical neurotoxicological factors in Amyotrophic lateral sclerosis, Alzheimer Disease and other Neurodegenerative Diseases. J Neurosci Neurol Disord 2019; 3: 001-86.
[http://dx.doi.org/10.15436/2381-0793.16.1173]
[152]
Sawula LJ. Negotiating a progress paradox: The value of exercise for people living with amyotrophic lateral sclerosis. Canada: Queen's University 2017.
[153]
Kleta R, Basoglu C, Kuwertz-Bröking E. New treatment options for Bartter’s syndrome. New England Journal of Medicine 2000 Aug 31 2000; 343(9): 661-2.
[154]
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 2017; 23(1): 5-22.
[http://dx.doi.org/10.1111/cns.12655] [PMID: 27873462]
[155]
Elipenahli C, Stack C, Jainuddin S, et al. Behavioral improvement after chronic administration of coenzyme Q10 in P301S transgenic mice. J Alzheimers Dis 2012; 28(1): 173-82.
[http://dx.doi.org/10.3233/JAD-2011-111190] [PMID: 21971408]
[156]
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci 2019; 218: 165-84.
[http://dx.doi.org/10.1016/j.lfs.2018.12.029] [PMID: 30578866]
[157]
Mancuso R, del Valle J, Modol L, et al. Resveratrol improves motoneuron function and extends survival in SOD1(G93A) ALS mice. Neurotherapeutics 2014; 11(2): 419-32.
[PMID: 24414863]
[158]
Jiang Z, Wang W, Perry G, Zhu X, Wang X. Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Transl Neurodegener 2015; 4(1): 14.
[http://dx.doi.org/10.1186/s40035-015-0037-x] [PMID: 26225210]
[159]
Fant X, Durieu E, Chicanne G, et al. Cdc-like/dual-specificity tyrosine phosphorylation-regulated kinases inhibitor leucettine L41 induces MTOR-dependent autophagy: Implication for Alzheimer’s disease. Mol Pharm 2014; 85(3): 441-50.
[160]
Cao B-Y, Yang Y-P, Luo W-F, et al. Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway. J Ethnopharmacol 2010; 131(1): 122-9.
[161]
Jeong JK, Moon MH, Lee YJ, Seol JW, Park SY. Melatonin-induced autophagy protects against human prion protein‐mediated neurotoxicity. J Pineal Res 2012; 53(2): 138-46.
[162]
Jeong J-K, Moon M-H, Bae B-C, Lee Y-J, Seol J-W, Kang H-S, et al. Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 2012; 73(2): 99-105.
[163]
Liu D, Pitta M, Jiang H, et al. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol Aging 2013; 34(6): 1564-80.
[164]
Nopparat C, Porter JE, Ebadi M, Govitrapong P. The mechanism for the neuroprotective effect of melatonin against methamphetamine-induced autophagy. J Pineal Res 2010; 49(4): 382-9.
[165]
Jiang T-F, Zhang Y-J, Zhou H-Y, Wang H-M, Tian L-P, Liu J, et al. Curcumin ameliorates the neurodegenerative pathology in A53T α-synuclein cell model of Parkinson’s disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimm Pharmacol 2013; 8(1): 356-69.
[166]
Deng Y-N, Shi J, Liu J, Qu Q-M. Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy. Neurochem Int 2013; 63(1): 1-9.
[167]
Kim HJ, Kim J, Kang KS, Lee KT, Yang HO. Neuroprotective effect of chebulagic acid via autophagy induction in SH-SY5Y cells. Biomol Therap 2014; 22(4): 275.
[168]
Li B, Chen R, Chen L, et al. Effects of DDIT4 in methamphetamine-induced autophagy and apoptosis in dopaminergic neurons. Mol Neurobiol 2017; 54(3): 1642-60.
[169]
Wu Y, Li X, Xie W, Jankovic J, Le W, Pan T. Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1α and induction of autophagy in SH-SY5Y cells. Neurochem Int 2010; 57(3): 198-205.
[170]
Filomeni G, Graziani I, De Zio D, et al. Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 2012; 33(4): 767-85.
[171]
Lin T-K, Chen S-D, Chuang Y-C, et al. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 2014; 15(1): 1625-46.
[172]
Fernandez-Estevez MA, Casarejos MJ, López Sendon J, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhibition. PLoS One 2014; 9(2): e90202.
[173]
Wong VKW, Wu AG, Wang JR, Liu L, Law BY-K. Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy. Molecules 2015; 20(3): 3496-514.
[174]
Wei P-F, Jin P-P, Barui AK, Hu Y, Zhang L, Zhang J-Q, et al. Differential ERK activation during autophagy induced by europium hydroxide nanorods and trehalose: Maximum clearance of huntingtin aggregates through combined treatment. Biomaterials 2015; 73: 160-74.
[175]
Pierzynowska K, Gaffke L, Hać A, Mantej J, Niedziałek N, Brokowska J, et al. Correction of Huntington’s disease phenotype by genistein-induced autophagy in the cellular model. Neuromol Med 2018; 20(1): 112-23.
[176]
Perera ND, Sheean RK, Lau CL, et al. Rilmenidine promotes MTOR-independent autophagy in the mutant SOD1 mouse model of amyotrophic lateral sclerosis without slowing disease progression. Autophagy 2018; 14(3): 534-51.