Functional Nutrition as Integrated Intervention for In- and Outpatient with Schizophrenia

Page: [2409 - 2423] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Schizophrenia is a chronic and progressive disorder characterized by cognitive, emotional, and behavioral abnormalities associated with neuronal development and synaptic plasticity alterations. Genetic and epigenetic abnormalities in cortical parvalbumin-positive GABAergic interneurons and consequent alterations in glutamate-mediated excitatory neurotransmission during early neurodevelopment underlie schizophrenia manifestation and progression. Also, epigenetic alterations during pregnancy or early phases of postnatal life are associated with schizophrenia vulnerability and inflammatory processes, which are at the basis of brain pathology and a higher risk of comorbidities, including cardiovascular diseases and metabolic syndrome. In addition, schizophrenia patients adopt an unhealthy lifestyle and poor nutrition, leading to premature death. Here, I explored the role of functional nutrition as an integrated intervention for the long-term management of patients with schizophrenia. Several natural bioactive compounds in plant-based whole foods, including flavonoids, phytonutrients, vitamins, fatty acids, and minerals, modulate brain functioning by targeting neuroinflammation and improving cognitive decline. Although further clinical studies are needed, a functional diet rich in natural bioactive compounds might be effective in synergism with standard treatments to improve schizophrenia symptoms and reduce the risk of comorbidities.

Graphical Abstract

[1]
Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet, 2016, 388(10039), 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[2]
Laskaris, L.E.; Di Biase, M.A.; Everall, I.; Chana, G.; Christopoulos, A.; Skafidas, E.; Cropley, V.L.; Pantelis, C. Microglial activation and progressive brain changes in schizophrenia. Br. J. Pharmacol., 2016, 173(4), 666-680.
[http://dx.doi.org/10.1111/bph.13364] [PMID: 26455353]
[3]
Matrisciano, F.; Tueting, P.; Dalal, I.; Kadriu, B.; Grayson, D.R.; Davis, J.M.; Nicoletti, F.; Guidotti, A. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology, 2013, 68, 184-194.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.013] [PMID: 22564440]
[4]
Millan, M.J.; Andrieux, A.; Bartzokis, G.; Cadenhead, K.; Dazzan, P.; Fusar-Poli, P.; Gallinat, J.; Giedd, J.; Grayson, D.R.; Heinrichs, M.; Kahn, R.; Krebs, M.O.; Leboyer, M.; Lewis, D.; Marin, O.; Marin, P.; Meyer-Lindenberg, A.; McGorry, P.; McGuire, P.; Owen, M.J.; Patterson, P.; Sawa, A.; Spedding, M.; Uhlhaas, P.; Vaccarino, F.; Wahlestedt, C.; Weinberger, D. Altering the course of schizophrenia: progress and perspectives. Nat. Rev. Drug Discov., 2016, 15(7), 485-515.
[http://dx.doi.org/10.1038/nrd.2016.28] [PMID: 26939910]
[5]
van Os, J.; Kapur, S. Schizophrenia. Lancet, 2009, 374(9690), 635-645.
[http://dx.doi.org/10.1016/S0140-6736(09)60995-8] [PMID: 19700006]
[6]
Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophr. Bull., 2018, 44(6), 1195-1203.
[http://dx.doi.org/10.1093/schbul/sby058] [PMID: 29762765]
[7]
Gonzalez-Burgos, G.; Fish, K.N.; Lewis, D.A. GABA neuron alterations, cortical circuit dysfunction and cognitive deficits in schizophrenia. Neural Plast., 2011, 2011, 1-24.
[http://dx.doi.org/10.1155/2011/723184] [PMID: 21904685]
[8]
McGrath, J.; Saha, S.; Chant, D.; Welham, J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol. Rev., 2008, 30(1), 67-76.
[http://dx.doi.org/10.1093/epirev/mxn001] [PMID: 18480098]
[9]
Sheffield, J.M.; Karcher, N.R.; Barch, D.M. Cognitive deficits in psychotic disorders: A lifespan perspective. Neuropsychol. Rev., 2018, 28(4), 509-533.
[http://dx.doi.org/10.1007/s11065-018-9388-2] [PMID: 30343458]
[10]
Saha, S.; Chant, D.; McGrath, J. A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch. Gen. Psychiatry, 2007, 64(10), 1123-1131.
[http://dx.doi.org/10.1001/archpsyc.64.10.1123] [PMID: 17909124]
[11]
Brown, A.S.; Derkits, E.J. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am. J. Psychiatry, 2010, 167(3), 261-280.
[http://dx.doi.org/10.1176/appi.ajp.2009.09030361] [PMID: 20123911]
[12]
Brown, A.S. The environment and susceptibility to schizophrenia. Prog. Neurobiol., 2011, 93(1), 23-58.
[http://dx.doi.org/10.1016/j.pneurobio.2010.09.003] [PMID: 20955757]
[13]
Moody, L.; Chen, H.; Pan, Y.X. Early-life nutritional programming of cognition-the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv. Nutr., 2017, 8(2), 337-350.
[http://dx.doi.org/10.3945/an.116.014209] [PMID: 28298276]
[14]
Lewis, D.A.; Hashimoto, T.; Volk, D.W. Cortical inhibitory neurons and schizophrenia. Nat. Rev. Neurosci., 2005, 6(4), 312-324.
[http://dx.doi.org/10.1038/nrn1648] [PMID: 15803162]
[15]
Woodward, N.D.; Purdon, S.E.; Meltzer, H.Y.; Zald, D.H. A meta-analysis of neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in schizophrenia. Int. J. Neuropsychopharmacol., 2005, 8(3), 457-472.
[http://dx.doi.org/10.1017/S146114570500516X] [PMID: 15784157]
[16]
McNally, J.M.; McCarley, R.W.; Brown, R.E. Impaired GABAergic neurotransmission in schizophrenia underlies impairments in cortical gamma band oscillations. Curr. Psychiatry Rep., 2013, 15(3), 346.
[http://dx.doi.org/10.1007/s11920-012-0346-z] [PMID: 23400808]
[17]
Xu, M.; Wong, A.H.C. GABAergic inhibitory neurons as therapeutic targets for cognitive impairment in schizophrenia. Acta Pharmacol. Sin., 2018, 39(5), 733-753.
[http://dx.doi.org/10.1038/aps.2017.172] [PMID: 29565038]
[18]
Sugai, T.; Suzuki, Y.; Yamazaki, M.; Shimoda, K.; Mori, T.; Ozeki, Y.; Matsuda, H.; Sugawara, N.; Yasui-Furukori, N.; Minami, Y.; Okamoto, K.; Sagae, T.; Someya, T. High prevalence of underweight and undernutrition in Japanese inpatients with schizophrenia: a nationwide survey. BMJ Open, 2015, 5(12), e008720.
[http://dx.doi.org/10.1136/bmjopen-2015-008720] [PMID: 26656016]
[19]
Laursen, T.M.; Munk-Olsen, T.; Vestergaard, M. Life expectancy and cardiovascular mortality in persons with schizophrenia. Curr. Opin. Psychiatry, 2012, 25(2), 83-88.
[http://dx.doi.org/10.1097/YCO.0b013e32835035ca] [PMID: 22249081]
[20]
Hoffman, R.P. The Complex Inter-Relationship Between Diabetes and Schizophrenia. Curr. Diabetes Rev., 2017, 13(3), 528-532.
[http://dx.doi.org/10.2174/1573399812666161201205322] [PMID: 28000544]
[21]
Vancampfort, D.; Firth, J.; Schuch, F.B.; Rosenbaum, S.; Mugisha, J.; Hallgren, M.; Probst, M.; Ward, P.B.; Gaughran, F.; De Hert, M.; Carvalho, A.F.; Stubbs, B. Sedentary behavior and physical activity levels in people with schizophrenia, bipolar disorder and major depressive disorder: a global systematic review and meta-analysis. World Psychiatry, 2017, 16(3), 308-315.
[http://dx.doi.org/10.1002/wps.20458] [PMID: 28941119]
[22]
Gatov, E.; Rosella, L.; Chiu, M.; Kurdyak, P.A. Trends in standardized mortality among individuals with schizophrenia, 1993-2012: a population-based, repeated cross-sectional study. CMAJ: Can. Med. Assoc. J., 2017, 189(37), E1177-E1187.
[http://dx.doi.org/10.1503/cmaj.161351]
[23]
Kishimoto, T.; Hagi, K.; Kurokawa, S.; Kane, J.M.; Correll, C.U. Long-acting injectable versus oral antipsychotics for the maintenance treatment of schizophrenia: a systematic review and comparative meta-analysis of randomised, cohort, and pre-post studies. Lancet Psychiatry, 2021, 8(5), 387-404.
[http://dx.doi.org/10.1016/S2215-0366(21)00039-0] [PMID: 33862018]
[24]
Correll, C. U.; Lauriello, J. Using long-acting injectable antipsychotics to enhance the potential for recovery in Schizophrenia. The J. Clin. Psychiatry,, 2020, 81(4), MS19053AH5C.
[http://dx.doi.org/10.4088/JCP.MS19053AH5C]
[25]
González-Burgos, G.; Krimer, L.S.; Povysheva, N.V.; Barrionuevo, G.; Lewis, D.A. Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex. J. Neurophysiol., 2005, 93(2), 942-953.
[http://dx.doi.org/10.1152/jn.00787.2004] [PMID: 15385591]
[26]
Uhlhaas, P.J.; Roux, F.; Rodriguez, E.; Rotarska-Jagiela, A.; Singer, W. Neural synchrony and the development of cortical networks. Trends Cogn. Sci., 2010, 14(2), 72-80.
[http://dx.doi.org/10.1016/j.tics.2009.12.002] [PMID: 20080054]
[27]
Kantrowitz, J.; Javitt, D.C. Glutamatergic transmission in schizophrenia. Curr. Opin. Psychiatry, 2012, 25(2), 96-102.
[http://dx.doi.org/10.1097/YCO.0b013e32835035b2] [PMID: 22297716]
[28]
Uno, Y.; Coyle, J.T. Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci., 2019, 73(5), 204-215.
[http://dx.doi.org/10.1111/pcn.12823] [PMID: 30666759]
[29]
Tremolizzo, L.; Doueiri, M.S.; Dong, E.; Grayson, D.R.; Davis, J.; Pinna, G.; Tueting, P.; Rodriguez-Menendez, V.; Costa, E.; Guidotti, A. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol. Psychiatry, 2005, 57(5), 500-509.
[http://dx.doi.org/10.1016/j.biopsych.2004.11.046] [PMID: 15737665]
[30]
van Os, J.; Kenis, G.; Rutten, B.P.F. The environment and schizophrenia. Nature, 2010, 468(7321), 203-212.
[http://dx.doi.org/10.1038/nature09563] [PMID: 21068828]
[31]
Guidotti, A.; Auta, J.; Chen, Y.; Davis, J.M.; Dong, E.; Gavin, D.P.; Grayson, D.R.; Matrisciano, F.; Pinna, G.; Satta, R.; Sharma, R.P.; Tremolizzo, L.; Tueting, P. Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology, 2011, 60(7-8), 1007-1016.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.021] [PMID: 21074545]
[32]
Millan, M.J. An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential therapy. Neuropharmacology, 2013, 68, 2-82.
[http://dx.doi.org/10.1016/j.neuropharm.2012.11.015] [PMID: 23246909]
[33]
Matrisciano, F.; Tueting, P.; Maccari, S.; Nicoletti, F.; Guidotti, A. Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology, 2012, 37(4), 929-938.
[http://dx.doi.org/10.1038/npp.2011.274]
[34]
Matrisciano, F.; Panaccione, I.; Grayson, D.R.; Nicoletti, F.; Guidotti, A. Metabotropic glutamate 2/3 receptors and epigenetic Modifications in psychotic disorders: A review. Curr. Neuropharmacol., 2016, 14(1), 41-47.
[http://dx.doi.org/10.2174/1570159X13666150713174242] [PMID: 26813121]
[35]
Dienel, S.J.; Lewis, D.A. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol. Dis., 2019, 131104208.
[http://dx.doi.org/10.1016/j.nbd.2018.06.020] [PMID: 29936230]
[36]
Guidotti, A.; Auta, J.; Davis, J.M.; Dong, E.; Grayson, D.R.; Veldic, M.; Zhang, X.; Costa, E. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl.), 2005, 180(2), 191-205.
[http://dx.doi.org/10.1007/s00213-005-2212-8] [PMID: 15864560]
[37]
Tueting, P.; Doueiri, M.; Guidotti, A.; Davis, J.; Costa, E. Reelin down-regulation in mice and psychosis endophenotypes. Neurosci. Biobehav. Rev., 2006, 30(8), 1065-1077.
[http://dx.doi.org/10.1016/j.neubiorev.2006.04.001] [PMID: 16769115]
[38]
Zhong, H.; Rong, J.; Zhu, C.; Liang, M.; Li, Y.; Zhou, R. Epigenetic modifications of GABAergic interneurons contribute to deficits in adult hippocampus neurogenesis and depression-like behavior in prenatally stressed mice. Int. J. Neuropsychopharmacol., 2020, 23(4), 274-285.
[http://dx.doi.org/10.1093/ijnp/pyaa020] [PMID: 32211762]
[39]
Gonzalez-Burgos, G.; Cho, R.Y.; Lewis, D.A. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol. Psychiatry, 2015, 77(12), 1031-1040.
[http://dx.doi.org/10.1016/j.biopsych.2015.03.010] [PMID: 25863358]
[40]
Balu, D.T.; Coyle, J.T. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci. Biobehav. Rev., 2011, 35(3), 848-870.
[http://dx.doi.org/10.1016/j.neubiorev.2010.10.005] [PMID: 20951727]
[41]
Müller, N. Inflammation in schizophrenia: Pathogenetic aspects and therapeutic considerations. Schizophr. Bull., 2018, 44(5), 973-982.
[http://dx.doi.org/10.1093/schbul/sby024] [PMID: 29648618]
[42]
Erhardt, S.; Schwieler, L.; Imbeault, S.; Engberg, G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology, 2017, 112(Pt B), 297-306.
[http://dx.doi.org/10.1016/j.neuropharm.2016.05.020]
[43]
Moghaddam, B.; Javitt, D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 2012, 37(1), 4-15.
[http://dx.doi.org/10.1038/npp.2011.181]
[44]
Tsai, S.Y.; Catts, V.S.; Fullerton, J.M.; Corley, S.M.; Fillman, S.G.; Weickert, C.S. Nuclear receptors and neuroinflammation in schizophrenia. Mol. Neuropsychiatry, 2018, 3(4), 181-191.
[PMID: 29888229]
[45]
Fillman, S.G.; Cloonan, N.; Catts, V.S.; Miller, L.C.; Wong, J.; McCrossin, T.; Cairns, M.; Weickert, C.S. Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol. Psychiatry, 2013, 18(2), 206-214.
[http://dx.doi.org/10.1038/mp.2012.110] [PMID: 22869038]
[46]
Goldsmith, D.R.; Haroon, E.; Miller, A.H.; Strauss, G.P.; Buckley, P.F.; Miller, B.J.; Miller, B.J. TNF-α and IL-6 are associated with the deficit syndrome and negative symptoms in patients with chronic schizophrenia. Schizophr. Res., 2018, 199, 281-284.
[http://dx.doi.org/10.1016/j.schres.2018.02.048] [PMID: 29499967]
[47]
Buckley, P.F. Neuroinflammation and schizophrenia. Curr. Psychiatry Rep., 2019, 21(8), 72.
[http://dx.doi.org/10.1007/s11920-019-1050-z] [PMID: 31267432]
[48]
Pandurangi, A.K.; Buckley, P.F. Inflammation, antipsychotic drugs, and evidence for effectiveness of anti-inflammatory agents in schizophrenia. Curr. Top. Behav. Neurosci., 2019, 44, 227-244.
[http://dx.doi.org/10.1007/7854_2019_91] [PMID: 30993585]
[49]
García-Bueno, B.; Bioque, M.; Mac-Dowell, K.S.; Barcones, M.F.; Martínez-Cengotitabengoa, M.; Pina-Camacho, L.; Rodríguez-Jiménez, R.; Sáiz, P.A.; Castro, C.; Lafuente, A.; Santabárbara, J.; González-Pinto, A.; Parellada, M.; Rubio, G.; García-Portilla, M.P.; Micó, J.A.; Bernardo, M.; Leza, J.C. Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophr. Bull., 2014, 40(2), 376-387.
[http://dx.doi.org/10.1093/schbul/sbt001] [PMID: 23486748]
[50]
Fillman, S.G.; Weickert, T.W.; Lenroot, R.K.; Catts, S.V.; Bruggemann, J.M.; Catts, V.S.; Weickert, C.S. Elevated peripheral cytokines characterize a subgroup of people with schizophrenia displaying poor verbal fluency and reduced Broca’s area volume. Mol. Psychiatry, 2016, 21(8), 1090-1098.
[http://dx.doi.org/10.1038/mp.2015.90] [PMID: 26194183]
[51]
Bale, T.L.; Baram, T.Z.; Brown, A.S.; Goldstein, J.M.; Insel, T.R.; McCarthy, M.M.; Nemeroff, C.B.; Reyes, T.M.; Simerly, R.B.; Susser, E.S.; Nestler, E.J. Early life programming and neurodevelopmental disorders. Biol. Psychiatry, 2010, 68(4), 314-319.
[http://dx.doi.org/10.1016/j.biopsych.2010.05.028] [PMID: 20674602]
[52]
Howes, O.D.; McCutcheon, R.; Agid, O.; de Bartolomeis, A.; van Beveren, N.J.M.; Birnbaum, M.L.; Bloomfield, M.A.P.; Bressan, R.A.; Buchanan, R.W.; Carpenter, W.T.; Castle, D.J.; Citrome, L.; Daskalakis, Z.J.; Davidson, M.; Drake, R.J.; Dursun, S.; Ebdrup, B.H.; Elkis, H.; Falkai, P.; Fleischacker, W.W.; Gadelha, A.; Gaughran, F.; Glenthøj, B.Y.; Graff-Guerrero, A.; Hallak, J.E.C.; Honer, W.G.; Kennedy, J.; Kinon, B.J.; Lawrie, S.M.; Lee, J.; Leweke, F.M.; MacCabe, J.H.; McNabb, C.B.; Meltzer, H.; Möller, H.J.; Nakajima, S.; Pantelis, C.; Reis Marques, T.; Remington, G.; Rossell, S.L.; Russell, B.R.; Siu, C.O.; Suzuki, T.; Sommer, I.E.; Taylor, D.; Thomas, N.; Üçok, A.; Umbricht, D.; Walters, J.T.R.; Kane, J.; Correll, C.U. Treatment-resistant schizophrenia: Treatment Response And Resistance In Psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am. J. Psychiatry, 2017, 174(3), 216-229.
[http://dx.doi.org/10.1176/appi.ajp.2016.16050503] [PMID: 27919182]
[53]
Potkin, S.G.; Kane, J.M.; Correll, C.U.; Lindenmayer, J.P.; Agid, O.; Marder, S.R.; Olfson, M.; Howes, O.D. The neurobiology of treatment-resistant schizophrenia: paths to antipsychotic resistance and a roadmap for future research. NPJ Schizophr., 2020, 6(1), 1.
[http://dx.doi.org/10.1038/s41537-019-0090-z] [PMID: 31911624]
[54]
Feigenson, K.A.; Kusnecov, A.W.; Silverstein, S.M. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci. Biobehav. Rev., 2014, 38, 72-93.
[http://dx.doi.org/10.1016/j.neubiorev.2013.11.006] [PMID: 24247023]
[55]
Inta, D.; Lang, U.E.; Borgwardt, S.; Meyer-Lindenberg, A.; Gass, P. Microglia activation and Schizophrenia: lessons from the effects of minocycline on postnatal neurogenesis, neuronal survival and synaptic pruning. Schizophr. Bull., 2017, 43(3), 493-496.
[PMID: 27352782]
[56]
Upthegrove, R.; Khandaker, G.M. Cytokines, oxidative stress and cellular markers of inflammation in schizophrenia. Curr. Top. Behav. Neurosci., 2019, 44, 49-66.
[http://dx.doi.org/10.1007/7854_2018_88] [PMID: 31115797]
[57]
Müller, N.; Myint, A.M.; Schwarz, M.J. Inflammation in schizophrenia. Adv. Protein Chem. Struct. Biol., 2012, 88, 49-68.
[http://dx.doi.org/10.1016/B978-0-12-398314-5.00003-9] [PMID: 22814706]
[58]
Notter, T.; Coughlin, J.M.; Sawa, A.; Meyer, U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol. Psychiatry, 2018, 23(1), 36-47.
[http://dx.doi.org/10.1038/mp.2017.232] [PMID: 29203847]
[59]
Wolf, S.A.; Boddeke, H.W.G.M.; Kettenmann, H. Microglia in physiology and disease. Annu. Rev. Physiol., 2017, 79(1), 619-643.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034406] [PMID: 27959620]
[60]
Colonna, M.; Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol., 2017, 35(1), 441-468.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052358] [PMID: 28226226]
[61]
Rosciszewski, G.; Cadena, V.; Murta, V.; Lukin, J.; Villarreal, A.; Roger, T.; Ramos, A.J. Toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells-2 (TREM-2) activation balance astrocyte polarization into a proinflammatory phenotype. Mol. Neurobiol., 2017, 55(5), 3875-3888.
[http://dx.doi.org/10.1007/s12035-017-0618-z] [PMID: 28547529]
[62]
Jha, M.K.; Jo, M.; Kim, J.H.; Suk, K. Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist, 2019, 25(3), 227-240.
[http://dx.doi.org/10.1177/1073858418783959] [PMID: 29931997]
[63]
Marinelli, S.; Basilico, B.; Marrone, M.C.; Ragozzino, D. Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin. Cell Dev. Biol., 2019, 94, 138-151.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.017] [PMID: 31112798]
[64]
Block, M.L.; Zecca, L.; Hong, J.S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci., 2007, 8(1), 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[65]
Zhu, S.; Zhao, L.; Fan, Y.; Lv, Q.; Wu, K.; Lang, X.; Li, Z.; Yi, Z.; Geng, D. Interaction between TNF-α and oxidative stress status in first-episode drug-naïve schizophrenia. Psychoneuroendocrinology, 2020, 114, 104595.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104595] [PMID: 32036201]
[66]
Kéri, S.; Szabó, C.; Kelemen, O. Antipsychotics influence Toll-like receptor (TLR) expression and its relationship with cognitive functions in schizophrenia. Brain Behav. Immun., 2017, 62, 256-264.
[http://dx.doi.org/10.1016/j.bbi.2016.12.011] [PMID: 28003154]
[67]
Bennet, L.; Dhillon, S.; Lear, C.A.; van den Heuij, L.; King, V.; Dean, J.M.; Wassink, G.; Davidson, J.O.; Gunn, A.J. Chronic inflammation and impaired development of the preterm brain. J. Reprod. Immunol., 2018, 125, 45-55.
[http://dx.doi.org/10.1016/j.jri.2017.11.003] [PMID: 29253793]
[68]
Ľupták, M.; Michaličková, D.; Fišar, Z.; Kitzlerová, E.; Hroudová, J. Novel approaches in schizophrenia-from risk factors and hypotheses to novel drug targets. World J. Psychiatry, 2021, 11(7), 277-296.
[http://dx.doi.org/10.5498/wjp.v11.i7.277] [PMID: 34327122]
[69]
Blair, H.A. Lumateperone: First approval. Drugs, 2020, 80(4), 417-423.
[http://dx.doi.org/10.1007/s40265-020-01271-6] [PMID: 32060882]
[70]
Solmi, M.; Murru, A.; Pacchiarotti, I.; Undurraga, J.; Veronese, N.; Fornaro, M.; Stubbs, B.; Monaco, F.; Vieta, E.; Seeman, M.; Correll, C.; Carvalho, A. Safety, tolerability, and risks associated with first- and second-generation antipsychotics: a state-of-the-art clinical review. Ther. Clin. Risk Manag., 2017, 13, 757-777.
[http://dx.doi.org/10.2147/TCRM.S117321] [PMID: 28721057]
[71]
Olfson, M.; Gerhard, T.; Huang, C.; Crystal, S.; Stroup, T.S. Premature mortality among adults with schizophrenia in the united states. JAMA Psychiatry, 2015, 72(12), 1172-1181.
[http://dx.doi.org/10.1001/jamapsychiatry.2015.1737]
[72]
Correll, C.U.; Davis, R.E.; Weingart, M.; Saillard, J.; O'Gorman, C.; Kane, J.M.; Lieberman, J.A.; Tamminga, C.A.; Mates, S.; Vanover, K.E. Efficacy and safety of lumateperone for treatment of schizophrenia: A randomized clinical trial. JAMA psychiatry, 2020, 77(4), 349-358.
[http://dx.doi.org/10.1001/jamapsychiatry.2019.4379]
[73]
Aucoin, M.; LaChance, L.; Cooley, K.; Kidd, S. Diet and Psychosis: A Scoping Review. Neuropsychobiology, 2020, 79(1), 20-42.
[http://dx.doi.org/10.1159/000493399] [PMID: 30359969]
[74]
Marx, W.; Moseley, G.; Berk, M.; Jacka, F. Nutritional psychiatry: The present state of the evidence. Proc. Nutr. Soc., 2017, 76(4), 427-436.
[http://dx.doi.org/10.1017/S0029665117002026] [PMID: 28942748]
[75]
Anderson, G.; Berk, M.; Dodd, S.; Bechter, K.; Altamura, A.C.; Dell’Osso, B.; Kanba, S.; Monji, A.; Fatemi, S.H.; Buckley, P.; Debnath, M.; Das, U.N.; Meyer, U.; Müller, N.; Kanchanatawan, B.; Maes, M. Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 42, 1-4.
[http://dx.doi.org/10.1016/j.pnpbp.2012.10.008] [PMID: 23085074]
[76]
Royal, B. Schizophrenia: Nutrition and Alternative Treatment Approaches. Schizophr. Bull., 2016, 42(5), 1083-1085.
[http://dx.doi.org/10.1093/schbul/sbu193] [PMID: 25616504]
[77]
Melo, H.M.; Santos, L.E.; Ferreira, S.T. Diet-Derived Fatty Acids, Brain Inflammation, and Mental Health. Front. Neurosci., 2019, 13, 265.
[http://dx.doi.org/10.3389/fnins.2019.00265] [PMID: 30983955]
[78]
Kaar, S.J.; Natesan, S.; McCutcheon, R.; Howes, O.D. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology, 2020, 172107704.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107704] [PMID: 31299229]
[79]
Keller, W.R.; Kum, L.M.; Wehring, H.J.; Koola, M.M.; Buchanan, R.W.; Kelly, D.L. A review of anti-inflammatory agents for symptoms of schizophrenia. J. Psychopharmacol., 2013, 27(4), 337-342.
[http://dx.doi.org/10.1177/0269881112467089] [PMID: 23151612]
[80]
Kempuraj, D.; Thangavel, R.; Natteru, P.A.; Selvakumar, G.P.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.S.; Zaheer, A. Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine., 2016, 1(1), 1003.
[PMID: 28127589]
[81]
Severance, E.G.; Yolken, R.H.; Eaton, W.W. Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophr. Res., 2016, 176(1), 23-35.
[http://dx.doi.org/10.1016/j.schres.2014.06.027] [PMID: 25034760]
[82]
García-Álvarez, L.; Caso, J.R.; García-Portilla, M.P.; de la Fuente-Tomás, L.; González-Blanco, L.; Sáiz Martínez, P.; Leza, J.C.; Bobes, J. Regulation of inflammatory pathways in schizophrenia: A comparative study with bipolar disorder and healthy controls. Eur. Psychiatry, 2018, 47, 50-59.
[http://dx.doi.org/10.1016/j.eurpsy.2017.09.007]
[83]
Genolet, R.; Wahli, W.; Michalik, L. PPARs as drug targets to modulate inflammatory responses? Curr. Drug Targets Inflamm. Allergy, 2004, 3(4), 361-375.
[http://dx.doi.org/10.2174/1568010042634578] [PMID: 15584886]
[84]
De Felice, M.; Melis, M.; Aroni, S.; Muntoni, A.L.; Fanni, S.; Frau, R.; Devoto, P.; Pistis, M. The PPARα agonist fenofibrate attenuates disruption of dopamine function in a maternal immune activation rat model of schizophrenia. CNS Neurosci. Ther., 2019, 25(5), 549-561.
[http://dx.doi.org/10.1111/cns.13087] [PMID: 30461214]
[85]
Lian, J.; Huang, X.F.; Pai, N.; Deng, C. Ameliorating antipsychotic-induced weight gain by betahistine: Mechanisms and clinical implications. Pharmacol. Res., 2016, 106, 51-63.
[http://dx.doi.org/10.1016/j.phrs.2016.02.011] [PMID: 26892184]
[86]
Salehi, A.; Namaei, P. TaghaviZanjani, F.; Bagheri, S.; Moradi, K.; Khodaei Ardakani, M.R.; Akhondzadeh, S. Adjuvant palmitoylethanolamide therapy with risperidone improves negative symptoms in patients with schizophrenia: A randomized, double-blinded, placebo-controlled trial. Psychiatry Res., 2022, 316, 114737.
[http://dx.doi.org/10.1016/j.psychres.2022.114737] [PMID: 35917650]
[87]
Matrisciano, F.; Pinna, G. PPAR-α Hypermethylation in the hippocampus of mice exposed to social isolation stress is associated with enhanced neuroinflammation and aggressive behavior. Int. J. Mol. Sci., 2021, 22(19), 10678.
[http://dx.doi.org/10.3390/ijms221910678] [PMID: 34639019]
[88]
Wada, Y.; Maekawa, M.; Ohnishi, T.; Balan, S.; Matsuoka, S.; Iwamoto, K.; Iwayama, Y.; Ohba, H.; Watanabe, A.; Hisano, Y.; Nozaki, Y.; Toyota, T.; Shimogori, T.; Itokawa, M.; Kobayashi, T.; Yoshikawa, T. Peroxisome proliferator-activated receptor α as a novel therapeutic target for schizophrenia. EBioMedicine, 2020, 62103130.
[http://dx.doi.org/10.1016/j.ebiom.2020.103130] [PMID: 33279456]
[89]
Na, K.S.; Jung, H.Y.; Kim, Y.K. The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 48, 277-286.
[http://dx.doi.org/10.1016/j.pnpbp.2012.10.022] [PMID: 23123365]
[90]
Kaur, D.; Sharma, V.; Deshmukh, R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology, 2019, 27(4), 663-677.
[http://dx.doi.org/10.1007/s10787-019-00580-x] [PMID: 30874945]
[91]
Grygiel-Górniak, B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications - a review. Nutr. J., 2014, 13(1), 17.
[http://dx.doi.org/10.1186/1475-2891-13-17] [PMID: 24524207]
[92]
Komirishetty, P.; Areti, A.; Yerra, V.G.; Pk, R.; Sharma, S.S.; Gogoi, R.; Sistla, R.; Kumar, A. PARP inhibition attenuates neuroinflammation and oxidative stress in chronic constriction injury induced peripheral neuropathy. Life Sci., 2016, 150, 50-60.
[http://dx.doi.org/10.1016/j.lfs.2016.02.085] [PMID: 26921631]
[93]
Maluchenko, N.V.; Feofanov, A.V.; Studitsky, V.M. PARP-1-associated pathological processes: Inhibition by natural polyphenols. Int. J. Mol. Sci., 2021, 22(21), 11441.
[http://dx.doi.org/10.3390/ijms222111441] [PMID: 34768872]
[94]
Gupte, R.; Liu, Z.; Kraus, W.L. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev., 2017, 31(2), 101-126.
[http://dx.doi.org/10.1101/gad.291518.116] [PMID: 28202539]
[95]
Pilié, P.G.; Gay, C.M.; Byers, L.A.; O’Connor, M.J.; Yap, T.A. PARP inhibitors: Extending benefit beyond BRCA-mutant cancers. Clin. Cancer Res., 2019, 25(13), 3759-3771.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0968] [PMID: 30760478]
[96]
Basello, D.A.; Scovassi, A.I. Poly(ADP-ribosylation) and neurodegenerative disorders. Mitochondrion, 2015, 24, 56-63.
[http://dx.doi.org/10.1016/j.mito.2015.07.005] [PMID: 26196946]
[97]
Sas, K.; Szabó, E.; Vécsei, L. Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules, 2018, 23(1), 191.
[http://dx.doi.org/10.3390/molecules23010191] [PMID: 29342113]
[98]
Penner, J.D.; Brown, A.S. Prenatal infectious and nutritional factors and risk of adult schizophrenia. Expert Rev. Neurother., 2007, 7(7), 797-805.
[http://dx.doi.org/10.1586/14737175.7.7.797] [PMID: 17610387]
[99]
Mitra, S.; Natarajan, R.; Ziedonis, D.; Fan, X. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 78(78), 1-11.
[http://dx.doi.org/10.1016/j.pnpbp.2017.05.005] [PMID: 28499901]
[100]
Cao, B.; Sun, X.Y.; Zhang, C.B.; Yan, J.J.; Zhao, Q.Q.; Yang, S.Y.; Yan, L.L.; Huang, N.; Zeng, J.; Liao, J.Y.; Wang, J.Y. Association between B vitamins and schizophrenia: A population-based case-control study. Psychiatry Res., 2018, 259, 501-505.
[http://dx.doi.org/10.1016/j.psychres.2017.11.006] [PMID: 29154172]
[101]
Xu, F.; Li, X.; Niu, W.; Ma, G.; Sun, Q.; Bi, Y.; Guo, Z.; Ren, D.; Hu, J.; Yuan, F.; Yuan, R.; Shi, L.; Li, X.; Yu, T.; Yang, F.; He, L.; Zhao, X.; He, G. Metabolomic profiling on rat brain of prenatal malnutrition: implicated for oxidative stress and schizophrenia. Metab. Brain Dis., 2019, 34(6), 1607-1613.
[http://dx.doi.org/10.1007/s11011-019-00468-3] [PMID: 31410775]
[102]
Madera, P.Z.; Suárez, S.C.; Álvarez, L.G.; García-Portilla, G.M.P.; Fernández, R.J. Eating and nutritional habits in patients with Schizophrenia. Rev. Psiquiatr. Salud. Ment., 2019, S18889891(19), 30098-30099.
[103]
Patrick, R.P.; Ames, B.N. Vitamin D and the omega‐3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior. FASEB J., 2015, 29(6), 2207-2222.
[http://dx.doi.org/10.1096/fj.14-268342] [PMID: 25713056]
[104]
Trinko, J. R.; Land, B. B.; Solecki, W. B.; Wickham, R. J.; Tellez, L. A.; Maldonado-Aviles, J.; de Araujo, I. E.; Addy, N. A.; DiLeone, R. J. Vitamin D3: A role in dopamine circuit regulation, diet-induced obesity, and drug consumption. ENEURO, 2016, 3(2), 0122.
[http://dx.doi.org/10.1523/ENEURO.0122-15.2016]
[105]
Wołoszynowska-Fraser, M.U.; Kouchmeshky, A.; McCaffery, P. Vitamin A and retinoic acid in cognition and cognitive disease. Annu. Rev. Nutr., 2020, 40(1), 247-272.
[http://dx.doi.org/10.1146/annurev-nutr-122319-034227] [PMID: 32966186]
[106]
Iskakova, M.; Karbyshev, M.; Piskunov, A.; Rochette-Egly, C. Nuclear and extranuclear effects of vitamin A. Can. J. Physiol. Pharmacol., 2015, 93(12), 1065-1075.
[http://dx.doi.org/10.1139/cjpp-2014-0522] [PMID: 26459513]
[107]
van Neerven, S.; Kampmann, E.; Mey, J. RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog. Neurobiol., 2008, 85(4), 433-451.
[http://dx.doi.org/10.1016/j.pneurobio.2008.04.006] [PMID: 18554773]
[108]
Kesby, J.P.; Turner, K.M.; Alexander, S.; Eyles, D.W.; McGrath, J.J.; Burne, T.H.J. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain. Int. J. Dev. Neurosci., 2017, 62(1), 1-7.
[http://dx.doi.org/10.1016/j.ijdevneu.2017.07.002] [PMID: 28716540]
[109]
Mayne, P.E.; Burne, T.H.J. Vitamin D in synaptic plasticity, cognitive function, and neuropsychiatric illness. Trends Neurosci., 2019, 42(4), 293-306.
[http://dx.doi.org/10.1016/j.tins.2019.01.003] [PMID: 30795846]
[110]
Berridge, M.J. Vitamin D deficiency: infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia). Am. J. Physiol. Cell Physiol., 2018, 314(2), C135-C151.
[http://dx.doi.org/10.1152/ajpcell.00188.2017] [PMID: 29070492]
[111]
Azzi, A.; Gysin, R.; Kempná, P.; Munteanu, A.; Villacorta, L.; Visarius, T.; Zingg, J.M. Regulation of gene expression by α-tocopherol. Biol. Chem., 2004, 385(7), 585-591.
[http://dx.doi.org/10.1515/BC.2004.072] [PMID: 15318806]
[112]
Dadheech, G.; Mishra, S.; Gautam, S.; Sharma, P. Oxidative stress, α-tocopherol, ascorbic acid and reduced glutathione status in schizophrenics. Indian J. Clin. Biochem., 2006, 21(2), 34-38.
[http://dx.doi.org/10.1007/BF02912908] [PMID: 23105610]
[113]
Kocot, J.; Luchowska-Kocot, D.; Kiełczykowska, M.; Musik, I.; Kurzepa, J. Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients, 2017, 9(7), 659.
[http://dx.doi.org/10.3390/nu9070659] [PMID: 28654017]
[114]
Jung, H.Y.; Kwon, H.J.; Kim, W.; Nam, S.M.; Kim, J.W.; Hahn, K.R.; Yoo, D.Y.; Yoon, Y.S.; Choi, S.Y.; Kim, D.W.; Hwang, I.K. Role of pyridoxine in GABA synthesis and degradation in the hippocampus. Tissue Cell, 2019, 61, 72-78.
[http://dx.doi.org/10.1016/j.tice.2019.09.005] [PMID: 31759410]
[115]
Maekawa, M.; Watanabe, A.; Iwayama, Y.; Kimura, T.; Hamazaki, K.; Balan, S.; Ohba, H.; Hisano, Y.; Nozaki, Y.; Ohnishi, T.; Toyoshima, M.; Shimamoto, C.; Iwamoto, K.; Bundo, M.; Osumi, N.; Takahashi, E.; Takashima, A.; Yoshikawa, T. Polyunsaturated fatty acid deficiency during neurodevelopment in mice models the prodromal state of schizophrenia through epigenetic changes in nuclear receptor genes. Transl. Psychiatry, 2017, 7(9), e1229.
[http://dx.doi.org/10.1038/tp.2017.182] [PMID: 28872641]
[116]
Madore, C.; Leyrolle, Q.; Lacabanne, C.; Benmamar-Badel, A.; Joffre, C.; Nadjar, A.; Layé, S. Neuroinflammation in autism: Plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural Plast., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/3597209] [PMID: 27840741]
[117]
Mattei, D.; Notter, T. Basic concept of microglia biology and neuroinflammation in relation to psychiatry. Curr. Top. Behav. Neurosci., 2019, 44, 9-34.
[http://dx.doi.org/10.1007/7854_2018_83] [PMID: 30739307]
[118]
Marion-Letellier, R.; Savoye, G.; Ghosh, S. Polyunsaturated fatty acids and inflammation. IUBMB Life, 2015, 67(9), 659-667.
[http://dx.doi.org/10.1002/iub.1428] [PMID: 26397837]
[119]
Crisafulli, C.; Cuzzocrea, S. The role of endogenous and exogenous ligands for the peroxisome proliferator-activated receptor alpha (PPAR-alpha) in the regulation of inflammation in macrophages. Shock, 2009, 32(1), 62-73.
[http://dx.doi.org/10.1097/SHK.0b013e31818bbad6] [PMID: 19533851]
[120]
Agostoni, C.; Nobile, M.; Ciappolino, V.; Delvecchio, G.; Tesei, A.; Turolo, S.; Crippa, A.; Mazzocchi, A.; Altamura, C.; Brambilla, P. The role of omega-3 fatty acids in developmental psychopathology: A systematic review on early psychosis, autism, and ADHD. Int. J. Mol. Sci., 2017, 18(12), 2608.
[http://dx.doi.org/10.3390/ijms18122608] [PMID: 29207548]
[121]
Chen, X.; Wu, S.; Chen, C.; Xie, B.; Fang, Z.; Hu, W.; Chen, J.; Fu, H.; He, H. Omega-3 polyunsaturated fatty acid supplementation attenuates microglial-induced inflammation by inhibiting the HMGB1/TLR4/NF-κB pathway following experimental traumatic brain injury. J. Neuroinflammation, 2017, 14(1), 143.
[http://dx.doi.org/10.1186/s12974-017-0917-3] [PMID: 28738820]
[122]
Basil, P.; Li, Q.; Gui, H.; Hui, T.C.K.; Ling, V.H.M.; Wong, C.C.Y.; Mill, J.; McAlonan, G.M.; Sham, P.C. Prenatal immune activation alters the adult neural epigenome but can be partly stabilised by a n-3 polyunsaturated fatty acid diet. Transl. Psychiatry, 2018, 8(1), 125.
[http://dx.doi.org/10.1038/s41398-018-0167-x] [PMID: 29967385]
[123]
Calis, Z.; Mogulkoc, R.; Baltaci, A.K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev. Med. Chem., 2020, 20(15), 1475-1488.
[http://dx.doi.org/10.2174/1389557519666190617150051] [PMID: 31288717]
[124]
Bastin, A.R.; Sadeghi, A.; Abolhassani, M.; Doustimotlagh, A.H.; Mohammadi, A. Malvidin prevents lipopolysaccharide‐induced oxidative stress and inflammation in human peripheral blood mononuclear cells. IUBMB Life, 2020, 72(7), 1504-1514.
[http://dx.doi.org/10.1002/iub.2286] [PMID: 32268009]
[125]
Wang, J.; Hodes, G.E.; Zhang, H.; Zhang, S.; Zhao, W.; Golden, S.A.; Bi, W.; Menard, C.; Kana, V.; Leboeuf, M.; Xie, M.; Bregman, D.; Pfau, M.L.; Flanigan, M.E.; Esteban-Fernández, A.; Yemul, S.; Sharma, A.; Ho, L.; Dixon, R.; Merad, M.; Han, M.H.; Russo, S.J.; Pasinetti, G.M. Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat. Commun., 2018, 9(1), 477.
[http://dx.doi.org/10.1038/s41467-017-02794-5] [PMID: 29396460]
[126]
Han, X.; Xu, T.; Fang, Q.; Zhang, H.; Yue, L.; Hu, G.; Sun, L. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol., 2021, 44, 102010.
[http://dx.doi.org/10.1016/j.redox.2021.102010] [PMID: 34082381]
[127]
Chesworth, R.; Gamage, R.; Ullah, F.; Sonego, S.; Millington, C.; Fernandez, A.; Liang, H.; Karl, T.; Münch, G.; Niedermayer, G.; Gyengesi, E. Spatial memory and microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of apigenin. Front. Neurosci., 2021, 15, 699329.
[http://dx.doi.org/10.3389/fnins.2021.699329] [PMID: 34393713]
[128]
Zhou, W.; Hu, M.; Hu, J.; Du, Z.; Su, Q.; Xiang, Z. Luteolin suppresses microglia neuroinflammatory responses and relieves inflammation-induced cognitive impairments. Neurotox. Res., 2021, 39(6), 1800-1811.
[http://dx.doi.org/10.1007/s12640-021-00426-x] [PMID: 34655374]
[129]
Stover, P.J.; James, W.P.T.; Krook, A.; Garza, C. Emerging concepts on the role of epigenetics in the relationships between nutrition and health. J. Intern. Med., 2018, 284(1), 37-49.
[http://dx.doi.org/10.1111/joim.12768] [PMID: 29033425]
[130]
Dashwood, R.; Ho, E. Dietary histone deacetylase inhibitors: From cells to mice to man. Semin. Cancer Biol., 2007, 17(5), 363-369.
[http://dx.doi.org/10.1016/j.semcancer.2007.04.001] [PMID: 17555985]
[131]
Downing, L.E.; Ferguson, B.S.; Rodriguez, K.; Ricketts, M.L. A grape seed procyanidin extract inhibits HDAC activity leading to increased Pparα phosphorylation and target‐gene expression. Mol. Nutr. Food Res., 2017, 61(2), 1600347.
[http://dx.doi.org/10.1002/mnfr.201600347] [PMID: 27624175]
[132]
Payne, A.; Nahashon, S.; Taka, E.; Adinew, G.M.; Soliman, K.F.A. Epigallocatechin-3-gallate (EGCG): New therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules, 2022, 12(3), 371.
[http://dx.doi.org/10.3390/biom12030371] [PMID: 35327563]
[133]
Kasture, S.B.; Gaikar, M.; Kasture, V.; Arote, S.; Salve, B.; Rosas, M.; Cotti, E.; Acquas, E. Tea component, epigallocatechin gallate, potentiates anticataleptic and locomotor-sensitizing effects of caffeine in mice. Behav. Pharmacol., 2015, 26(1 and 2 - Special Issue), 125-132.
[http://dx.doi.org/10.1097/FBP.0000000000000071] [PMID: 25144514]
[134]
Hao, G.; Dong, Y.; Huo, R.; Wen, K.; Zhang, Y.; Liang, G. Rutin inhibits neuroinflammation and provides neuroprotection in an experimental rat model of subarachnoid hemorrhage, possibly through suppressing the RAGE-NF-κB inflammatory signaling pathway. Neurochem. Res., 2016, 41(6), 1496-1504.
[http://dx.doi.org/10.1007/s11064-016-1863-7] [PMID: 26869040]
[135]
Oshodi, T.O.; Ben-Azu, B.; Ishola, I.O.; Ajayi, A.M.; Emokpae, O.; Umukoro, S. Molecular mechanisms involved in the prevention and reversal of ketamine-induced schizophrenia-like behavior by rutin: the role of glutamic acid decarboxylase isoform-67, cholinergic, Nox-2-oxidative stress pathways in mice. Mol. Biol. Rep., 2021, 48(3), 2335-2350.
[http://dx.doi.org/10.1007/s11033-021-06264-6] [PMID: 33811574]
[136]
Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-inflammatory action and mechanisms of resveratrol. Molecules, 2021, 26(1), 229.
[http://dx.doi.org/10.3390/molecules26010229] [PMID: 33466247]
[137]
Samaei, A.; Moradi, K.; Bagheri, S.; Ashraf-Ganjouei, A.; Alikhani, R.; Mousavi, S.B.; Rezaei, F.; Akhondzadeh, S. Resveratrol adjunct therapy for negative symptoms in patients with stable schizophrenia: A double-blind, randomized placebo-controlled trial. Int. J. Neuropsychopharmacol., 2020, 23(12), 775-782.
[http://dx.doi.org/10.1093/ijnp/pyaa006] [PMID: 33372679]
[138]
Hou, C.Y.; Tain, Y.L.; Yu, H.R.; Huang, L.T. The effects of resveratrol in the treatment of metabolic syndrome. Int. J. Mol. Sci., 2019, 20(3), 535.
[http://dx.doi.org/10.3390/ijms20030535] [PMID: 30695995]
[139]
Jungbauer, A.; Medjakovic, S. Phytoestrogens and the metabolic syndrome. J. Steroid Biochem. Mol. Biol., 2014, 139, 277-289.
[http://dx.doi.org/10.1016/j.jsbmb.2012.12.009] [PMID: 23318879]
[140]
Sakamoto, Y.; Naka, A.; Ohara, N.; Kondo, K.; Iida, K. Daidzein regulates proinflammatory adipokines thereby improving obesity-related inflammation through PPARγ. Mol. Nutr. Food Res., 2014, 58(4), 718-726.
[http://dx.doi.org/10.1002/mnfr.201300482] [PMID: 24343975]
[141]
López, P.; Sánchez, M.; Perez-Cruz, C.; Velázquez-Villegas, L.A.; Syeda, T.; Aguilar-López, M.; Rocha-Viggiano, A.K.; del Carmen Silva-Lucero, M.; Torre-Villalvazo, I.; Noriega, L.G.; Torres, N.; Tovar, A.R. Long-term genistein consumption modifies gut microbiota, improving glucose metabolism, metabolic endotoxemia, and cognitive function in mice fed a high-fat Diet. Mol. Nutr. Food Res., 2018, 62(16), 1800313.
[http://dx.doi.org/10.1002/mnfr.201800313] [PMID: 29979819]
[142]
Miodownik, C.; Lerner, V.; Kudkaeva, N.; Lerner, P.P.; Pashinian, A.; Bersudsky, Y.; Eliyahu, R.; Kreinin, A.; Bergman, J. Curcumin as add-on to antipsychotic treatment in patients with chronic schizophrenia: A randomized, double-blind, placebo-controlled study. Clin. Neuropharmacol., 2019, 42(4), 117-122.
[http://dx.doi.org/10.1097/WNF.0000000000000344] [PMID: 31045590]
[143]
Wynn, J.K.; Green, M.F.; Hellemann, G.; Karunaratne, K.; Davis, M.C.; Marder, S.R. The effects of curcumin on brain-derived neurotrophic factor and cognition in schizophrenia: A randomized controlled study. Schizophr. Res., 2018, 195, 572-573.
[http://dx.doi.org/10.1016/j.schres.2017.09.046] [PMID: 28965778]
[144]
Pluta, R.; Ułamek-Kozioł, M.; Czuczwar, S. Neuroprotective and neurological/cognitive enhancement effects of curcumin after brain ischemia injury with Alzheimer’s disease phenotype. Int. J. Mol. Sci., 2018, 19(12), 4002.
[http://dx.doi.org/10.3390/ijms19124002] [PMID: 30545070]
[145]
Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(8), 461-478.
[http://dx.doi.org/10.1038/s41575-019-0157-3] [PMID: 31123355]
[146]
Telle-Hansen, V.; Holven, K.; Ulven, S. Impact of a healthy dietary pattern on gut microbiota and systemic inflammation in humans. Nutrients, 2018, 10(11), 1783.
[http://dx.doi.org/10.3390/nu10111783] [PMID: 30453534]
[147]
Tang, W.Y.; Wang, Y.; Xu, F.; Fan, W.; Zhang, Y.; Fan, K.; Wang, W.; Zhang, Y.; Zhang, C. Omega-3 fatty acids ameliorate cognitive dysfunction in schizophrenia patients with metabolic syndrome. Brain Behav. Immun., 2020, 88, 529-534.
[http://dx.doi.org/10.1016/j.bbi.2020.04.034]
[148]
Xu, F.; Fan, W.; Wang, W.; Tang, W.; Yang, F.; Zhang, Y.; Jun, C.; Song, L.; Zhang, C. Effects of omega-3 fatty acids on metabolic syndrome in patients with schizophrenia: A 12-week randomized placebo-controlled trial. Psychopharmacology, 2019, 236(4), 1273-1279.
[http://dx.doi.org/10.1007/s00213-018-5136-9]
[149]
Ghaderi, A.; Banafshe, H.R.; Mirhosseini, N.; Moradi, M. Karimi, Mohammad-Amin, Fateme, M.; Fereshteh, B.; Zatollah, A. Clinical and metabolic response to vitamin D plus probiotic in schizophrenia patients. BMC Psychiatry, 2019, 19(1), 77.
[http://dx.doi.org/10.1186/s12888-019-2059-x]
[150]
Batista-Jorge, G.C.; Barcala-Jorge, A.S.; Silveira, M.F.; Lelis, D.F.; Andrade, J.M.O.; de Paula, A.M.B.; Guimarães, A.L.S.; Santos, S.H.S. Oral resveratrol supplementation improves Metabolic Syndrome features in obese patients submitted to a lifestyle-changing program. Life Sci., 2020, 256, 117962.
[http://dx.doi.org/10.1016/j.lfs.2020.117962]
[151]
Di Pierro, F.; Bressan, A.; Ranaldi, D.; Rapacioli, G.; Giacomelli, L.; Bertuccioli, A. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(21), 4195-4202.
[152]
Pataky, Z.; Isabelle, C.; Valerie, G.; Thomas, A.; Carpentier, A.; Bobbioni-Harsch, E.; Golay, A. Effects of a weight loss program on metabolic syndrome, eating disorders and psychological outcomes: Mediation by endocannabinoids? Obes. Facts, 2018, 11(2), 144-156.
[http://dx.doi.org/10.1159/000487890]
[153]
Barona, J.; Aristizabal, J.C.; Blesso, C.N.; Volek, J.S.; Fernandez, M.L. Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome. J. Nutr., 2012, 142(9), 1626-1632.
[http://dx.doi.org/10.3945/jn.112.162743]