Abstract
1, 2, 3-triazoles display enormous applications in the extensive fields of chemistry such
as pharmaceuticals, ligands, conjectures, etc. Among these classes of compounds, the Nunsubstituted
triazole emerges as a potent applicant for various fields of chemistry and therefore
synthetic procedures for this molecular scaffold possess certain importance. Moreover, from an
environmental perspective, metal-free organic synthesis gains tremendous attention as most of the
metals are persistent in nature. In this review, we are going to discuss only the metal-free synthetic
routes for the construction of N-unsubstituted 1,2,3-triazoles reported during the last decade.
Graphical Abstract
[5]
(a) Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Amino acidcatalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: synthesis of highly functionalized NH-1,2,3-triazoles.
Chemistry, 2008,
14(30), 9143-9147.
[
http://dx.doi.org/10.1002/chem.200801325] [PMID:
18767077];
(b) Thomas, J.; John, J.; Parekh, N.; Dehaen, W. A metal-free threecomponent reaction for the regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles.
Angew. Chem. Int. Ed., 2014,
53(38), 10155-10159.
[
http://dx.doi.org/10.1002/anie.201403453] [PMID:
24989456];
(c) Ramasastry, S.S.V. Enamine/enolate-mediated organocatalytic azide–carbonyl [3+2] cycloaddition reactions for the synthesis of densely functionalized 1,2,3-triazoles.
Angew. Chemie. Int. Ed., 2014,
53, 14310-14312.;
(d) Lima, C.G.S.; Ali, A.; van Berkel, S.S.; Westermann, B.; Paixão, M.W. Emerging approaches for the synthesis of triazoles: beyond metal-catalyzed and strain-promoted azide–alkyne cycloaddition.
Chem. Commun., 2015,
51, 10784.;
(e) John, J.; Thomas, J.; Dehaen, W. Organocatalytic routes toward substituted 1,2,3-triazoles.
Chem. Commun., 2015,
51, 10784-10796.;
(f) John, J.; Thomas, J.; Parekh, N.; Dehaen, W. Tandem organocatalyzed knoevenagel condensation/1,3-dipolar cycloaddition towards highly functionalized fused 1,2,3-triazoles.
Eur. J. Org. Chem., 2015,
2015(22), 4922-4930.
[
http://dx.doi.org/10.1002/ejoc.201500459];
(g) Thomas, J.; Goyvaerts, V.; Liekens, S.; Dehaen, W. Metal-free route for the synthesis of 4-acyl-1,2,3-triazoles from readily available building blocks.
Chem. Eur. J., 2016,
22, 1-6.
[
http://dx.doi.org/10.1002/chem.201601928]
[6]
RoHrig, U.F; Awad, L.; Grosdidier, A.; Larrieu, P.; Stroobant, V.; Colau, D.; Cerundolo, V.; Simpson, A.J.G; Vogel, P.; Van den Eynde, B.J Rational design of indoleamine 2,3-dioxygenase inhibitors. J. Med. Chem., 2010, 53, 1172-1189.
[14]
Wu, L.; Wang, X.; Chen, Y.; Huang, Q.; Lin, Q.; Wu, M. 4-Aryl-NH-1,2,3-triazoles via multicomponent reaction of aldehydes, nitroalkanes, and sodium azide. Synlett, 2016, 27, 437-441.
[15]
Zhang, H.; Dong, D.; Wang, Z.L. Direct synthesis of n-unsubstituted 4-aryl-1,2,3-triazoles mediated by amberlyst-15. Synthesis, 2016, 48, 131-135.
[19]
Garg, A.; Sarma, D.; Ali, A. A. Microwave assisted metal-free approach to access 1,2,3-triazoles through multicomponent synthesis. Curr. Res. Green Sustain. Chem., 2020.