A Computed Tomography-based Radiomics Analysis of Low-energy Proximal Femur Fractures in the Elderly Patients

Page: [222 - 232] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Low-energy proximal femur fractures in elderly patients result from factors, like osteoporosis and falls. These fractures impose high rates of economic and social costs. In this study, we aimed to build predictive models by applying machine learning (ML) methods on radiomics features to predict low-energy proximal femur fractures.

Methods: Computed tomography scans of 40 patients (mean ± standard deviation of age = 71 ± 6) with low-energy proximal femur fractures (before a fracture occurs) and 40 individuals (mean ± standard deviation of age = 73 ± 7) as a control group were included. The regions of interest, including neck, trochanteric, and intertrochanteric, were drawn manually. The combinations of 25 classification methods and 8 feature selection methods were applied to radiomics features extracted from ROIs. Accuracy and the area under the receiver operator characteristic curve (AUC) were used to assess ML models' performance.

Results: AUC and accuracy values ranged from 0.408 to 1 and 0.697 to 1, respectively. Three classification methods, including multilayer perceptron (MLP), sequential minimal optimization (SMO), and stochastic gradient descent (SGD), in combination with the feature selection method, SVM attribute evaluation (SAE), exhibited the highest performance in the neck (AUC = 0.999, 0.971 and 0.971, respectively; accuracy = 0.988, 0.988, and 0.988, respectively) and the trochanteric (AUC = 1, 1 and 1, respectively; accuracy = 1, 1 and 1, respectively) regions. The same methods demonstrated the highest performance for the combination of the 3 ROIs’ features (AUC = 1, 1 and 1, respectively; accuracy =1, 1 and 1, respectively). In the intertrochanteric region, the combination methods, MLP + SAE, SMO + SAE, and SGD + SAE, as well as the combination of the SAE method and logistic regression (LR) classification method exhibited the highest performance (AUC = 1, 1, 1 and 1, respectively; accuracy= 1, 1, 1 and 1, respectively).

Conclusion: Applying machine learning methods to radiomics features is a powerful tool to predict low-energy proximal femur fractures. The results of this study can be verified by conducting more research on bigger datasets.

Graphical Abstract

[1]
Röder, F.; Schwab, M.; Aleker, T.; Mörike, K.; Thon, K.P.; Klotz, U. Proximal femur fracture in older patients - rehabilitation and clinical outcome. Age Ageing, 2003, 32(1), 74-80.
[http://dx.doi.org/10.1093/ageing/32.1.74] [PMID: 12540352]
[2]
Hannan, E.L.; Magaziner, J.; Wang, J.J.; Eastwood, E.A.; Silberzweig, S.B.; Gilbert, M.; Morrison, R.S.; McLaughlin, M.A.; Orosz, G.M.; Siu, A.L. Mortality and locomotion 6 months after hospitalization for hip fracture: risk factors and risk-adjusted hospital outcomes. JAMA, 2001, 285(21), 2736-2742.
[http://dx.doi.org/10.1001/jama.285.21.2736] [PMID: 11386929]
[3]
Parker, M.J.; Pryor, G.A. The timing of surgery for proximal femoral fractures. J. Bone Joint Surg. Br., 1992, 74-B(2), 203-205.
[http://dx.doi.org/10.1302/0301-620X.74B2.1544952] [PMID: 1544952]
[4]
Yoon, B.H.; Lee, Y.K.; Kim, S.C.; Kim, S.H.; Ha, Y.C.; Koo, K.H. Epidemiology of proximal femoral fractures in South Korea. Arch. Osteoporos., 2013, 8(1-2), 157.
[http://dx.doi.org/10.1007/s11657-013-0157-9] [PMID: 24150727]
[5]
Rocha, A.M.; Carvalho, W.S.; Zanqueta, C.; Lemos, S.C. Retrospective epidemiological study of fractures of the proximal femur treated at the Hospital Escola da Faculdade de Medicina do Triângulo Mineiro. Rev. Bras. Ortop., 2001, 36(8), 311-316.
[6]
Dargent-Molina, P.; Favier, F.; Grandjean, H.; Baudoin, C.; Schott, A.M.; Hausherr, E.; Meunier, P.J.; Bréart, G. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. Lancet, 1996, 348(9021), 145-149.
[http://dx.doi.org/10.1016/S0140-6736(96)01440-7] [PMID: 8684153]
[7]
Faulkner, K.G.; Cummings, S.R.; Black, D.; Palermo, L.; Glüer, C.C.; Genant, H.K. Simple measurement of femoral geometry predicts hip fracture: The study of osteoporotic fractures. J. Bone Miner. Res., 1993, 8(10), 1211-1217.
[http://dx.doi.org/10.1002/jbmr.5650081008] [PMID: 8256658]
[8]
Zhu, Y.; Liu, S.; Chen, W.; Liu, B.; Zhang, F.; Lv, H.; Ji, C.; Zhang, X.; Zhang, Y. Epidemiology of low-energy lower extremity fracture in Chinese populations aged 50 years and above. PLoS One, 2019, 14(1), e0209203.
[http://dx.doi.org/10.1371/journal.pone.0209203] [PMID: 30640907]
[9]
Cummings, S.R.; Melton, L.J. Epidemiology and outcomes of osteoporotic fractures. Lancet, 2002, 359(9319), 1761-1767.
[http://dx.doi.org/10.1016/S0140-6736(02)08657-9] [PMID: 12049882]
[10]
Ferizi, U.; Besser, H.; Hysi, P.; Jacobs, J.; Rajapakse, C.S.; Chen, C.; Saha, P.K.; Honig, S.; Chang, G. Artificial Intelligence Applied to osteoporosis: A performance comparison of machine learning algorithms in predicting fragility fractures from MRI data. J. Magn. Reson. Imaging, 2019, 49(4), 1029-1038.
[http://dx.doi.org/10.1002/jmri.26280] [PMID: 30252971]
[11]
Ferizi, U.; Honig, S.; Chang, G. Artificial intelligence, osteoporosis and fragility fractures. Curr. Opin. Rheumatol., 2019, 31(4), 368-375.
[http://dx.doi.org/10.1097/BOR.0000000000000607] [PMID: 31045948]
[12]
Halldorsson, B.V.; Bjornsson, A.H.; Gudmundsson, H.T.; Birgisson, E.O.; Ludviksson, B.R.; Gudbjornsson, B. A clinical decision support system for the diagnosis, fracture risks and treatment of osteoporosis. Comput. Math. Methods Med., 2015, 2015, 189769.
[http://dx.doi.org/10.1155/2015/189769] [PMID: 25815042]
[13]
Deo, R.C. Machine learning in medicine. Circulation, 2015, 132(20), 1920-1930.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.001593] [PMID: 26572668]
[14]
Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine learning for medical imaging. Radiographics, 2017, 37(2), 505-515.
[http://dx.doi.org/10.1148/rg.2017160130] [PMID: 28212054]
[15]
Abdollahi, H.; Mofid, B.; Shiri, I.; Razzaghdoust, A.; Saadipoor, A.; Mahdavi, A.; Galandooz, H.M.; Mahdavi, S.R. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol. Med. (Torino), 2019, 124(6), 555-567.
[http://dx.doi.org/10.1007/s11547-018-0966-4] [PMID: 30607868]
[16]
Abdollahi, H.; Mostafaei, S.; Cheraghi, S.; Shiri, I.; Rabi Mahdavi, S.; Kazemnejad, A. Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: A machine learning and multi-variable modelling study. Phys. Med., 2018, 45, 192-197.
[http://dx.doi.org/10.1016/j.ejmp.2017.10.008] [PMID: 29329660]
[17]
Abdollahi, H.; Shiri, I.; Heydari, M. Medical imaging technologists in radiomics era: An alice in wonderland problem. Iran. J. Public Health, 2019, 48(1), 184-186.
[http://dx.doi.org/10.18502/ijph.v48i1.811] [PMID: 30847331]
[18]
Nazari, M.; Shiri, I.; Hajianfar, G.; Oveisi, N.; Abdollahi, H.; Deevband, M.R.; Oveisi, M.; Zaidi, H. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Radiol. Med. (Torino), 2020, 125(8), 754-762.
[http://dx.doi.org/10.1007/s11547-020-01169-z] [PMID: 32193870]
[19]
Abdollahi, H.; Tanha, K.; Mofid, B.; Razzaghdoust, A.; Saadipoor, A.; Khalafi, L.; Bakhshandeh, M.; Mahdavi, S.R. MRI Radiomic analysis of IMRT-induced bladder wall changes in prostate cancer patients: A relationship with radiation dose and toxicity. J. Med. Imaging Radiat. Sci., 2019, 50(2), 252-260.
[http://dx.doi.org/10.1016/j.jmir.2018.12.002] [PMID: 31176433]
[20]
Abdollahi, H. Radiotherapy dose painting by circadian rhythm based radiomics. Med. Hypotheses, 2019, 133, 109415.
[http://dx.doi.org/10.1016/j.mehy.2019.109415] [PMID: 31586813]
[21]
Burian, E.; Subburaj, K.; Mookiah, M.R.K.; Rohrmeier, A.; Hedderich, D.M.; Dieckmeyer, M.; Diefenbach, M.N.; Ruschke, S.; Rummeny, E.J.; Zimmer, C.; Kirschke, J.S.; Karampinos, D.C.; Baum, T. Texture analysis of vertebral bone marrow using chemical shift encoding–based water-fat MRI: a feasibility study. Osteoporos. Int., 2019, 30(6), 1265-1274.
[http://dx.doi.org/10.1007/s00198-019-04924-9] [PMID: 30903208]
[22]
de Sá Cavalcante. D.; da Silva Castro, M.G.; Quidute, A.R.P.; Martins, M.R.A.; Cid, A.M.P.L.; de Barros Silva, P.G.; Cadwell Williams, J., Jr; Neves, F.S.; Ribeiro, T.R.; Costa, F.W.G. Evaluation of bone texture imaging parameters on panoramic radiographs of patients with Sheehan’s syndrome: a STROBE-compliant case-control study. Osteoporos. Int., 2019, 30(11), 2257-2269.
[http://dx.doi.org/10.1007/s00198-019-05086-4] [PMID: 31372710]
[23]
Kawashima, Y.; Fujita, A.; Buch, K.; Li, B.; Qureshi, M.M.; Chapman, M.N.; Sakai, O. Using texture analysis of head CT images to differentiate osteoporosis from normal bone density. Eur. J. Radiol., 2019, 116, 212-218.
[http://dx.doi.org/10.1016/j.ejrad.2019.05.009] [PMID: 31153568]
[24]
Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and reproducibility of radiomic features: A systematic review. Int. J. Radiat. Oncol. Biol. Phys., 2018, 102(4), 1143-1158.
[http://dx.doi.org/10.1016/j.ijrobp.2018.05.053] [PMID: 30170872]
[25]
Engelke, K. Quantitative computed tomography-current status and new developments. J. Clin. Densitom., 2017, 20(3), 309-321.
[http://dx.doi.org/10.1016/j.jocd.2017.06.017] [PMID: 28712984]
[26]
Lee, D.C.; Hoffmann, P.F.; Kopperdahl, D.L.; Keaveny, T.M. Phantomless calibration of CT scans for measurement of BMD and bone strength—Inter-operator reanalysis precision. Bone, 2017, 103, 325-333.
[http://dx.doi.org/10.1016/j.bone.2017.07.029] [PMID: 28778598]
[27]
Pearce, M.S.; Salotti, J.A.; Little, M.P.; McHugh, K.; Lee, C.; Kim, K.P.; Howe, N.L.; Ronckers, C.M.; Rajaraman, P.; Craft, A.W.; Parker, L. Berrington de González, A. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 2012, 380(9840), 499-505.
[http://dx.doi.org/10.1016/S0140-6736(12)60815-0] [PMID: 22681860]
[28]
Mathews, J.D.; Forsythe, A.V.; Brady, Z.; Butler, M.W.; Goergen, S.K.; Byrnes, G.B.; Giles, G.G.; Wallace, A.B.; Anderson, P.R.; Guiver, T.A.; McGale, P.; Cain, T.M.; Dowty, J.G.; Bickerstaffe, A.C.; Darby, S.C. Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ, 2013, 346(may21 1), f2360.
[http://dx.doi.org/10.1136/bmj.f2360] [PMID: 23694687]
[29]
Zhang, X.; Yan, L.F.; Hu, Y.C.; Li, G.; Yang, Y.; Han, Y.; Sun, Y.Z.; Liu, Z.C.; Tian, Q.; Han, Z.Y.; Liu, L.D.; Hu, B.Q.; Qiu, Z.Y.; Wang, W.; Cui, G.B. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Oncotarget, 2017, 8(29), 47816-47830.
[http://dx.doi.org/10.18632/oncotarget.18001] [PMID: 28599282]
[30]
Saeys, Y.; Inza, I. Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics, 2022, 23(19), 2507-2517.
[http://dx.doi.org/10.1093/bioinformatics/btm344]
[31]
Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology, 2016, 278(2), 563-577.
[http://dx.doi.org/10.1148/radiol.2015151169] [PMID: 26579733]
[32]
Neto, J.S.H.; Dias, C.R.; de Almeida, J.D.B. Epidemiological characteristics and causes of proximal femoral fractures among the elderly. Rev. Bras. Ortop., 2011, 46(6), 660-667.
[http://dx.doi.org/10.1016/S2255-4971(15)30322-0] [PMID: 27027070]
[33]
Fracture of the proximal end of the femur in the elderly: Functional independence and mortality in one year. Rev. Bras. Ortop., 2006, 41(6), 195-199.
[34]
Chen, W.; Lv, H.; Liu, S.; Liu, B.; Zhu, Y.; Chen, X.; Yang, G.; Liu, L.; Zhang, T.; Wang, H.; Yin, B.; Guo, J.; Zhang, X.; Li, Y.; Smith, D.; Hu, P.; Sun, J.; Zhang, Y. National incidence of traumatic fractures in China: a retrospective survey of 512 187 individuals. Lancet Glob. Health, 2017, 5(8), e807-e817.
[http://dx.doi.org/10.1016/S2214-109X(17)30222-X] [PMID: 28666814]
[35]
Valentinitsch, A.; Trebeschi, S.; Kaesmacher, J.; Lorenz, C. Löffler, M.T.; Zimmer, C.; Baum, T.; Kirschke, J.S. Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos. Int., 2019, 30(6), 1275-1285.
[http://dx.doi.org/10.1007/s00198-019-04910-1] [PMID: 30830261]
[36]
Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int., 2014, 25(10), 2359-2381.
[http://dx.doi.org/10.1007/s00198-014-2794-2] [PMID: 25182228]
[37]
Amarnath, A.L.D.; Franks, P.; Robbins, J.A.; Xing, G.; Fenton, J.J. Underuse and overuse of osteoporosis screening in a regional health system: A retrospective cohort study. J. Gen. Intern. Med., 2015, 30(12), 1733-1740.
[http://dx.doi.org/10.1007/s11606-015-3349-8] [PMID: 25986135]
[38]
Miller, R.G.; Ashar, B.H.; Cohen, J.; Camp, M.; Coombs, C.; Johnson, E.; Schneyer, C.R. Disparities in osteoporosis screening between at-risk African-American and white women. J. Gen. Intern. Med., 2005, 20(9), 847-851.
[http://dx.doi.org/10.1111/j.1525-1497.2005.0157.x] [PMID: 16117754]
[39]
Hamrick, I.; Cao, Q.; Agbafe-Mosley, D.; Cummings, D.M. Osteoporosis healthcare disparities in postmenopausal women. J. Womens Health (Larchmt.), 2012, 21(12), 1232-1236.
[http://dx.doi.org/10.1089/jwh.2012.3812] [PMID: 23140203]
[40]
Kaesmacher, J.; Schweizer, C.; Valentinitsch, A.; Baum, T.; Rienmüller, A.; Meyer, B.; Kirschke, J.S.; Ryang, Y.M. Osteoporosis is the most important risk factor for odontoid fractures in the elderly. J. Bone Miner. Res., 2017, 32(7), 1582-1588.
[http://dx.doi.org/10.1002/jbmr.3120] [PMID: 28256741]
[41]
Rastegar, S.; Vaziri, M.; Qasempour, Y.; Akhash, M.R.; Abdalvand, N.; Shiri, I.; Abdollahi, H.; Zaidi, H. Radiomics for classification of bone mineral loss: A machine learning study. Diagn. Interv. Imaging, 2020, 101(9), 599-610.
[http://dx.doi.org/10.1016/j.diii.2020.01.008] [PMID: 32033913]
[42]
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature, 2015, 521(7553), 436-444.
[43]
Wang, Q.; Bhowmik, N.; Breckon, T.P. On the Evaluation of Prohibited Item Classification and Detection in Volumetric 3D Computed Tomography Baggage Security Screening Imagery. International Joint Conference on Neural Networks (IJCNN), Glasgow, UK19-24 July 2020, pp. 1-8.
[http://dx.doi.org/10.1109/IJCNN48605.2020.9207389]
[44]
Wang, Q.; Megherbi, N.; Breckon, T.P. A reference architecture for plausible Threat Image Projection (TIP) within 3D X-ray computed tomography volumes. J. XRay Sci. Technol., 2020, 28(3), 507-526.
[http://dx.doi.org/10.3233/XST-200654] [PMID: 32390645]