Current Materials Science

Author(s): Rama Sharma*

DOI: 10.2174/2666145416666230320155236

Current Trends and Challenges in Explosives Detection using Nanotechnology

Page: [198 - 211] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Objective: This article highlights the applications of nanotechnology in the detection of explosives.

Evidence Acquisition: The increasing rise in terrorist acts throughout the globe has brought attention to the significance of locating hidden bombs and motivated new propelled breakthroughs to ensure public safety. Recognizing explosives and closely related-threatening combinations has already risen to the top of the priority list for contemporary national security and counterterrorism applications. Sensors based on nanotechnology have a fair probability of fulfilling all the criteria needed to be a practical solution for explosive trace detection.

Results: Nanowire/nanotube, nanomechanical devices, and electronic noses are three nanosensor technologies that have the most potential to develop into commercially viable technology platforms for the detection of trace explosives. Certain functionalized nanoparticles can exhibit different behaviors as a result of unique interactions with nitroaromatics. Semiconducting singlewalled carbon nanotubes (SWCNT) have been used as wearable chemical sensors.

Conclusion: In this paper, the potential of nanosensors has been exposed that can be used to build a sensor system with high selectivity and sensitivity and appropriate platforms for signal transduction for the detection of explosives.

Graphical Abstract

[1]
Devi S, Kaur R, Paul AK, Tyagi S. MPA-capped CdSe QD/mercaptoethylamine-capped AuNP nanocomposite-based sensor for instant detection of trinitrotoluene. Colloid Polym Sci 2018; 296(3): 427-40.
[http://dx.doi.org/10.1007/s00396-018-4261-7]
[2]
Kraft M, Marks E. US Government Counterterrorism: A guide to who does what. CRC Press 2011.
[http://dx.doi.org/10.1201/b11296]
[3]
Mohammadzai IU, Ashiuchi T, Tsukahara S, Okamoto Y, Fujiwara T. On-line liquid-liquid extraction coupled to a reversed micellar-mediated chemiluminescence detection system: Application to the determination of amino/nitroaromatic compounds. J Chin Chem Soc 2005; 52(5): 1037-42.
[http://dx.doi.org/10.1002/jccs.200500146]
[4]
Dorsey A, Hodes CS, Richter-Torres P. Toxicological profile for 2, 4, 6-trinitrotoluene. U.S. Department of health and human services 1995.
[5]
van Dillewijn P, Couselo JL, Corredoira E, et al. Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 2008; 42(19): 7405-10.
[http://dx.doi.org/10.1021/es801231w] [PMID: 18939578]
[6]
Lee YH, Liu H, Lee JY, et al. Dipyrenylcalix[4]arene-a fluorescence-based chemosensor for trinitroaromatic explosives. Chemistry 2010; 16(20): 5895-901.
[http://dx.doi.org/10.1002/chem.200903439] [PMID: 20432415]
[7]
Johnson B, Leska I, Medina A, et al. Toward in situ monitoring of water contamination by nitroenergetic compounds. Sensors 2012; 12(11): 14953-67.
[http://dx.doi.org/10.3390/s121114953] [PMID: 23202195]
[8]
Marks P, Cohen S, Levine M. Highly efficient quenching of nanoparticles for the detection of electron-deficient nitroaromatics. J Polym Sci Part A Polym Chem. Wiley Online Library 2013; 51: 4150-5.
[9]
Leahy-Hoppa MR, Fitch MJ, Osiander R. Terahertz spectroscopy techniques for explosives detection. Anal Bioanal Chem 2009; 395(2): 247-57.
[http://dx.doi.org/10.1007/s00216-009-2803-z] [PMID: 19415244]
[10]
Pacheco-Londoño LC, Ortiz-Rivera W, Primera-Pedrozo OM, Hernández-Rivera SP. Vibrational spectroscopy standoff detection of explosives. Anal Bioanal Chem 2009; 395(2): 323-35.
[http://dx.doi.org/10.1007/s00216-009-2954-y] [PMID: 19633965]
[11]
Fountain AW III, Christesen SD, Moon RP, Guicheteau JA, Emmons ED. Recent advances and remaining challenges for the spectroscopic detection of explosive threats. Appl Spectrosc 2014; 68(8): 795-811.
[http://dx.doi.org/10.1366/14-07560] [PMID: 25061781]
[12]
Xu S, Lu H, Li J, et al. Dummy molecularly imprinted polymers-capped CdTe quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl Mater Interfaces 2013; 5(16): 8146-54.
[http://dx.doi.org/10.1021/am4022076] [PMID: 23876063]
[13]
Dasary SSR, Singh AK, Senapati D, Yu H, Ray PC. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J Am Chem Soc 2009; 131(38): 13806-12.
[http://dx.doi.org/10.1021/ja905134d] [PMID: 19736926]
[14]
Devi S, Singh B, Paul AK, Tyagi S. Highly sensitive and selective detection of trinitrotoluene using cysteine-capped gold nanoparticles. Anal Methods. Royal Soc Chem 2016; 8: 4398-405.
[15]
Lin D, Liu H, Qian K, Zhou X, Yang L, Liu J. Ultrasensitive optical detection of trinitrotoluene by ethylenediamine-capped gold nanoparticles. Anal Chim Acta 2012; 744: 92-8.
[http://dx.doi.org/10.1016/j.aca.2012.07.029]
[16]
Feng L, Wang C, Ma Z, Lü C. 8-Hydroxyquinoline functionalized ZnS nanoparticles capped with amine groups: A fluorescent nanosensor for the facile and sensitive detection of TNT through fluorescence resonance energy transfer. Dyes Pigments 2013; 97(1): 84-91.
[http://dx.doi.org/10.1016/j.dyepig.2012.11.023]
[17]
Carrillo-Carrión C, Simonet BM, Valcárcel M. Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots. Anal Chim Acta 2013; 792: 93-100.
[18]
Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid Chem Commun. Royal Society of Chemistry 2009; pp. 3880-2.
[19]
Chen PC, Sukcharoenchoke S, Ryu K, et al. 2,4,6-Trinitrotoluene (TNT) chemical sensing based on aligned single-walled carbon nanotubes and ZnO nanowires. Adv Mater 2010; 22(17): 1900-4.
[http://dx.doi.org/10.1002/adma.200904005] [PMID: 20340140]
[20]
Wang J, Hocevar SB, Ogorevc B. Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2, 4, 6-trinitrotoluene. Electrochem Commun 2004; 6: 176-9.
[21]
Fang X, Ahmad SR. Detection of explosive vapour using surface-enhanced Raman spectroscopy. Appl Phys B 2009; 97: 723-6.
[http://dx.doi.org/10.1007/s00340-009-3644-3]
[22]
Wackerbarth H, Salb C, Gundrum L, et al. Detection of explosives based on surface-enhanced Raman spectroscopy. Appl Opt Optica Publishing Group 2010; 49(23): 4362-6.
[PMID: 20697437]
[23]
Wackerbarth H, Gundrum L, Salb C, Christou K, Viöl W. Challenge of false alarms in nitroaromatic explosive detection-a detection device based on surface-enhanced Raman spectroscopy. Appl Opt Optica Publishing Group 2010; 49(23): 4367-71.
[PMID: 20697438]
[24]
Colton RJ, Russell JN Jr. Making the world a safer place. Science 2003; 299(5611): 1324-5.
[http://dx.doi.org/10.1126/science.1080688]
[25]
Hallowell S. Screening people for illicit substances: A survey of current portal technology. Talanta 2001; 54(3): 447-58.
[http://dx.doi.org/10.1016/S0039-9140(00)00543-9] [PMID: 18968270]
[26]
Fainberg A. Explosives detection for aviation security. Science 1992; 255(5051): 1531-7.
[http://dx.doi.org/10.1126/science.255.5051.1531] [PMID: 17820164]
[27]
Yinon J. Detection of explosives by mass spectrometry.In:Counterterrorist Detection Techniques of Explosives. Elsevier Science B.V. 2007; pp. 41-59.
[http://dx.doi.org/10.1016/B978-044452204-7/50021-3]
[28]
Woodfin RL. Trace chemical sensing of explosives. John Wiley & Sons 2006.
[http://dx.doi.org/10.1002/0470085207]
[29]
Steinfeld JI, Wormhoudt J. Explosives detection: A challenge for physical chemistry. Annu Rev Phys Chem 1998; 49: 203-32.
[http://dx.doi.org/10.1146/annurev.physchem.49.1.203]
[30]
Singh S. Sensors—an effective approach for the detection of explosives. J Hazard Mater 2007; 144: 15-28.
[31]
Moore DS. Instrumentation for trace detection of high explosives. Rev Sci Instruments 2004; 75(8): 2499-512.
[32]
Kolla P. The application of analytical methods to the detection of hidden explosives and explosive devices. Angew Chemie Int Ed English. Wiley Online Library 1997; 36: 800-11.
[33]
Furton K, Myers LJ. The scientific foundation and efficacy of the use of canines as chemical detectors for explosives. Talanta 2001; 54(3): 487-500.
[http://dx.doi.org/10.1016/S0039-9140(00)00546-4] [PMID: 18968273]
[34]
kkS Federal C Current Operating Statistics. 2002.
[35]
Dionne BC, Rounbehler DP, Achter EK, Hobbs JR, Fine DH. Vapor pressure of explosives. J Energ Mater 1986; 4: 447-72.
[36]
Pella PA. Measurement of the vapor pressures of TNT, 2, 4-DNT, 2, 6-DNT, and EGDN. J Chem Thermodyn 1977; 9: 301-5.
[37]
Matzke CM, Kottenstette RJ, Casalnuovo SA, et al. Microfabricated silicon gas chromatographic microchannels: fabrication and performance. Micromach Microfabr Process Technol 1998; IV: 262-8.
[38]
Lu CJ, Whiting J, Sacks RD, Zellers ET. Portable gas chromatograph with tunable retention and sensor array detection for determination of complex vapor mixtures. Anal Chem 2003; 75(6): 1400-9.
[http://dx.doi.org/10.1021/ac026092n] [PMID: 12659202]
[39]
Potkay JA, Driscoll JA, Agah M, Sacks RD, Wise KD. A high-performance microfabricated gas chromatography column. In: Sixt Annu Int Conf Micro Electro Mech Syst 2003 MEMS-03 Kyoto IEEE. 2003; pp. 395-8.
[http://dx.doi.org/10.1109/MEMSYS.2003.1189769]
[40]
Voiculescu I, Mcgill RA, Zaghloul ME, et al. Micropreconcentrator for enhanced trace detection of explosives and chemical agents. IEEE Sens J 2006; 6(5): 1094-104.
[http://dx.doi.org/10.1109/JSEN.2006.881431]
[41]
Walt DR. Electronic Noses: Wake Up and Smell the Coffee. Anal Chem 2005; 77(3): 45A.
[42]
Hsieh MD, Zellers ET. Limits of recognition for simple vapor mixtures determined with a microsensor array. Anal Chem 2004; 76(7): 1885-95.
[http://dx.doi.org/10.1021/ac035294w] [PMID: 15053648]
[43]
Sheehan PE, Whitman LJ. Detection limits for nanoscale biosensors. Nano Lett 2005; 5(4): 803-7.
[http://dx.doi.org/10.1021/nl050298x] [PMID: 15826132]
[44]
Pinnaduwage LA, Boiadjiev V, Hawk JE, Thundat T. Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers. Appl Phys Lett 2003; 83(7): 1471-3.
[45]
Zuo G, Li X, Zhang Z, et al. Dual-SAM functionalization on integrated cantilevers for specific trace-explosive sensing and non-specific adsorption suppression. Nanotechnology 2007; 18: 255501.
[46]
Houser E, Mlsna TE, Nguyen VK, Chung R, Mowery RL, Andrew McGill R. Rational materials design of sorbent coatings for explosives: Applications with chemical sensors. Talanta 2001; 54(3): 469-85.
[http://dx.doi.org/10.1016/S0039-9140(00)00545-2] [PMID: 18968272]
[47]
McCluskey A, Holdsworth CI, Bowyer MC. Molecularly imprinted polymers (MIPs): Sensing, an explosive new opportunity? Org Biomol Chem 2007; 5(20): 3233-44.
[http://dx.doi.org/10.1039/b708660a] [PMID: 17912377]
[48]
Walker NR, Linman MJ, Timmers MM, et al. Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol-gel sensing films. Anal Chim Acta 2007; 593: 82-91.
[49]
Yinon J. Peer reviewed: detection of explosives by electronic noses. Anal Chem 2005; 75(5): 98A-105A.
[50]
Stitzel SE, Cowen LJ, Albert KJ, Walt DR. Array-to-array transfer of an artificial nose classifier. Anal Chem 2001; 73(21): 5266-71.
[http://dx.doi.org/10.1021/ac010111w] [PMID: 11721928]
[51]
Koscho ME, Grubbs RH, Lewis NS. Properties of vapor detector arrays formed through plasticization of carbon black-organic polymer composites. Anal Chem 2002; 74(6): 1307-15.
[http://dx.doi.org/10.1021/ac011054+] [PMID: 11922298]
[52]
Wohltjen H, Dessy R. Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description. Anal Chem 1979; 51(9): 1458-64.
[http://dx.doi.org/10.1021/ac50045a024]
[53]
Manasa NL. Nano sensors and pattern recognition for detection of hidden explosives. Proc Second Int Conf Inf Commun Technol Compet Strateg 1-6 INCOMPLETE.
[http://dx.doi.org/10.1145/2905055.2905218]
[54]
Holmberg M, Artursson T. Drift compensation, standards, and calibration methods Handb Mach Olfaction Electron Nose Technol. Wiley Online Library 2002; pp. 325-46.
[55]
Albert KJ, Lewis NS, Schauer CL, et al. Cross-reactive chemical sensor arrays. Chem Rev 2000; 100(7): 2595-626.
[http://dx.doi.org/10.1021/cr980102w] [PMID: 11749297]
[56]
James D, Scott SM, Ali Z, O’Hare WT. Chemical sensors for electronic nose systems. Mikrochim Acta 2005; 149(1-2): 1-17.
[http://dx.doi.org/10.1007/s00604-004-0291-6]
[57]
Hsieh M-D, Zellers ET. Adaptation and evaluation of a personal electronic nose for selective multivapor analysis. J Occup Environ Hyg 2004; 1: 149-60.
[58]
Archibald R, Datskos P, Devault G, et al. Independent component analysis of nanomechanical responses of cantilever arrays. Anal Chim Acta 2007; 584: 101-5.
[http://dx.doi.org/10.1016/j.aca.2006.11.007]
[59]
Patolsky F, Lieber CM. Nanowire nanosensors. Nanowire nanosensors 2005; 8(4): 20-8.
[http://dx.doi.org/10.1016/S1369-7021(05)00791-1]
[60]
Grobert N. Carbon nanotubes-becoming clean. Mater Today 2007; 10(1-2): 28-35.
[61]
Allen BL, Kichambare PD, Star A. Carbon nanotube field-effect-transistor-based biosensors. Adv Mater Wiley Online Library 2007; 19: 1439-51.
[62]
Cui Y, Duan X, Huang Y, Lieber CM. Nanowires and Nanobelts: Materials, Properties and Devices Kluwer Academic. INCOMPLETE 2003.
[63]
Wang ZL. Nanostructures of zinc oxide. Mater Today 2004; 7: 26-33.
[http://dx.doi.org/10.1016/S1369-7021(04)00286-X]
[64]
Xie C, Zhang Z, Wang D, Guan G, Gao D, Liu J. Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal Chem 2006; 78(24): 8339-46.
[http://dx.doi.org/10.1021/ac0615044] [PMID: 17165825]
[65]
Forzani ES, Li X, Zhang P, et al. Tuning the chemical selectivity of SWNT-FETs for detection of heavy-metal ions. Small 2006; 2(11): 1283-91.
[http://dx.doi.org/10.1002/smll.200600185] [PMID: 17192975]
[66]
Kong J, Chapline MG, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater 2001; 13(18): 1384-6.
[http://dx.doi.org/10.1002/1521-4095(200109)13:18<1384:AID-ADMA1384>3.0.CO;2-8]
[67]
Datskos PG, Thundat T, Lavrik NV. In Nalwa HS (Ed) Encyclopedia of Nanoscience and Nanotechnology. American Scientific Stevenson Ranch, CA, USA, X:. 2004; pp. 1-10.
[68]
Senesac L, Thundat TG. Nanosensors for trace explosive detection. Mater Today 2008; 11: 28-36.
[http://dx.doi.org/10.1016/S1369-7021(08)70017-8]
[69]
Nelson IC, Banerjee D, Rogers WJ, Mannan MS. Detection of explosives using heated microcantilever sensors. Micro Nanotechnol Sp Appl 2006; pp. 163-70.
[http://dx.doi.org/10.1117/12.666339]
[70]
Pinnaduwage LA, Wig A, Hedden DL, et al. Detection of trinitrotoluene via deflagration on a microcantilever. J Appl Phys 2004; 95: 5871-5.
[71]
Pinnaduwage LA, Gehl A, Hedden DL, et al. A microsensor for trinitrotoluene vapour. Nature 2003; 425: 474.
[PMID: 14523436]
[72]
Barnes JR, Stephenson RJ, Welland ME, Gerber C, Gimzewski JK. Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device. Nature 1994; 372: 79-81.
[73]
Datskos PG, Rajic S, Sepaniak MJ, et al. Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices. J Vac Sci Technol B Microelectron Nanom Struct Process Meas Phenom 2001; 19: 1173-9.
[74]
Datskos PG, Sepaniak MJ, Tipple CA, Lavrik N. Photomechanical chemical microsensors. Sensors Actuators B Chem 2001; 76: 393-402.
[http://dx.doi.org/10.1016/S0925-4005(01)00647-5]
[75]
Zhou Q, Swager TM. Fluorescent chemosensors based on energy migration in conjugated polymers: The molecular wire approach to increased sensitivity. J Am Chem Soc 1995; 117(50): 12593-602.
[http://dx.doi.org/10.1021/ja00155a023]
[76]
Yang J-S, Swager TM. Porous shape persistent fluorescent polymer films: An approach to TNT sensory materials. J Am Chem Soc 1998; 120: 5321-2.
[77]
Yang J-S, Swager TM. Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects. J Am Chem Soc 1998; 120(46): 11864-73.
[78]
Toal SJ, Trogler WC. Polymer sensors for nitroaromatic explosives detection. J Mater Chem 2006; 16: 2871-83.
[79]
Lu Q, Collins GE, Smith M, Wang J. Sensitive capillary electrophoresis microchip determination of trinitroaromatic explosives in nonaqueous electrolyte following solid phase extraction. Anal Chim Acta 2002; 469: 253-60.
[http://dx.doi.org/10.1016/S0003-2670(02)00662-1]
[80]
Wang J, Thongngamdee S. On-line electrochemical monitoring of (TNT) 2, 4, 6-trinitrotoluene in natural waters. Anal Chim Acta 2003; 485: 139-44.
[81]
Muthukumar K. Detection of improvised explosive devices using nanotechnology. AJES 2012; 1: 11.
[82]
Guill J V. The Nose Knows: Developing Advanced Chemical Sensors for the Remote Detection of Improvised Explosive Devices in 2030. 2009.
[83]
Pekarek J, Ficek R, Vrba R, Magat M. Electrodes modified by carbon nanotubes for pressure measuring. 2009 32nd Int Spring Semin. Electron Technol 2009; 629-33.
[84]
New nanomaterial can detect and neutralize explosives Available from: https://www.sciencedaily.com/releases/2011/03/110331191514.html [Accessed: January 8, 2023]