[4]
Dorsey A, Hodes CS, Richter-Torres P. Toxicological profile for 2, 4, 6-trinitrotoluene. U.S. Department of health and human services 1995.
[8]
Marks P, Cohen S, Levine M. Highly efficient quenching of nanoparticles for the detection of electron-deficient nitroaromatics. J Polym Sci Part A Polym Chem. Wiley Online Library 2013; 51: 4150-5.
[14]
Devi S, Singh B, Paul AK, Tyagi S. Highly sensitive and selective detection of trinitrotoluene using cysteine-capped gold nanoparticles. Anal Methods. Royal Soc Chem 2016; 8: 4398-405.
[17]
Carrillo-Carrión C, Simonet BM, Valcárcel M. Determination of TNT explosive based on its selectively interaction with creatinine-capped CdSe/ZnS quantum dots. Anal Chim Acta 2013; 792: 93-100.
[18]
Yang H, Shan C, Li F, Han D, Zhang Q, Niu L. Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid Chem Commun. Royal Society of Chemistry 2009; pp. 3880-2.
[20]
Wang J, Hocevar SB, Ogorevc B. Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2, 4, 6-trinitrotoluene. Electrochem Commun 2004; 6: 176-9.
[30]
Singh S. Sensors—an effective approach for the detection of explosives. J Hazard Mater 2007; 144: 15-28.
[31]
Moore DS. Instrumentation for trace detection of high explosives. Rev Sci Instruments 2004; 75(8): 2499-512.
[32]
Kolla P. The application of analytical methods to the detection of hidden explosives and explosive devices. Angew Chemie Int Ed English. Wiley Online Library 1997; 36: 800-11.
[34]
kkS Federal C Current Operating Statistics. 2002.
[35]
Dionne BC, Rounbehler DP, Achter EK, Hobbs JR, Fine DH. Vapor pressure of explosives. J Energ Mater 1986; 4: 447-72.
[36]
Pella PA. Measurement of the vapor pressures of TNT, 2, 4-DNT, 2, 6-DNT, and EGDN. J Chem Thermodyn 1977; 9: 301-5.
[37]
Matzke CM, Kottenstette RJ, Casalnuovo SA, et al. Microfabricated silicon gas chromatographic microchannels: fabrication and performance. Micromach Microfabr Process Technol 1998; IV: 262-8.
[41]
Walt DR. Electronic Noses: Wake Up and Smell the Coffee. Anal Chem 2005; 77(3): 45A.
[44]
Pinnaduwage LA, Boiadjiev V, Hawk JE, Thundat T. Sensitive detection of plastic explosives with self-assembled monolayer-coated microcantilevers. Appl Phys Lett 2003; 83(7): 1471-3.
[45]
Zuo G, Li X, Zhang Z, et al. Dual-SAM functionalization on integrated cantilevers for specific trace-explosive sensing and non-specific adsorption suppression. Nanotechnology 2007; 18: 255501.
[48]
Walker NR, Linman MJ, Timmers MM, et al. Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol-gel sensing films. Anal Chim Acta 2007; 593: 82-91.
[49]
Yinon J. Peer reviewed: detection of explosives by electronic noses. Anal Chem 2005; 75(5): 98A-105A.
[54]
Holmberg M, Artursson T. Drift compensation, standards, and calibration methods Handb Mach Olfaction Electron Nose Technol. Wiley Online Library 2002; pp. 325-46.
[57]
Hsieh M-D, Zellers ET. Adaptation and evaluation of a personal electronic nose for selective multivapor analysis. J Occup Environ Hyg 2004; 1: 149-60.
[60]
Grobert N. Carbon nanotubes-becoming clean. Mater Today 2007; 10(1-2): 28-35.
[61]
Allen BL, Kichambare PD, Star A. Carbon nanotube field-effect-transistor-based biosensors. Adv Mater Wiley Online Library 2007; 19: 1439-51.
[62]
Cui Y, Duan X, Huang Y, Lieber CM. Nanowires and Nanobelts: Materials, Properties and Devices Kluwer Academic. INCOMPLETE 2003.
[67]
Datskos PG, Thundat T, Lavrik NV. In Nalwa HS (Ed) Encyclopedia of Nanoscience and Nanotechnology. American Scientific Stevenson Ranch, CA, USA, X:. 2004; pp. 1-10.
[70]
Pinnaduwage LA, Wig A, Hedden DL, et al. Detection of trinitrotoluene via deflagration on a microcantilever. J Appl Phys 2004; 95: 5871-5.
[72]
Barnes JR, Stephenson RJ, Welland ME, Gerber C, Gimzewski JK. Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device. Nature 1994; 372: 79-81.
[73]
Datskos PG, Rajic S, Sepaniak MJ, et al. Chemical detection based on adsorption-induced and photoinduced stresses in microelectromechanical systems devices. J Vac Sci Technol B Microelectron Nanom Struct Process Meas Phenom 2001; 19: 1173-9.
[76]
Yang J-S, Swager TM. Porous shape persistent fluorescent polymer films: An approach to TNT sensory materials. J Am Chem Soc 1998; 120: 5321-2.
[77]
Yang J-S, Swager TM. Fluorescent porous polymer films as TNT chemosensors: Electronic and structural effects. J Am Chem Soc 1998; 120(46): 11864-73.
[78]
Toal SJ, Trogler WC. Polymer sensors for nitroaromatic explosives detection. J Mater Chem 2006; 16: 2871-83.
[80]
Wang J, Thongngamdee S. On-line electrochemical monitoring of (TNT) 2, 4, 6-trinitrotoluene in natural waters. Anal Chim Acta 2003; 485: 139-44.
[81]
Muthukumar K. Detection of improvised explosive devices using nanotechnology. AJES 2012; 1: 11.
[82]
Guill J V. The Nose Knows: Developing Advanced Chemical Sensors for the Remote Detection of Improvised Explosive Devices in 2030. 2009.
[83]
Pekarek J, Ficek R, Vrba R, Magat M. Electrodes modified by carbon nanotubes for pressure measuring. 2009 32nd Int Spring Semin. Electron Technol 2009; 629-33.