Diverse Role of SNARE Protein GS28 in Vesicle Trafficking and Diseases

Page: [288 - 295] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Golgi SNARE, with a size of 28 kD (GS28), is a transmembrane protein and mainly localizes to the Golgi apparatus. It is considered a core part of the Golgi SNARE complex in the Endoplasmic Reticulum (ER)-Golgi transport and regulates the docking and fusion of transport vesicles effectively. In recent years, increasing studies have indicated that various intracellular transport events are regulated by different GS28-based SNARE complexes. Moreover, GS28 is also involved in numerous functional signaling pathways related to different diseases via interacting with other SNARE proteins and affecting protein maturation and secretion. However, the precise function of GS28 in different disease models and the regulatory network remains unclear. In this review, we mainly provide a concise overview of the function and regulation of GS28 in vesicle trafficking and diseases and summarize the signaling pathways regarding potential mechanisms. Although some critical points about the significance of GS28 in disease treatment still need further investigation, more reliable biotechnical or pharmacological strategies may be developed based on a better understanding of the diverse role of GS28 in vesicle trafficking and other biological processes.

Graphical Abstract

[1]
Deng, S.; Liu, J.; Wu, X.; Lu, W. Golgi apparatus: A potential therapeutic target for autophagy-associated neurological diseases. Front. Cell Dev. Biol., 2020, 8, 564975.
[http://dx.doi.org/10.3389/fcell.2020.564975] [PMID: 33015059]
[2]
Tao, Y.; Yang, Y.; Zhou, R.; Gong, T. Golgi apparatus: An emerging platform for innate immunity. Trends Cell Biol., 2020, 30(6), 467-477.
[http://dx.doi.org/10.1016/j.tcb.2020.02.008] [PMID: 32413316]
[3]
He, Q.; Liu, H.; Deng, S.; Chen, X.; Li, D.; Jiang, X.; Zeng, W.; Lu, W. The golgi apparatus may be a potential therapeutic target for apoptosis-related neurological diseases. Front. Cell Dev. Biol., 2020, 8, 830.
[http://dx.doi.org/10.3389/fcell.2020.00830] [PMID: 33015040]
[4]
Ravichandran, Y.; Goud, B.; Manneville, J.B. The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the Golgi matrix, and Golgi membranes. Curr. Opin. Cell Biol., 2020, 62, 104-113.
[http://dx.doi.org/10.1016/j.ceb.2019.10.003] [PMID: 31751898]
[5]
Yoon, T.Y.; Munson, M. SNARE complex assembly and disassembly. Curr. Biol., 2018, 28(8), R397-R401.
[http://dx.doi.org/10.1016/j.cub.2018.01.005] [PMID: 29689222]
[6]
Wang, T.; Li, L.; Hong, W. SNARE proteins in membrane trafficking. Traffic, 2017, 18(12), 767-775.
[http://dx.doi.org/10.1111/tra.12524] [PMID: 28857378]
[7]
Cosson, P.; Ravazzola, M.; Varlamov, O.; Söllner, T.H.; Di Liberto, M.; Volchuk, A.; Rothman, J.E.; Orci, L. Dynamic transport of SNARE proteins in the Golgi apparatus. Proc. Natl. Acad. Sci., 2005, 102(41), 14647-14652.
[http://dx.doi.org/10.1073/pnas.0507394102] [PMID: 16199514]
[8]
Subramaniam, V.N.; Krijnse-Locker, J.; Tang, B.L.; Ericsson, M.; Yusoff, A.R.; Griffiths, G.; Hong, W. Monoclonal antibody HFD9 identifies a novel 28 kDa integral membrane protein on the cis-Golgi. J. Cell Sci., 1995, 108(6), 2405-2414.
[http://dx.doi.org/10.1242/jcs.108.6.2405] [PMID: 7545686]
[9]
Subramaniam, V.N.; Peter, F.; Philp, R.; Wong, S.H.; Hong, W. GS28, a 28-kilodalton Golgi SNARE that participates in ER-Golgi transport. Science, 1996, 272(5265), 1161-1163.
[http://dx.doi.org/10.1126/science.272.5265.1161] [PMID: 8638159]
[10]
Tian, S.; Muneeruddin, K.; Choi, M.Y.; Tao, L.; Bhuiyan, R.H.; Ohmi, Y.; Furukawa, K.; Furukawa, K.; Boland, S.; Shaffer, S.A.; Adam, R.M.; Dong, M. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol., 2018, 16(11), e2006951.
[http://dx.doi.org/10.1371/journal.pbio.2006951] [PMID: 30481169]
[11]
Sakuma, C.; Sekizuka, T.; Kuroda, M.; Hanada, K.; Yamaji, T. Identification of SYS1 as a host factor required for shiga toxin-mediated cytotoxicity in vero cells. Int. J. Mol. Sci., 2021, 22(9), 4936.
[http://dx.doi.org/10.3390/ijms22094936] [PMID: 34066520]
[12]
Kerins, M.J.; Liu, P.; Tian, W.; Mannheim, W.; Zhang, D.D.; Ooi, A. Genome-wide CRISPR screen reveals autophagy disruption as the convergence mechanism that regulates the nrf2 transcription factor. Mol. Cell. Biol., 2019, 39(13), e00037-e19.
[http://dx.doi.org/10.1128/MCB.00037-19] [PMID: 31010806]
[13]
Nagahama, M.; Orci, L.; Ravazzola, M.; Amherdt, M.; Lacomis, L.; Tempst, P.; Rothman, J.E.; Söllner, T.H. A v-SNARE implicated in intra-Golgi transport. J. Cell Biol., 1996, 133(3), 507-516.
[http://dx.doi.org/10.1083/jcb.133.3.507] [PMID: 8636227]
[14]
Mao, M.; Fu, G.; Wu, J.S.; Zhang, Q.H.; Zhou, J.; Kan, L.X.; Huang, Q.H.; He, K.L.; Gu, B.W.; Han, Z.G.; Shen, Y.; Gu, J.; Yu, Y.P.; Xu, S.H.; Wang, Y.X.; Chen, S.J.; Chen, Z. Identification of genes expressed in human CD34 + hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning. Proc. Natl. Acad. Sci., 1998, 95(14), 8175-8180.
[http://dx.doi.org/10.1073/pnas.95.14.8175] [PMID: 9653160]
[15]
Bui, T.D.; Levy, E.R.; Subramaniam, V.N.; Lowe, S.L.; Hong, W. cDNA characterization and chromosomal mapping of human golgi SNARE GS27 and GS28 to chromosome 17. Genomics, 1999, 57(2), 285-288.
[http://dx.doi.org/10.1006/geno.1998.5649] [PMID: 10198168]
[16]
Elias, E.V.; Quiroga, R.; Gottig, N.; Nakanishi, H.; Nash, T.E.; Neiman, A.; Lujan, H.D. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J. Biol. Chem., 2008, 283(51), 35996-36010.
[http://dx.doi.org/10.1074/jbc.M806545200] [PMID: 18930915]
[17]
Dingjan, I.; Linders, P.T.A.; Verboogen, D.R.J.; Revelo, N.H.; ter Beest, M.; van den Bogaart, G. Endosomal and phagosomal SNAREs. Physiol. Rev., 2018, 98(3), 1465-1492.
[http://dx.doi.org/10.1152/physrev.00037.2017] [PMID: 29790818]
[18]
Rosenbaum, E.E.; Vasiljevic, E.; Cleland, S.C.; Flores, C.; Colley, N.J. The Gos28 SNARE protein mediates intra-Golgi transport of rhodopsin and is required for photoreceptor survival. J. Biol. Chem., 2014, 289(47), 32392-32409.
[http://dx.doi.org/10.1074/jbc.M114.585166] [PMID: 25261468]
[19]
Fasshauer, D.; Sutton, R.B.; Brunger, A.T.; Jahn, R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci., 1998, 95(26), 15781-15786.
[http://dx.doi.org/10.1073/pnas.95.26.15781] [PMID: 9861047]
[20]
Bock, J.B.; Matern, H.T.; Peden, A.A.; Scheller, R.H. A genomic perspective on membrane compartment organization. Nature, 2001, 409(6822), 839-841.
[http://dx.doi.org/10.1038/35057024] [PMID: 11237004]
[21]
Jahn, R.; Scheller, R.H. SNAREs-engines for membrane fusion. Nat. Rev. Mol. Cell Biol., 2006, 7(9), 631-643.
[http://dx.doi.org/10.1038/nrm2002] [PMID: 16912714]
[22]
Fusella, A.; Micaroni, M.; Di Giandomenico, D.; Mironov, A.A.; Beznoussenko, G.V. Segregation of the Qb-SNAREs GS27 and GS28 into Golgi vesicles regulates intra-Golgi transport. Traffic, 2013, 14(5), 568-584.
[http://dx.doi.org/10.1111/tra.12055] [PMID: 23387339]
[23]
Song, H.; Wickner, W. A short region upstream of the yeast vacuolar Qa-SNARE heptad-repeats promotes membrane fusion through enhanced SNARE complex assembly. Mol. Biol. Cell, 2017, 28(17), 2282-2289.
[http://dx.doi.org/10.1091/mbc.e17-04-0218] [PMID: 28637767]
[24]
Parlati, F.; McNew, J.A.; Fukuda, R.; Miller, R.; Söllner, T.H.; Rothman, J.E. Topological restriction of SNARE-dependent membrane fusion. Nature, 2000, 407(6801), 194-198.
[http://dx.doi.org/10.1038/35025076] [PMID: 11001058]
[25]
Nishimura, T.; Uchida, Y.; Yachi, R.; Kudlyk, T.; Lupashin, V.; Inoue, T.; Taguchi, T.; Arai, H. Oxysterol-binding protein (OSBP) is required for the perinuclear localization of intra-Golgi v-SNAREs. Mol. Biol. Cell, 2013, 24(22), 3534-3544.
[http://dx.doi.org/10.1091/mbc.e13-05-0250] [PMID: 24048449]
[26]
Sagiv, Y.; Legesse-Miller, A.; Porat, A.; Elazar, Z. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. EMBO J., 2000, 19(7), 1494-1504.
[http://dx.doi.org/10.1093/emboj/19.7.1494] [PMID: 10747018]
[27]
Shorter, J.; Beard, M.B.; Seemann, J.; Dirac-Svejstrup, A.B.; Warren, G. Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J. Cell Biol., 2002, 157(1), 45-62.
[http://dx.doi.org/10.1083/jcb.200112127] [PMID: 11927603]
[28]
Parlati, F.; Varlamov, O.; Paz, K.; McNew, J.A.; Hurtado, D.; Söllner, T.H.; Rothman, J.E. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc. Natl. Acad. Sci., 2002, 99(8), 5424-5429.
[http://dx.doi.org/10.1073/pnas.082100899] [PMID: 11959998]
[29]
Xu, Y.; Martin, S.; James, D.E.; Hong, W. GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. Mol. Biol. Cell, 2002, 13(10), 3493-3507.
[http://dx.doi.org/10.1091/mbc.e02-01-0004] [PMID: 12388752]
[30]
Siddiqi, S.; Mani, A.M.; Siddiqi, S.A. The identification of the SNARE complex required for the fusion of VLDL-transport vesicle with hepatic cis -Golgi. Biochem. J., 2010, 429(2), 391-401.
[http://dx.doi.org/10.1042/BJ20100336] [PMID: 20450495]
[31]
Volchuk, A.; Ravazzola, M.; Perrelet, A.; Eng, W.S.; Di Liberto, M.; Varlamov, O.; Fukasawa, M.; Engel, T.; Söllner, T.H.; Rothman, J.E.; Orci, L. Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack. Mol. Biol. Cell, 2004, 15(4), 1506-1518.
[http://dx.doi.org/10.1091/mbc.e03-08-0625] [PMID: 14742712]
[32]
Hay, J.C.; Klumperman, J.; Oorschot, V.; Steegmaier, M.; Kuo, C.S.; Scheller, R.H. Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs. J. Cell Biol., 1998, 141(7), 1489-1502.
[http://dx.doi.org/10.1083/jcb.141.7.1489] [PMID: 9647643]
[33]
Tai, G.; Lu, L.; Wang, T.L.; Tang, B.L.; Goud, B.; Johannes, L.; Hong, W. Participation of the syntaxin 5/Ykt6/GS28/GS15 SNARE complex in transport from the early/recycling endosome to the trans-Golgi network. Mol. Biol. Cell, 2004, 15(9), 4011-4022.
[http://dx.doi.org/10.1091/mbc.e03-12-0876] [PMID: 15215310]
[34]
Inoue, H.; Tani, K.; Tagaya, M. SNARE-associated proteins and receptor trafficking. Receptors Clin. Investig., 2016, 3, e1377.
[35]
Zhang, T.; Hong, W. Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport. J. Biol. Chem., 2001, 276(29), 27480-27487.
[http://dx.doi.org/10.1074/jbc.M102786200] [PMID: 11323436]
[36]
Hay, J.C.; Chao, D.S.; Kuo, C.S.; Scheller, R.H. Protein interactions regulating vesicle transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Cell, 1997, 89(1), 149-158.
[http://dx.doi.org/10.1016/S0092-8674(00)80191-9] [PMID: 9094723]
[37]
Subramaniam, V.N.; Loh, E.; Hong, W. N-Ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment proteins (SNAP) mediate dissociation of GS28-syntaxin 5 Golgi SNAP receptors (SNARE) complex. J. Biol. Chem., 1997, 272(41), 25441-25444.
[http://dx.doi.org/10.1074/jbc.272.41.25441] [PMID: 9325254]
[38]
Müller, J.M.M.; Shorter, J.; Newman, R.; Deinhardt, K.; Sagiv, Y.; Elazar, Z.; Warren, G.; Shima, D.T. Sequential SNARE disassembly and GATE-16–GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion. J. Cell Biol., 2002, 157(7), 1161-1173.
[http://dx.doi.org/10.1083/jcb.200202082] [PMID: 12070132]
[39]
Oka, T.; Ungar, D.; Hughson, F.M.; Krieger, M. The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol. Biol. Cell, 2004, 15(5), 2423-2435.
[http://dx.doi.org/10.1091/mbc.e03-09-0699] [PMID: 15004235]
[40]
Zolov, S.N.; Lupashin, V.V. Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J. Cell Biol., 2005, 168(5), 747-759.
[http://dx.doi.org/10.1083/jcb.200412003] [PMID: 15728195]
[41]
Steet, R.; Kornfeld, S. COG-7-deficient human fibroblasts exhibit altered recycling of golgi proteins. Mol. Biol. Cell, 2006, 17(5), 2312-2321.
[http://dx.doi.org/10.1091/mbc.e05-08-0822] [PMID: 16510524]
[42]
Laufman, O.; Freeze, H.H.; Hong, W.; Lev, S. Deficiency of the Cog8 subunit in normal and CDG-derived cells impairs the assembly of the COG and Golgi SNARE complexes. Traffic, 2013, 14(10), 1065-1077.
[http://dx.doi.org/10.1111/tra.12093] [PMID: 23865579]
[43]
Zhong, W.; Zhou, Y.; Li, S.; Zhou, T.; Ma, H.; Wei, K.; Li, H.; Olkkonen, V.M.; Yan, D. OSBP-related protein 7 interacts with GATE-16 and negatively regulates GS28 protein stability. Exp. Cell Res., 2011, 317(16), 2353-2363.
[http://dx.doi.org/10.1016/j.yexcr.2011.05.028] [PMID: 21669198]
[44]
Hall, A.M.; Krishnamoorthy, L.; Orlow, S.J. 25-hydroxycholesterol acts in the Golgi compartment to induce degradation of tyrosinase. Pigment Cell Res., 2004, 17(4), 396-406.
[http://dx.doi.org/10.1111/j.1600-0749.2004.00161.x] [PMID: 15250942]
[45]
Chen, Y.C.; Umanah, G.K.E.; Dephoure, N.; Andrabi, S.A.; Gygi, S.P.; Dawson, T.M.; Dawson, V.L.; Rutter, J.M. sp1/ATAD 1 maintains mitochondrial function by facilitating the degradation of mislocalized tail‐anchored proteins. EMBO J., 2014, 33(14), 1548-1564.
[http://dx.doi.org/10.15252/embj.201487943] [PMID: 24843043]
[46]
Sun, N.K.; Huang, S.L.; Chien, K.Y.; Chao, C.C.K. Golgi-SNARE GS28 potentiates cisplatin-induced apoptosis by forming GS28–MDM2–p53 complexes and by preventing the ubiquitination and degradation of p53. Biochem. J., 2012, 444(2), 303-314.
[http://dx.doi.org/10.1042/BJ20112223] [PMID: 22397410]
[47]
Cho, U.; Kim, H.M.; Park, H.S.; Kwon, O.J.; Lee, A.; Jeong, S.W. Nuclear expression of GS28 protein: A novel biomarker that predicts worse prognosis in cervical cancers. PLoS One, 2016, 11(9), e0162623.
[http://dx.doi.org/10.1371/journal.pone.0162623] [PMID: 27611086]
[48]
Lee, S.H.; Yoo, H.J.; Rim, D.E.; Cui, Y.; Lee, A.; Jung, E.S.; Oh, S.T.; Kim, J.G.; Kwon, O.J.; Kim, S.Y.; Jeong, S.W. Nuclear expression of GS28 protein: A novel biomarker that predicts prognosis in colorectal cancers. Int. J. Med. Sci., 2017, 14(6), 515-522.
[http://dx.doi.org/10.7150/ijms.19368] [PMID: 28638266]
[49]
Lee, H.O.; Byun, Y.J.; Cho, K.O.; Kim, S.Y.; Lee, S.B.; Kim, H.S.; Kwon, O.J.; Jeong, S.W. GS28 protects neuronal cell death induced by hydrogen peroxide under glutathione-depleted condition. Korean J. Physiol. Pharmacol., 2011, 15(3), 149-156.
[http://dx.doi.org/10.4196/kjpp.2011.15.3.149] [PMID: 21860593]
[50]
Rim, D.E.; Yoo, H.J.; Lee, J.H.; Kwon, O.J.; Jeong, S.W. Role of GS28 in sodium nitroprusside‐induced cell death in cervical carcinoma cells. J. Biochem. Mol. Toxicol., 2019, 33(8), e22348.
[http://dx.doi.org/10.1002/jbt.22348] [PMID: 31066958]
[51]
Iżykowska, K.; Zawada, M.; Nowicka, K.; Grabarczyk, P.; Braun, F.C.M.; Delin, M.; Möbs, M.; Beyer, M.; Sterry, W.; Schmidt, C.A.; Przybylski, G.K. Identification of multiple complex rearrangements associated with deletions in the 6q23-27 region in Sézary syndrome. J. Invest. Dermatol., 2013, 133(11), 2617-2625.
[http://dx.doi.org/10.1038/jid.2013.188] [PMID: 23698072]
[52]
Bellouze, S.; Baillat, G.; Buttigieg, D.; de la Grange, P.; Rabouille, C.; Haase, G. Stathmin 1/2-triggered microtubule loss mediates Golgi fragmentation in mutant SOD1 motor neurons. Mol. Neurodegener., 2016, 11(1), 43.
[http://dx.doi.org/10.1186/s13024-016-0111-6] [PMID: 27277231]
[53]
Wang, L.; Huang, J.; Jiang, M.; Lin, H. Signal transducer and activator of transcription 2 (STAT2) metabolism coupling postmitotic outgrowth to visual and sound perception network in human left cerebrum by biocomputation. J. Mol. Neurosci., 2012, 47(3), 649-658.
[http://dx.doi.org/10.1007/s12031-011-9702-4] [PMID: 22219046]
[54]
Morris, S.; Geoghegan, N.D.; Sadler, J.B.A.; Koester, A.M.; Black, H.L.; Laub, M.; Miller, L.; Heffernan, L.; Simpson, J.C.; Mastick, C.C.; Cooper, J.; Gadegaard, N.; Bryant, N.J.; Gould, G.W. Characterisation of GLUT4 trafficking in HeLa cells: Comparable kinetics and orthologous trafficking mechanisms to 3T3-L1 adipocytes. PeerJ, 2020, 8, e8751.
[http://dx.doi.org/10.7717/peerj.8751] [PMID: 32185116]
[55]
Taimor, G.; Schlüter, K.D.; Piper, H.M. Hypertrophy-associated gene induction after beta-adrenergic stimulation in adult cardiomyocytes. J. Mol. Cell. Cardiol., 2001, 33(3), 503-511.
[http://dx.doi.org/10.1006/jmcc.2000.1324] [PMID: 11181018]
[56]
Isali, I.; Mahran, A.; Khalifa, A.O.; Sheyn, D.; Neudecker, M.; Qureshi, A.; Conroy, B.; Schumacher, F.R.; Hijaz, A.K.; El-Nashar, S.A. Gene expression in stress urinary incontinence: A systematic review. Int. Urogynecol. J. Pelvic Floor Dysfunct., 2020, 31(1), 1-14.
[http://dx.doi.org/10.1007/s00192-019-04025-5] [PMID: 31312847]
[57]
Maekawa, M.; Inoue, T.; Kobuna, H.; Nishimura, T.; Gengyo-Ando, K.; Mitani, S.; Arai, H. Functional analysis of GS28, an intra-Golgi SNARE, in Caenorhabditis elegans. Genes Cells, 2009, 14(8), 1003-1013.
[http://dx.doi.org/10.1111/j.1365-2443.2009.01325.x] [PMID: 19624756]
[58]
Stuart, L.M.; Boulais, J.; Charriere, G.M.; Hennessy, E.J.; Brunet, S.; Jutras, I.; Goyette, G.; Rondeau, C.; Letarte, S.; Huang, H.; Ye, P.; Morales, F.; Kocks, C.; Bader, J.S.; Desjardins, M.; Ezekowitz, R.A.B. A systems biology analysis of the Drosophila phagosome. Nature, 2007, 445(7123), 95-101.
[http://dx.doi.org/10.1038/nature05380] [PMID: 17151602]
[59]
Yun, C.W.; Jeon, J.; Go, G.; Lee, J.H.; Lee, S.H. The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. Int. J. Mol. Sci., 2020, 22(1), 179.
[http://dx.doi.org/10.3390/ijms22010179] [PMID: 33375363]
[60]
Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer, 2020, 19(1), 12.
[http://dx.doi.org/10.1186/s12943-020-1138-4] [PMID: 31969156]
[61]
Yun, C.; Lee, S. The roles of autophagy in cancer. Int. J. Mol. Sci., 2018, 19(11), 3466.
[http://dx.doi.org/10.3390/ijms19113466] [PMID: 30400561]
[62]
Mathew, R.; Karp, C.M.; Beaudoin, B.; Vuong, N.; Chen, G.; Chen, H.Y.; Bray, K.; Reddy, A.; Bhanot, G.; Gelinas, C.; DiPaola, R.S.; Karantza-Wadsworth, V.; White, E. Autophagy suppresses tumorigenesis through elimination of p62. Cell, 2009, 137(6), 1062-1075.
[http://dx.doi.org/10.1016/j.cell.2009.03.048] [PMID: 19524509]
[63]
Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; Wang, X.; He, C.; Pan, H. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis., 2013, 4(10), e838.
[http://dx.doi.org/10.1038/cddis.2013.350] [PMID: 24113172]
[64]
Quan, Y.; Lei, H.; Wahafu, W.; Liu, Y.; Ping, H.; Zhang, X. Inhibition of autophagy enhances the anticancer effect of enzalutamide on bladder cancer. Biomed. Pharmacother., 2019, 120, 109490.
[http://dx.doi.org/10.1016/j.biopha.2019.109490] [PMID: 31574376]
[65]
Li, G.M.; Li, L.; Li, M.Q.; Chen, X.; Su, Q.; Deng, Z.J.; Liu, H.B.; Li, B.; Zhang, W.H.; Jia, Y.X.; Wang, W.J.; Ma, J.Y.; Zhang, H.L.; Xie, D.; Zhu, X.F.; He, Y.L.; Guan, X.Y.; Bi, J. DAPK3 inhibits gastric cancer progression via activation of ULK1-dependent autophagy. Cell Death Differ., 2021, 28(3), 952-967.
[http://dx.doi.org/10.1038/s41418-020-00627-5] [PMID: 33037394]