NRSN2 is a Prognostic Biomarker in Gastric Cancer and Facilitates the Growth and Migration of Gastric Cancer Cells

Page: [427 - 438] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Neurensin-2 (NRSN2) is reported to be associated with the progression of many tumors. This work aimed at investigating the biological function and prognostic significance of NRSN2 in gastric cancer (GC).

Methods: NRSN2 expression in various cancer tissue was analyzed by the TIMER database. NRSN2 expression in GC tissue samples of different groups was analyzed by the UALCAN database. The survival analysis was performed with the Kaplan-Meier database. NRSN2 expression in GC tissues and cell lines was measured by qRT-PCR and Western blot. CCK-8, Transwell and scratch healing assays were conducted to detect the proliferative, migrative and invasive capabilities of GC cells, respectively. The LinkedOmics database and StarBase database were utilized to analyze the related genes with NRSN2 in GC. The association of NRSN2 expression with tumor immune infiltrating cells and molecular markers of immune cells was investigated with the TIMER database.

Results: NRSN2 expression was up-regulated in GC tissues, which was correlated with GC tumor grade, lymph node metastasis, and TP53 mutation. The prognosis of GC patients with high NRSN2 expression was worse than those of the patients with low NRSN2 expression. NRSN2 expression was also associated with the TNM stage, and Lauren subtype of GC patients. NRSN2 overexpression promoted the growth, migration and invasion of GC cells lines; knocking down NRSN2 worked oppositely. NRSN2 expression in GC was associated with Wnt, p53, and NOD-like receptor signaling pathways. NRSN2 expression was also significantly associated with the infiltration of CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in the GC microenvironment.

Conclusion: NRSN2 expression in GC tissues is up-regulated, which correlates with a poor prognosis and immune cell infiltration of GC patients. NRSN2 facilitates the growth and aggressiveness of GC cells, implying that it may be a diagnostic biomarker and therapy target for GC.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Strong, V.E.; Wu, A.; Selby, L.V.; Gonen, M.; Hsu, M.; Song, K.Y.; Park, C.H.; Coit, D.G.; Ji, J.; Brennan, M.F. Differences in gastric cancer survival between the U.S. and China. J. Surg. Oncol., 2015, 112(1), 31-37.
[http://dx.doi.org/10.1002/jso.23940] [PMID: 26175203]
[3]
Guan, Z.; Chen, J.; Li, X.; Dong, N. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci. Rep., 2020, 40(8)BSR20201807
[http://dx.doi.org/10.1042/BSR20201807] [PMID: 32776119]
[4]
Shi, C.; Li, J.; Wu, L. The effect of data diversity on the performance of deep learning models for predicting early gastric cancer under endoscopy. J. Digit. Health, 2022, 1(1), 19-24.
[http://dx.doi.org/10.55976/jdh.1202214319-24]
[5]
Cavatorta, O.; Scida, S.; Miraglia, C.; Barchi, A.; Nouvenne, A.; Leandro, G.; Meschi, T. De’ Angelis, G.L.; Di Mario, F. Epidemiology of gastric cancer and risk factors. Acta Biomed., 2018, 89(8-S), 82-87.
[PMID: 30561423]
[6]
Matsuoka, T.; Yashiro, M. Biomarkers of gastric cancer: Current topics and future perspective. World J. Gastroenterol., 2018, 24(26), 2818-2832.
[http://dx.doi.org/10.3748/wjg.v24.i26.2818] [PMID: 30018477]
[7]
An, Y.; Amr, S.S.; Torres, A.; Weissman, L.; Raffalli, P.; Cox, G.; Sheng, X.; Lip, V.; Bi, W.; Patel, A.; Stankiewicz, P.; Wu, B.L.; Shen, Y. SOX12 and NRSN2 are candidate genes for 20p13 subtelomeric deletions associated with developmental delay. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2013, 162(8), 832-840.
[http://dx.doi.org/10.1002/ajmg.b.32187] [PMID: 24019301]
[8]
Zhang, X.Y.; Kuang, J.L.; Yan, C.S.; Tu, X.Y.; Zhao, J.H.; Cheng, X.S.; Ye, X.Q. NRSN2 promotes non-small cell lung cancer cell growth through PI3K/Akt/mTOR pathway. Int. J. Clin. Exp. Pathol., 2015, 8(3), 2574-2581.
[PMID: 26045763]
[9]
Wang, X.; Han, L.; Zhang, J.; Xia, Q. Down-regulated NRSN2 promotes cell proliferation and survival through PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Dig. Dis. Sci., 2015, 60(10), 3011-3018.
[http://dx.doi.org/10.1007/s10620-015-3736-3] [PMID: 26055238]
[10]
Tang, W.; Ren, A.; Xiao, H.; Sun, H.; Li, B. Highly expressed NRSN2 is related to malignant phenotype in ovarian cancer. Biomed. Pharmacother., 2017, 85, 248-255.
[http://dx.doi.org/10.1016/j.biopha.2016.11.012] [PMID: 27908706]
[11]
Keremu, A.; Aila, P.; Tusun, A.; Abulikemu, M.; Zou, X. Extracellular vesicles from bone mesenchymal stem cells transport microRNA-206 into osteosarcoma cells and target NRSN2 to block the ERK1/2-Bcl-xL signaling pathway. Eur. J. Histochem., 2022, 66(3), 3394.
[http://dx.doi.org/10.4081/ejh.2022.3394] [PMID: 35730574]
[12]
Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res., 2017, 77(21), e108-e110.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0307] [PMID: 29092952]
[13]
Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 2017, 19(8), 649-658.
[http://dx.doi.org/10.1016/j.neo.2017.05.002] [PMID: 28732212]
[14]
Szász, A.M.; Lánczky, A.; Nagy, Á.; Förster, S.; Hark, K.; Green, J.E.; Boussioutas, A.; Busuttil, R.; Szabó, A. Győrffy, B. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget, 2016, 7(31), 49322-49333.
[http://dx.doi.org/10.18632/oncotarget.10337] [PMID: 27384994]
[15]
Vasaikar, S.V.; Straub, P.; Wang, J.; Zhang, B. LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res., 2018, 46(D1), D956-D963.
[http://dx.doi.org/10.1093/nar/gkx1090] [PMID: 29136207]
[16]
Baniak, N.; Senger, J.L.; Ahmed, S.; Kanthan, S.C.; Kanthan, R. Gastric biomarkers: A global review. World J. Surg. Oncol., 2016, 14(1), 212.
[http://dx.doi.org/10.1186/s12957-016-0969-3] [PMID: 27514667]
[17]
Shimada, H.; Noie, T.; Ohashi, M.; Oba, K.; Takahashi, Y. Clinical significance of serum tumor markers for gastric cancer: A systematic review of literature by the task force of the japanese gastric cancer association. Gastric Cancer, 2014, 17(1), 26-33.
[http://dx.doi.org/10.1007/s10120-013-0259-5] [PMID: 23572188]
[18]
Niclauss, N.; Gütgemann, I.; Dohmen, J.; Kalff, J.C.; Lingohr, P. Novel biomarkers of gastric adenocarcinoma: Current research and future perspectives. Cancers, 2021, 13(22), 5660.
[http://dx.doi.org/10.3390/cancers13225660] [PMID: 34830815]
[19]
Ma, H.Q.; Liang, X.T.; Zhao, J.J.; Wang, H.; Sun, J.C.; Chen, Y.B.; Pan, K.; Xia, J.C. Decreased expression of Neurensin-2 correlates with poor prognosis in hepatocellular carcinoma. World J. Gastroenterol., 2009, 15(38), 4844-4848.
[http://dx.doi.org/10.3748/wjg.15.4844] [PMID: 19824122]
[20]
Nakanishi, K.; Ida, M.; Suzuki, H.; Kitano, C.; Yamamoto, A.; Mori, N.; Araki, M.; Taketani, S. Molecular characterization of a transport vesicle protein Neurensin-2, a homologue of Neurensin-1, expressed in neural cells. Brain Res., 2006, 1081(1), 1-8.
[http://dx.doi.org/10.1016/j.brainres.2006.01.085] [PMID: 16527258]
[21]
Keremu, A.; Maimaiti, X.; Aimaiti, A.; Yushan, M.; Alike, Y.; Yilihamu, Y.; Yusufu, A. NRSN2 promotes osteosarcoma cell proliferation and growth through PI3K/Akt/MTOR and Wnt/β-catenin signaling. Am. J. Cancer Res., 2017, 7(3), 565-573.
[PMID: 28401012]
[22]
Ren, F.; Zhang, W.; Lu, S.; Ren, H.; Guo, Y. NRSN2 promotes breast cancer metastasis by activating PI3K/AKT/mTOR and NF-κB signaling pathways. Oncol. Lett., 2020, 19(1), 813-823.
[PMID: 31885716]
[23]
Yan, Z.; Xu, T.; Lu, J.; Wu, Z.; Li, X.; Xu, J.; Guo, W.; Dong, Z. E2F1-activated NRSN2 promotes esophageal squamous cell carcinoma progression through AKT/mTOR pathway. Pathol. Res. Pract., 2022, 236153963
[http://dx.doi.org/10.1016/j.prp.2022.153963] [PMID: 35662041]
[24]
Wang, G.; Yang, K. Neurensin 2 promotes proliferation, invasion and migration of colorectal cancer cells via interaction with SOX12. Oncol. Lett., 2020, 20(6), 1.
[http://dx.doi.org/10.3892/ol.2020.12252] [PMID: 33193849]
[25]
Till, J.E.; Yoon, C.; Kim, B.J.; Roby, K.; Addai, P.; Jonokuchi, E.; Tang, L.H.; Yoon, S.S.; Ryeom, S. Oncogenic KRAS and p53 loss drive gastric tumorigenesis in mice that can be attenuated by e-cadherin expression. Cancer Res., 2017, 77(19), 5349-5359.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0061] [PMID: 28760854]
[26]
Qiao, Y.; Li, T.; Zheng, S.; Wang, H. The Hippo pathway as a drug target in gastric cancer. Cancer Lett., 2018, 420, 14-25.
[http://dx.doi.org/10.1016/j.canlet.2018.01.062] [PMID: 29408652]
[27]
Yang, M.; Huang, C.Z. Mitogen-activated protein kinase signaling pathway and invasion and metastasis of gastric cancer. World J. Gastroenterol., 2015, 21(41), 11673-11679.
[http://dx.doi.org/10.3748/wjg.v21.i41.11673] [PMID: 26556994]
[28]
Tanaka, A.; Sakaguchi, S. Regulatory T cells in cancer immunotherapy. Cell Res., 2017, 27(1), 109-118.
[http://dx.doi.org/10.1038/cr.2016.151] [PMID: 27995907]
[29]
Franklin, R.A.; Liao, W.; Sarkar, A.; Kim, M.V.; Bivona, M.R.; Liu, K.; Pamer, E.G.; Li, M.O. The cellular and molecular origin of tumor-associated macrophages. Science, 2014, 344(6186), 921-925.
[http://dx.doi.org/10.1126/science.1252510] [PMID: 24812208]
[30]
Liu, Y.; Cao, X. The origin and function of tumor-associated macrophages. Cell. Mol. Immunol., 2015, 12(1), 1-4.
[http://dx.doi.org/10.1038/cmi.2014.83] [PMID: 25220733]
[31]
Raggi, C.; Mousa, H.S.; Correnti, M.; Sica, A.; Invernizzi, P. Cancer stem cells and tumor-associated macrophages: A roadmap for multitargeting strategies. Oncogene, 2016, 35(6), 671-682.
[http://dx.doi.org/10.1038/onc.2015.132] [PMID: 25961921]
[32]
Xiao, Y.; Zhang, H.; Du, G.; Meng, X.; Wu, T.; Zhou, Q.; Wang, Y.; Tan, B. RAI14 is a prognostic biomarker and correlated with immune cell infiltrates in gastric cancer. Technol. Cancer Res. Treat., 2020, 191533033820970684
[http://dx.doi.org/10.1177/1533033820970684] [PMID: 33176601]
[33]
Gao, J.; Zheng, Q.; Xin, N.; Wang, W.; Zhao, C. CD 155, an oncoimmunologic molecule in human tumors. Cancer Sci., 2017, 108(10), 1934-1938.
[http://dx.doi.org/10.1111/cas.13324] [PMID: 28730595]
[34]
Hagan, N.; Kane, J.L.; Grover, D.; Woodworth, L.; Madore, C.; Saleh, J.; Sancho, J.; Liu, J.; Li, Y.; Proto, J.; Zelic, M.; Mahan, A.; Kothe, M.; Scholte, A.A.; Fitzgerald, M.; Gisevius, B.; Haghikia, A.; Butovsky, O.; Ofengeim, D. CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis., 2020, 11(10), 904.
[http://dx.doi.org/10.1038/s41419-020-03084-7] [PMID: 33097690]