Cardiovascular & Hematological Agents in Medicinal Chemistry

Author(s): Aleksey Michailovich Chaulin*

DOI: 10.2174/1871525721666230314101019

The Negative Effects of Statin Drugs on Cardiomyocytes: Current Review of Laboratory and Experimental Data (Mini-Review)

Page: [7 - 16] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Statin drugs have long been used as a key component of lipid-lowering therapy, which is necessary for the prevention and treatment of atherosclerosis and cardiovascular diseases. Many studies focus on finding and refining new effects of statin drugs. In addition to the main lipidlowering effect (blocking cholesterol synthesis), statin drugs have a number of pleiotropic effects, including negative effects. The main beneficial effects of statin drugs on the components of the cardiovascular system are: anti-ischemic, antithrombotic, anti-apoptotic, antioxidant, endothelioprotective, anti-inflammatory properties, and a number of other beneficial effects. Due to these effects, statin drugs are considered one of the main therapeutic agents for the management of patients with cardiovascular pathologies. To date, many review manuscripts have been published on the myotoxicity, hepatotoxicity, nephrotoxicity, neurotoxicity and diabetogenic effects of statins. However, there are no review manuscripts considering the negative effect of statin drugs on myocardial contractile cells (cardiomyocytes). The purpose of this review is to discuss the negative effects of statin drugs on cardiomyocytes. Special attention is paid to the cardiotoxic action of statin drugs on cardiomyocytes and the mechanisms of increased serum levels of cardiac troponins. In the process of preparing this review, a detailed analysis of laboratory and experimental data devoted to the study of the negative effects of statin drugs on cardiomyocytes was carried out. The literature search was carried out with the keywords: statin drugs, negative effects, mechanisms, cardiac troponins, oxidative stress, apoptosis. Thus, statin drugs can have a number of negative effects on cardiomyocytes, in particular, increased oxidative stress, endoplasmic reticulum stress, damage to mitochondria and intercalated discs, and inhibition of glucose transport into cardiomyocytes. Additional studies are needed to confirm and clarify the mechanisms and clinical consequences of the negative effects of statin drugs on cardiomyocytes.

Graphical Abstract

[1]
Ageev, A.K. Life and career of N. N. Anichkov--outstanding Soviet pathologist (on the 30th anniversary of the electron of N. N. Anichkov to the presidency of the Academy of Medical Sciences of the USSR). Arkh. Patol., 1977, 39(4), 85-89.
[PMID: 327986]
[2]
Klimov, A.N.; Sinitsyna, T.A.; Nagornev, V.A. Development of the ideas of N. N. Anichkov at the present stage of our knowledge about atherosclerosis. Arkh. Patol., 1975, 37(11), 3-16.
[PMID: 57767]
[3]
Endo, A. A historical perspective on the discovery of statins. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2010, 86(5), 484-493.
[http://dx.doi.org/10.2183/pjab.86.484] [PMID: 20467214]
[4]
Nair, P.K.; Mulukutla, S.R.; Marroquin, O.C. Stents and statins: History, clinical outcomes and mechanisms. Expert Rev. Cardiovasc. Ther., 2010, 8(9), 1283-1295.
[http://dx.doi.org/10.1586/erc.10.113] [PMID: 20828351]
[5]
Endo, A. The discovery and development of HMG-CoA reductase inhibitors. Atheroscler. Suppl., 2004, 5(3), 67-80.
[http://dx.doi.org/10.1016/j.atherosclerosissup.2004.08.026] [PMID: 15531278]
[6]
Chou, R.; Dana, T.; Blazina, I.; Daeges, M.; Jeanne, T.L. Statins for prevention of cardiovascular disease in adults. JAMA, 2016, 316(19), 2008-2024.
[http://dx.doi.org/10.1001/jama.2015.15629] [PMID: 27838722]
[7]
Jin, J. Statins for the prevention of cardiovascular disease. JAMA, 2022, 328(8), 786.
[http://dx.doi.org/10.1001/jama.2022.13493] [PMID: 35997728]
[8]
Berthold, H.K.; Gouni-Berthold, I. Lipid-lowering drug therapy in elderly patients. Curr. Pharm. Des., 2011, 17(9), 877-893.
[http://dx.doi.org/10.2174/138161211795428803] [PMID: 21418034]
[9]
Mikhail, N. Effects of evolocumab on cardiovascular events. Curr. Cardiol. Rev., 2017, 13(4), 319-324.
[http://dx.doi.org/10.2174/1573403X13666170918165713] [PMID: 28925859]
[10]
Wang, Y.; Liu, Z.P. PCSK9 inhibitors: Novel therapeutic strategies for lowering ldlcholesterol. Mini Rev. Med. Chem., 2018, 19(2), 165-176.
[http://dx.doi.org/10.2174/1389557518666180423111442] [PMID: 29692249]
[11]
Farnier, M.; Colhoun, H.M.; Sasiela, W.J.; Edelberg, J.M.; Asset, G.; Robinson, J.G. Long-term treatment adherence to the proprotein convertase subtilisin/kexin type 9 inhibitor alirocumab in 6 ODYSSEY Phase III clinical studies with treatment duration of 1 to 2 years. J. Clin. Lipidol., 2017, 11(4), 986-997.
[http://dx.doi.org/10.1016/j.jacl.2017.05.016] [PMID: 28693998]
[12]
Yurtseven, E.; Ural, D.; Baysal, K.; Tokgözoğlu, L. An update on the role of PCSK9 in atherosclerosis. J. Atheroscler. Thromb., 2020, 27(9), 909-918.
[http://dx.doi.org/10.5551/jat.55400] [PMID: 32713931]
[13]
Chaulin, A.M. Hypolipidemic drugs inhibiting the proprotein convertase of subtilisin/kexin type 9 (PCSK9): Monoclonal antibodies, antisense oligonucleotides, small interfering ribonucleic acids. Rev. Clinic. Pharmacol. Drug Therapy, 2021, 19(1), 37-46.
[http://dx.doi.org/10.17816/RCF19137-46]
[14]
Arrieta, A.; Page, T.F.; Veledar, E. Nasir, K Economic evaluation of PCSK9 inhibitors in reducing cardiovascular risk from health system and private payer perspectives. PLoS One, 2017, 12(1), e0169761.
[http://dx.doi.org/10.1371/journal.pone.0169761]
[15]
Lardizabal, J.A.; Deedwania, P.C. The anti-ischemic and anti-anginal properties of statins. Curr. Atheroscler. Rep., 2011, 13(1), 43-50.
[http://dx.doi.org/10.1007/s11883-010-0147-y] [PMID: 21107759]
[16]
Phillip Owens, A., III; Mackman, N. The antithrombotic effects of statins. Annu. Rev. Med., 2014, 65(1), 433-445.
[http://dx.doi.org/10.1146/annurev-med-051812-145304] [PMID: 24422578]
[17]
Tursunova, N.V.; Klinnikova, M.G.; Babenko, O.A.; Lushnikova, E.L. Molecular mechanisms of the cardiotoxic action of anthracycline antibiotics and statin-induced cytoprotective reactions of cardiomyocytes. Biomed. Khim., 2020, 66(5), 357-371.
[http://dx.doi.org/10.18097/pbmc20206605357]
[18]
Tanaka, K.; Honda, M.; Takabatake, T. Anti-apoptotic effect of atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, on cardiac myocytes through protein kinase C activation. Clin. Exp. Pharmacol. Physiol., 2004, 31(5-6), 360-364.
[http://dx.doi.org/10.1111/j.1440-1681.2004.04010.x] [PMID: 15191412]
[19]
Koushki, K.; Shahbaz, S.K.; Mashayekhi, K.; Sadeghi, M.; Zayeri, Z.D.; Taba, M.Y.; Banach, M.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Anti-inflammatory action of statins in cardiovascular disease: The role of inflammasome and toll-like receptor pathways. Clin. Rev. Allergy Immunol., 2021, 60(2), 175-199.
[http://dx.doi.org/10.1007/s12016-020-08791-9] [PMID: 32378144]
[20]
Karahalil, B.; Hare, E.; Koç, G.; Uslu, İ.; Şentürk, K.; Özkan, Y. Hepatotoxicity associated with statins. Arh. Hig. Rada Toksikol., 2017, 68(4), 254-260.
[http://dx.doi.org/10.1515/aiht-2017-68-2994] [PMID: 29337684]
[21]
Carmena, R.; Betteridge, D.J. Diabetogenic action of statins: Mechanisms. Curr. Atheroscler. Rep., 2019, 21(6), 23.
[http://dx.doi.org/10.1007/s11883-019-0780-z] [PMID: 31037345]
[22]
Betteridge, D.J.; Carmena, R. The diabetogenic action of statins — mechanisms and clinical implications. Nat. Rev. Endocrinol., 2016, 12(2), 99-110.
[http://dx.doi.org/10.1038/nrendo.2015.194] [PMID: 26668119]
[23]
Auer, J.; Sinzinger, H.; Franklin, B.; Berent, R. Muscle- and skeletal-related side-effects of statins: tip of the iceberg? Eur. J. Prev. Cardiol., 2016, 23(1), 88-110.
[http://dx.doi.org/10.1177/2047487314550804] [PMID: 25230981]
[24]
Rojas-Fernandez, C.; Hudani, Z.; Bittner, V. Statins and cognitive side effects: What cardiologists need to know. Cardiol. Clin., 2015, 33(2), 245-256.
[http://dx.doi.org/10.1016/j.ccl.2015.02.008] [PMID: 25939297]
[25]
2022.Available from,
[27]
Sirtori, C.R. The pharmacology of statins. Pharmacol. Res., 2014, 88, 3-11.
[http://dx.doi.org/10.1016/j.phrs.2014.03.002] [PMID: 24657242]
[28]
Wierzbicki, A.S. Synthetic statins: More data on newer lipid-lowering agents. Curr. Med. Res. Opin., 2001, 17(1), 74-77.
[http://dx.doi.org/10.1185/03007990152005388] [PMID: 11464449]
[29]
Selvasudha, N.; Koumaravelou, K. Statin induced myotoxicity and its consequences - an overview. Int. J. Pharm. Sci. Res., 2016, 7(8), 3197-07.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.7(8).3197-07]
[30]
Cham, S.; Evans, M.A.; Denenberg, J.O.; Golomb, B.A. Statin-associated muscle-related adverse effects: A case series of 354 patients. Pharmacotherapy, 2010, 30(6), 541-553.
[http://dx.doi.org/10.1592/phco.30.6.541] [PMID: 20500044]
[31]
Chaulin, A.M.; Duplyakov, D.V. Cardiac troponins: Current data on the diagnostic value and analytical characteristics of new determination methods. Cor Vasa, 2021, 63(4), 486-493.
[http://dx.doi.org/10.33678/cor.2021.041]
[32]
Chaulin, A.; Duplyakov, D. Analytical Review of Modern Information on the Physiological and Pathochemical Mechanisms of the Release of Cardiospecific Proteins from Muscle Tissue, Methodology and Technologies of Their Research, Interpretation of the Results. Laboratory Diagnostics. Eastern Europe., 2022, 11(1), 78-97.
[http://dx.doi.org/10.34883/PI.2022.11.1.018]
[33]
Cummins, B.; Auckland, M.L.; Cummins, P. Cardiac-specific troponin-l radioimmunoassay in the diagnosis of acute myocardial infarction. Am. Heart J., 1987, 113(6), 1333-1344.
[http://dx.doi.org/10.1016/0002-8703(87)90645-4] [PMID: 3591601]
[34]
Katus, H.; Remppis, A.; Looser, S.; Hallermeier, K.; Scheffold, T.; Kübler, W. Enzyme linked immuno assay of cardiac troponin T for the detection of acute myocardial infarction in patients. J. Mol. Cell. Cardiol., 1989, 21(12), 1349-1353.
[http://dx.doi.org/10.1016/0022-2828(89)90680-9] [PMID: 2632816]
[35]
Chaulin, A. Cardiac troponins: Contemporary biological data and new methods of determination. Vasc. Health Risk Manag., 2021, 17, 299-316.
[http://dx.doi.org/10.2147/VHRM.S300002] [PMID: 34113117]
[36]
Westermann, D.; Neumann, J.T.; Sörensen, N.A.; Blankenberg, S. High-sensitivity assays for troponin in patients with cardiac disease. Nat. Rev. Cardiol., 2017, 14(8), 472-483.
[http://dx.doi.org/10.1038/nrcardio.2017.48] [PMID: 28383022]
[37]
Chaulin, A. Clinical and diagnostic value of highly sensitive cardiac troponins in arterial hypertension. Vasc. Health Risk Manag., 2021, 17, 431-443.
[http://dx.doi.org/10.2147/VHRM.S315376] [PMID: 34366667]
[38]
Garcia-Osuna, A.; Gaze, D.; Grau-Agramunt, M.; Morris, T.; Telha, C.; Bartolome, A.; Bishop, J.J.; Monsalve, L.; Livingston, R.; Estis, J.; Nolan, N.; Sandlund, J.; Ordonez-Llanos, J. Ultrasensitive quantification of cardiac troponin I by a Single Molecule Counting method: Analytical validation and biological features. Clin. Chim. Acta, 2018, 486, 224-231.
[http://dx.doi.org/10.1016/j.cca.2018.08.015] [PMID: 30110608]
[39]
Gore, M.O.; Seliger, S.L.; deFilippi, C.R.; Nambi, V.; Christenson, R.H.; Hashim, I.A.; Hoogeveen, R.C.; Ayers, C.R.; Sun, W.; McGuire, D.K.; Ballantyne, C.M.; de Lemos, J.A. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J. Am. Coll. Cardiol., 2014, 63(14), 1441-1448.
[http://dx.doi.org/10.1016/j.jacc.2013.12.032] [PMID: 24530665]
[40]
Trupp, R.J.; Albert, G.; Ziegler, A. Sex-specific 99th percentiles derived from the AACC Universal Sample Bank for the Roche Gen 5 cTnT assay: Comorbidities and statistical methods influence derivation of reference limits. Clin. Biochem., 2018, 52, 173.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.11.003] [PMID: 29113784]
[41]
Anand, A.; Shah, A.S.V.; Beshiri, A.; Jaffe, A.S.; Mills, N.L. Global adoption of high-sensitivity cardiac troponins and the universal definition of myocardial infarction. Clin. Chem., 2019, 65(3), 484-489.
[http://dx.doi.org/10.1373/clinchem.2018.298059] [PMID: 30626631]
[42]
Chaulin, A.M.; Duplyakova, P.D.; Duplyakov, D.V. Circadian rhythms of cardiac troponins: Mechanisms and clinical significance. Russ. J. Cardiol., 2020, 25(3S), 4061.
[http://dx.doi.org/10.15829/1560-4071-2020-4061]
[43]
Chen, J.Y.; Lee, S.Y.; Li, Y.H.; Lin, C.Y.; Shieh, M.D.; Ciou, D.S. Urine high-sensitivity troponin I predict incident cardiovascular events in patients with diabetes mellitus. J. Clin. Med., 2020, 9(12), 3917.
[http://dx.doi.org/10.3390/jcm9123917] [PMID: 33276667]
[44]
Pervan, P.; Svaguša, T.; Prkačin, I.; Savuk, A.; Bakos, M.; Perkov, S. Urine high sensitive Troponin I measuring in patients with hypertension. Signa Vitae, 2017, 13(S3), 62-64.
[http://dx.doi.org/10.22514/SV133.062017.13]
[45]
Mirzaii-Dizgah, I.; Riahi, E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Dis., 2013, 19(2), 180-184.
[http://dx.doi.org/10.1111/j.1601-0825.2012.01968.x] [PMID: 22834943]
[46]
Chaulin, A.M.; Karslyan, L.S.; Bazyuk, E.V.; Nurbaltaeva, D.A.; Duplyakov, D.V. Clinical and diagnostic value of cardiac markers in human biological fluids. Kardiologiia, 2019, 59(11), 66-75.
[http://dx.doi.org/10.18087/cardio.2019.11.n414] [PMID: 31849301]
[47]
Klichowska-Palonka, M.; Załęska-Chromińska, K.; Bachanek, T. Possibility of using saliva as a diagnostic test material in cardiovascular diseases. Wiad. Lek., 2015, 68(3 pt 2), 354-357.
[PMID: 28501835]
[48]
Chaulin, A.M.; Duplyakova, P.D.; Bikbaeva, G.R.; Tukhbatova, A.A.; Grigorieva, E.V.; Duplyakov, D.V. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: A pilot study. Russ. J. Cardiol., 2020, 25(12), 3814.
[http://dx.doi.org/10.15829/1560-4071-2020-3814]
[49]
Chaulin, A.M. Biology of cardiac troponins: Emphasis on metabolism. Biology , 2022, 11(3), 429.
[http://dx.doi.org/10.3390/biology11030429] [PMID: 35336802]
[50]
Fournier, S.; Iten, L.; Marques-Vidal, P.; Boulat, O.; Bardy, D.; Beggah, A.; Calderara, R.; Morawiec, B.; Lauriers, N.; Monney, P.; Iglesias, J.F.; Pascale, P.; Harbaoui, B.; Eeckhout, E.; Muller, O. Circadian rhythm of blood cardiac troponin T concentration. Clin. Res. Cardiol., 2017, 106(12), 1026-1032.
[http://dx.doi.org/10.1007/s00392-017-1152-8] [PMID: 28856443]
[51]
Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russ. Open Med. J., 2020, 9, e0305.
[http://dx.doi.org/10.15275/rusomj.2020.0305]
[52]
Zaninotto, M.; Padoan, A.; Mion, M.M.; Marinova, M.; Plebani, M. Short-term biological variation and diurnal rhythm of cardiac troponin I (Access hs-TnI) in healthy subjects. Clin. Chim. Acta, 2020, 504, 163-167.
[http://dx.doi.org/10.1016/j.cca.2020.02.004] [PMID: 32035091]
[53]
Chaulin, A.M.; Grigorieva, J.V.; Suvorova, G.N.; Duplyakov, D.V. Experimental Modeling Of Hypothyroidism: Principles, Methods, Several Advanced Research Directions In Cardiology. Russian Open Med J, 2021, 10(3), e0311.
[http://dx.doi.org/10.15275/rusomj.2021.0311]
[54]
Tsareva, Y.O.; Mayskova, E.A.; Fedotov, E.A.; Shvarts, Y.G. Circadian rhythms of thyroid hormones in patients with ischemic heart disease, arterial hypertension, and atrial fibrillation. Kardiologiia, 2019, 59(3S), 23-29.
[http://dx.doi.org/10.18087/cardio.2506] [PMID: 30990149]
[55]
Ünlü, S.; Nurkoç, S.G.; Sezenöz, B.; Cingirt, M.; Gülbahar, Ö.; Abacı, A. Impact of statin use on high sensitive troponin T levels with moderate exercise. Acta Cardiol., 2019, 74(5), 380-385.
[http://dx.doi.org/10.1080/00015385.2018.1510801] [PMID: 30328783]
[56]
Chaulin, A.M.; Duplyakov, D.V. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae, 2021, 17, 79-84.
[http://dx.doi.org/10.22514/sv.2021.050]
[57]
Collet, J.P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; Gale, C.P.; Gilard, M.; Jobs, A.; Jüni, P.; Lambrinou, E.; Lewis, B.S.; Mehilli, J.; Meliga, E.; Merkely, B.; Mueller, C.; Roffi, M.; Rutten, F.H.; Sibbing, D.; Siontis, G.C.M.; Kastrati, A.; Mamas, M.A.; Aboyans, V.; Angiolillo, D.J.; Bueno, H.; Bugiardini, R.; Byrne, R.A.; Castelletti, S.; Chieffo, A.; Cornelissen, V.; Crea, F.; Delgado, V.; Drexel, H.; Gierlotka, M.; Halvorsen, S.; Haugaa, K.H.; Jankowska, E.A.; Katus, H.A.; Kinnaird, T.; Kluin, J.; Kunadian, V.; Landmesser, U.; Leclercq, C.; Lettino, M.; Meinila, L.; Mylotte, D.; Ndrepepa, G.; Omerovic, E.; Pedretti, R.F.E.; Petersen, S.E.; Petronio, A.S.; Pontone, G.; Popescu, B.A.; Potpara, T.; Ray, K.K.; Luciano, F.; Richter, D.J.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Storey, R.F.; Touyz, R.M.; Valgimigli, M.; Vranckx, P.; Yeh, R.W.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; Gale, C.P.; Gilard, M.; Jobs, A.; Jüni, P.; Lambrinou, E.; Lewis, B.S.; Mehilli, J.; Meliga, E.; Merkely, B.; Mueller, C.; Roffi, M.; Rutten, F.H.; Sibbing, D.; Siontis, G.C.M. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J., 2021, 42(14), 1289-1367.
[http://dx.doi.org/10.1093/eurheartj/ehaa575] [PMID: 32860058]
[58]
Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Mickley, H.; Crea, F.; Van de Werf, F.; Bucciarelli-Ducci, C.; Katus, H.A.; Pinto, F.J.; Antman, E.M.; Hamm, C.W.; De Caterina, R.; Januzzi, J.L., Jr; Apple, F.S.; Alonso Garcia, M.A.; Underwood, S.R.; Canty, J.M., Jr; Lyon, A.R.; Devereaux, P.J.; Zamorano, J.L.; Lindahl, B.; Weintraub, W.S.; Newby, L.K.; Virmani, R.; Vranckx, P.; Cutlip, D.; Gibbons, R.J.; Smith, S.C.; Atar, D.; Luepker, R.V.; Robertson, R.M.; Bonow, R.O.; Steg, P.G.; O’Gara, P.T.; Fox, K.A.A.; Hasdai, D.; Aboyans, V.; Achenbach, S.; Agewall, S.; Alexander, T.; Avezum, A.; Barbato, E.; Bassand, J-P.; Bates, E.; Bittl, J.A.; Breithardt, G.; Bueno, H.; Bugiardini, R.; Cohen, M.G.; Dangas, G.; de Lemos, J.A.; Delgado, V.; Filippatos, G.; Fry, E.; Granger, C.B.; Halvorsen, S.; Hlatky, M.A.; Ibanez, B.; James, S.; Kastrati, A.; Leclercq, C.; Mahaffey, K.W.; Mehta, L.; Müller, C.; Patrono, C.; Piepoli, M.F.; Piñeiro, D.; Roffi, M.; Rubboli, A.; Sharma, S.; Simpson, I.A.; Tendera, M.; Valgimigli, M.; van der Wal, A.C.; Windecker, S.; Chettibi, M.; Hayrapetyan, H.; Roithinger, F.X.; Aliyev, F.; Sujayeva, V.; Claeys, M.J.; Smajić, E.; Kala, P.; Iversen, K.K.; El Hefny, E.; Marandi, T.; Porela, P.; Antov, S.; Gilard, M.; Blankenberg, S.; Davlouros, P.; Gudnason, T.; Alcalai, R.; Colivicchi, F.; Elezi, S.; Baitova, G.; Zakke, I.; Gustiene, O.; Beissel, J.; Dingli, P.; Grosu, A.; Damman, P.; Juliebø, V.; Legutko, J.; Morais, J.; Tatu-Chitoiu, G.; Yakovlev, A.; Zavatta, M.; Nedeljkovic, M.; Radsel, P.; Sionis, A.; Jemberg, T.; Müller, C.; Abid, L.; Abaci, A.; Parkhomenko, A.; Corbett, S. Fourth universal definition of myocardial infarction (2018). Eur. Heart J., 2019, 40(3), 237-269.
[http://dx.doi.org/10.1093/eurheartj/ehy462] [PMID: 30165617]
[59]
Trentini, A.; Manfrinato, M.C.; Bellini, T.; Volta, C.A.; Hanau, S.; Dalla Corte, F.; Cervellati, C.; Rosta, V.; Spadaro, S. Fast skeletal troponin I, but not the slow isoform, is increased in patients under statin therapy: A pilot study. Biochem. Med., 2019, 29(1), 68-76.
[http://dx.doi.org/10.11613/BM.2019.010703] [PMID: 30591813]
[60]
Eijsvogels, T.M.H.; Januzzi, J.L.; Taylor, B.A.; Isaacs, S.K.; D’Hemecourt, P.; Zaleski, A.; Dyer, S.; Troyanos, C.; Weiner, R.B.; Thompson, P.D.; Baggish, A.L. Impact of statin use on exercise-induced cardiac troponin elevations. Am. J. Cardiol., 2014, 114(4), 624-628.
[http://dx.doi.org/10.1016/j.amjcard.2014.05.047] [PMID: 25015693]
[61]
Collinson, P.; Kiely, P. Unexpected troponin elevation in a patient treated with atorvastatin. J. Appl. Lab. Med., 2020, 5(4), 798-801.
[http://dx.doi.org/10.1093/jalm/jfaa031] [PMID: 32603445]
[62]
Schmid, J.; Liesinger, L. Birner-Gruenberger, R Elevated cardiac troponin T in patients with skeletal myopathies. J. Am. Coll. Cardiol., 2018, 71(14), 1540-1549.
[http://dx.doi.org/10.1016/j.jacc.2018.01.070]
[63]
Ricchiuti, V.; Apple, F.S. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin. Chem., 1999, 45(12), 2129-2135.
[http://dx.doi.org/10.1093/clinchem/45.12.2129] [PMID: 10585344]
[64]
Messner, B.; Baum, H.; Fischer, P.; Quasthoff, S.; Neumeier, D. Expression of messenger RNA of the cardiac isoforms of troponin T and I in myopathic skeletal muscle. Am. J. Clin. Pathol., 2000, 114(4), 544-549.
[http://dx.doi.org/10.1309/8KCL-UQRF-6EEL-36XK] [PMID: 11026100]
[65]
Wens, S.C.A.; Schaaf, G.J.; Michels, M.; Kruijshaar, M.E.; van Gestel, T.J.M. in ’t Groen, S.; Pijnenburg, J.; Dekkers, D.H.W.; Demmers, J.A.A.; Verdijk, L.B.; Brusse, E.; van Schaik, R.H.N.; van der Ploeg, A.T.; van Doorn, P.A.; Pijnappel, W.W.M.P. Elevated plasma cardiac troponin T levels caused by skeletal muscle damage in pompe disease. Circ. Cardiovasc. Genet., 2016, 9(1), 6-13.
[http://dx.doi.org/10.1161/CIRCGENETICS.115.001322] [PMID: 26787432]
[66]
Chaulin, A.M.; Abashina, O.E.; Duplyakov, D.V. High-sensitivity cardiac troponins: Detection and central analytical characteristics. Cardiovasc. Ther. Prev., 2021, 20(2), 2590.
[http://dx.doi.org/10.15829/1728-8800-2021-2590]
[67]
Jaffe, A.S.; Apple, F.S. Science moves slowly. J. Am. Coll. Cardiol., 2018, 71(14), 1550-1552.
[http://dx.doi.org/10.1016/j.jacc.2018.01.068] [PMID: 29622162]
[68]
Chaulin, A.M. False-positive causes in serum cardiac troponin levels. J. Clin. Med. Res., 2022, 14(2), 80-87.
[http://dx.doi.org/10.14740/jocmr4664] [PMID: 35317362]
[69]
Chaulin, A.M. Cardiac troponins metabolism: From biochemical mechanisms to clinical practice (Literature Review). Int. J. Mol. Sci., 2021, 22(20), 10928.
[http://dx.doi.org/10.3390/ijms222010928] [PMID: 34681585]
[70]
Godoy, J.C.; Niesman, I.R.; Busija, A.R.; Kassan, A.; Schilling, J.M.; Schwarz, A.; Alvarez, E.A.; Dalton, N.D.; Drummond, J.C.; Roth, D.M.; Kararigas, G.; Patel, H.H.; Zemljic-Harpf, A.E. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes. FASEB J., 2019, 33(1), 1209-1225.
[http://dx.doi.org/10.1096/fj.201800876R] [PMID: 30169110]
[71]
Zhang, D.; Contu, R.; Latronico, M.V.G.; Zhang, J.L.; Rizzi, R.; Catalucci, D.; Miyamoto, S.; Huang, K.; Ceci, M.; Gu, Y.; Dalton, N.D.; Peterson, K.L.; Guan, K.L.; Brown, J.H.; Chen, J.; Sonenberg, N.; Condorelli, G. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J. Clin. Invest., 2010, 120(8), 2805-2816.
[http://dx.doi.org/10.1172/JCI43008] [PMID: 20644257]
[72]
Zhu, Y.; Zhang, C.; Chen, B.; Chen, R.; Guo, A.; Hong, J.; Song, L.S. Cholesterol is required for maintaining T-tubule integrity and intercellular connections at intercalated discs in cardiomyocytes. J. Mol. Cell. Cardiol., 2016, 97, 204-212.
[http://dx.doi.org/10.1016/j.yjmcc.2016.05.013] [PMID: 27255730]
[73]
Jiang, Z.; Yu, B.; Li, Y. Effect of three statins on glucose uptake of cardiomyocytes and its mechanism. Med. Sci. Monit., 2016, 22, 2825-2830.
[http://dx.doi.org/10.12659/MSM.897047] [PMID: 27510725]
[74]
Chaulin, A.M.; Duplyakov, D.V. Arrhythmogenic effects of doxorubicin. Complex Issues of Cardiovascular Diseases, 2020, 9(3), 69-80.
[http://dx.doi.org/10.17802/2306-1278-2020-9-3-69-80]
[75]
Chaulin, A.M.; Duplyakov, D.V. Cardioprotective strategies for doxorubicin-induced cardiotoxicity: Present and future. Ration. Pharmacother. Cardiol., 2022, 18(1), 103-112.
[http://dx.doi.org/10.20996/1819-6446-2022-02-11]
[76]
Kumazaki, M.; Ando, H.; Ushijima, K.; Fujimura, A. Comparative effects of statins on murine cardiac gene expression profiles in normal mice. Eur. J. Pharmacol., 2013, 707(1-3), 71-77.
[http://dx.doi.org/10.1016/j.ejphar.2013.03.022] [PMID: 23524094]
[77]
Kaufmann, P.; Török, M.; Zahno, A.; Waldhauser, K.M.; Brecht, K.; Krähenbühl, S. Toxicity of statins on rat skeletal muscle mitochondria. Cell. Mol. Life Sci., 2006, 63(19-20), 2415-2425.
[http://dx.doi.org/10.1007/s00018-006-6235-z] [PMID: 17013560]
[78]
Apostolopoulou, M.; Corsini, A.; Roden, M. The role of mitochondria in statin-induced myopathy. Eur. J. Clin. Invest., 2015, 45(7), 745-754.
[http://dx.doi.org/10.1111/eci.12461] [PMID: 25991405]
[79]
Milner, D.J.; Mavroidis, M.; Weisleder, N.; Capetanaki, Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J. Cell Biol., 2000, 150(6), 1283-1298.
[http://dx.doi.org/10.1083/jcb.150.6.1283] [PMID: 10995435]
[80]
Zemljic-Harpf, A.E.; Ponrartana, S.; Avalos, R.T.; Jordan, M.C.; Roos, K.P.; Dalton, N.D.; Phan, V.Q.; Adamson, E.D.; Ross, R.S. Heterozygous inactivation of the vinculin gene predisposes to stress-induced cardiomyopathy. Am. J. Pathol., 2004, 165(3), 1033-1044.
[http://dx.doi.org/10.1016/S0002-9440(10)63364-0] [PMID: 15331426]
[81]
Ghavami, S.; Yeganeh, B.; Stelmack, G.L.; Kashani, H.H.; Sharma, P.; Cunnington, R.; Rattan, S.; Bathe, K.; Klonisch, T.; Dixon, I.M.C.; Freed, D.H.; Halayko, A.J. Apoptosis, autophagy and ER stress in mevalonate cascade inhibition-induced cell death of human atrial fibroblasts. Cell Death Dis., 2012, 3(6), e330.
[http://dx.doi.org/10.1038/cddis.2012.61] [PMID: 22717585]
[82]
Zhang, Q.; Qu, H.; Chen, Y.; Luo, X.; Chen, C.; Xiao, B.; Ding, X.; Zhao, P.; Lu, Y.; Chen, A.F.; Yu, Y. Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 Axis. Front. Cell Dev. Biol., 2022, 10, 806081.
[http://dx.doi.org/10.3389/fcell.2022.806081] [PMID: 35309902]
[83]
Sattar, N.; Preiss, D.; Murray, H.M.; Welsh, P.; Buckley, B.M.; de Craen, A.J.M.; Seshasai, S.R.K.; McMurray, J.J.; Freeman, D.J.; Jukema, J.W.; Macfarlane, P.W.; Packard, C.J.; Stott, D.J.; Westendorp, R.G.; Shepherd, J.; Davis, B.R.; Pressel, S.L.; Marchioli, R.; Marfisi, R.M.; Maggioni, A.P.; Tavazzi, L.; Tognoni, G.; Kjekshus, J.; Pedersen, T.R.; Cook, T.J.; Gotto, A.M.; Clearfield, M.B.; Downs, J.R.; Nakamura, H.; Ohashi, Y.; Mizuno, K.; Ray, K.K.; Ford, I. Statins and risk of incident diabetes: A collaborative meta-analysis of randomised statin trials. Lancet, 2010, 375(9716), 735-742.
[http://dx.doi.org/10.1016/S0140-6736(09)61965-6] [PMID: 20167359]
[84]
Brault, M.; Ray, J.; Gomez, Y.H.; Mantzoros, C.S.; Daskalopoulou, S.S. Statin treatment and new-onset diabetes: A review of proposed mechanisms. Metabolism, 2014, 63(6), 735-745.
[http://dx.doi.org/10.1016/j.metabol.2014.02.014] [PMID: 24641882]
[85]
Agouridis, A.P.; Kostapanos, M.S.; Elisaf, M.S. Statins and their increased risk of inducing diabetes. Expert Opin. Drug Saf., 2015, 14(12), 1835-1844.
[http://dx.doi.org/10.1517/14740338.2015.1096343] [PMID: 26437128]
[86]
Yandrapalli, S.; Malik, A.; Guber, K.; Rochlani, Y.; Pemmasani, G.; Jasti, M.; Aronow, W.S. Statins and the potential for higher diabetes mellitus risk. Expert Rev. Clin. Pharmacol., 2019, 12(9), 825-830.
[http://dx.doi.org/10.1080/17512433.2019.1659133] [PMID: 31474169]
[87]
Chaulin, A.M. Elevation mechanisms and diagnostic consideration of cardiac troponins under conditions not associated with myocardial infarction. Part 2. Life, 2021, 11(11), 1175.
[http://dx.doi.org/10.3390/life11111175] [PMID: 34833051]