Safety and Efficacy of Genistein in Sanfilippo Syndrome - A Systematic Review

Page: [323 - 332] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Sanfilippo syndrome, commonly known as mucopolysaccharidosis type III (MPS III), is a rare autosomal recessive lysosomal storage disease that primarily affects the brain and spinal cord. It is caused by a deficiency of enzymes involved in the catabolism of glycosaminoglycan (GAG) and heparin sulfate (HS). Although Genistein has been presented as a potential therapeutic, its safety and efficacy for the treatment of Sanfilippo syndrome are not well established.

Objective: This systematic review aims to evaluate the safety and efficacy of Genistein with a primary endpoint of providing an inference whether the medication is producing any improvements when administered in patients suffering from Sanfilippo syndrome.

Methods: An intensive computerized literature search was performed according to PRISMA guidelines in major databases such as PubMed, ScienceDirect, Embase, Science Citation Index Expanded, The Cochrane Library, and Web of Science until 30 April 2022. Studies evaluating the efficacy and safety of genistein in patients with Sanfilippo Syndrome were included. The quality of the included studies was assessed using the New Castle Ottawa Scale.

Results: A total of 558 studies were identified in the initial search. After removing duplicates, 25 studies were screened based on title and abstract, of which 06 studies were included in this systematic review. Among them, 02 studies were of high quality and 04 studies were of moderate quality. After administration of genistein, a decrease in urinary GAG levels and HS levels was observed.

Conclusion: Based on the limited evidence present in the literature, this systematic review suggests that genistein can be safely used to treat Sanfilippo syndrome as it lowers GAG levels. However, data on the long-term benefit profile of genistein and high-quality evidence are still needed as a conclusive result could not be withdrawn.

Graphical Abstract

[1]
Spahiu L, Behluli E, Peterlin B, et al. Mucopolysaccharidosis III: Molecular basis and treatment. Pediatr Endocrinol Diabetes Metab 2021; 27(3): 201-8.
[http://dx.doi.org/10.5114/pedm.2021.109270] [PMID: 34743503]
[2]
Klein U, Kresse H, von Figura K. Sanfilippo syndrome type C: deficiency of acetyl-CoA:alpha-glucosaminide N-acetyltransfe- rase in skin fibroblasts. Proc Natl Acad Sci USA 1978; 75(10): 5185-9.
[http://dx.doi.org/10.1073/pnas.75.10.5185] [PMID: 33384]
[3]
Kresse H, Paschke E, von Figura K, Gilberg W, Fuchs W. Sanfilippo disease type D: deficiency of N-acetylglucosamine-6-sulfate sulfatase required for heparan sulfate degradation. Proc Natl Acad Sci USA 1980; 77(11): 6822-6.
[http://dx.doi.org/10.1073/pnas.77.11.6822] [PMID: 6450420]
[4]
Kowalewski B, Lamanna WC, Lawrence R, et al. Arylsulfatase G inactivation causes loss of heparan sulfate 3- O -sulfatase activity and mucopolysaccharidosis in mice. Proc Natl Acad Sci USA 2012; 109(26): 10310-5.
[http://dx.doi.org/10.1073/pnas.1202071109] [PMID: 22689975]
[5]
Valstar MJ, Ruijter GJG, van Diggelen OP, Poorthuis BJ, Wijburg FA. Sanfilippo syndrome: A mini-review. J Inherit Metab Dis 2008; 31(2): 240-52.
[http://dx.doi.org/10.1007/s10545-008-0838-5] [PMID: 18392742]
[6]
Zelei T, Csetneki K, Vokó Z, Siffel C. Epidemiology of Sanfilippo syndrome: results of a systematic literature review. Orphanet J Rare Dis 2018; 13(1): 53.
[http://dx.doi.org/10.1186/s13023-018-0796-4] [PMID: 29631636]
[7]
Fedele A. Sanfilippo syndrome: causes, consequences, and treatments. Appl Clin Genet 2015; 8: 269-81.
[http://dx.doi.org/10.2147/TACG.S57672] [PMID: 26648750]
[8]
Piotrowska E, Jakóbkiewicz-Banecka J. Barańska S, et al. Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur J Hum Genet 2006; 14(7): 846-52.
[http://dx.doi.org/10.1038/sj.ejhg.5201623] [PMID: 16670689]
[9]
Akiyama T, Ishida J, Nakagawa S, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987; 262(12): 5592-5.
[http://dx.doi.org/10.1016/S0021-9258(18)45614-1] [PMID: 3106339]
[10]
Jakóbkiewicz-Banecka J, Piotrowska E, Narajczyk M. Barańska S, Węgrzyn G. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway. J Biomed Sci 2009; 16(1): 26.
[http://dx.doi.org/10.1186/1423-0127-16-26] [PMID: 19272193]
[11]
Moskot M, Montefusco S, Jakóbkiewicz-Banecka J, et al. The phytoestrogen genistein modulates lysosomal metabolism and transcription factor EB (TFEB) activation. J Biol Chem 2014; 289(24): 17054-69.
[http://dx.doi.org/10.1074/jbc.M114.555300] [PMID: 24770416]
[12]
Moskot M, Jakóbkiewicz-Banecka J, Kloska A, et al. Modulation of expression of genes involved in glycosaminoglycan metabolism and lysosome biogenesis by flavonoids. Sci Rep 2015; 5(1): 9378.
[http://dx.doi.org/10.1038/srep09378] [PMID: 25797591]
[13]
Tsai TH. Concurrent measurement of unbound genistein in the blood, brain and bile of anesthetized rats using microdialysis and its pharmacokinetic application. J Chromatogr A 2005; 1073(1-2): 317-22.
[http://dx.doi.org/10.1016/j.chroma.2004.10.048] [PMID: 15909536]
[14]
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[15]
Tyagi K, Masoom M, Majid H, et al. Role of cytokines in chemotherapy related cognitive impairment of breast cancer patients: A systematic review Curr Rev Clin Exp Pharmacol 2022; 17.
[http://dx.doi.org/10.2174/2772432817666220304212456] [PMID: 35249524]
[16]
Ghosh A, Rust S, Langford-Smith K, et al. High dose genistein in Sanfilippo syndrome: A randomised controlled trial. J Inherit Metab Dis 2021; 44(5): 1248-62.
[http://dx.doi.org/10.1002/jimd.12407] [PMID: 34047372]
[17]
Kim KH, Dodsworth C, Paras A, Burton BK. High dose genistein aglycone therapy is safe in patients with mucopolysaccharidoses involving the central nervous system. Mol Genet Metab 2013; 109(4): 382-5.
[http://dx.doi.org/10.1016/j.ymgme.2013.06.012] [PMID: 23845234]
[18]
de Ruijter J, Valstar MJ, Narajczyk M, et al. Genistein in Sanfilippo disease: A randomized controlled crossover trial. Ann Neurol 2012; 71(1): 110-20.
[http://dx.doi.org/10.1002/ana.22643] [PMID: 22275257]
[19]
Piotrowska E, Jakobkiewicz-Banecka J, Maryniak A, et al. Two-year follow-up of Sanfilippo Disease patients treated with a genistein-rich isoflavone extract: Assessment of effects on cognitive functions and general status of patients. Med Sci Monit 2011; 17(4): CR196-202.
[http://dx.doi.org/10.12659/MSM.881715] [PMID: 21455105]
[20]
Delgadillo V, O’Callaghan MM, Artuch R, Montero R, Pineda M. Genistein supplementation in patients affected by Sanfilippo disease. J Inherit Metab Dis 2011; 34(5): 1039-44.
[http://dx.doi.org/10.1007/s10545-011-9342-4] [PMID: 21556833]
[21]
Malinová V. Węgrzyn G, Narajczyk M. The use of elevated doses of genistein-rich soy extract in the gene expression-targeted isoflavone therapy for Sanfilippo disease patients. JIMD Rep 2011; 5: 21-5.
[http://dx.doi.org/10.1007/8904_2011_87] [PMID: 23430913]
[22]
Sun A. Lysosomal storage disease overview. Ann Transl Med 2018; 6(24): 476.
[http://dx.doi.org/10.21037/atm.2018.11.39]
[23]
Malm G, Månsson J-E. Mucopolysaccharidosis type III (Sanfilippo disease) in Sweden: clinical presentation of 22 children diagnosed during a 30-year period. Acta Paediatr 2010; 99(8): 1253-7.
[http://dx.doi.org/10.1111/j.1651-2227.2010.01800.x] [PMID: 20337777]
[24]
De Pasquale V, Pavone LM. Heparan sulfate proteoglycans: The sweet side of development turns sour in mucopolysaccharidoses. Biochim Biophys Acta Mol Basis Dis 2019; 1865(11): 165539.
[http://dx.doi.org/10.1016/j.bbadis.2019.165539] [PMID: 31465828]
[25]
Lloyd-Evans E, Haslett LJ. The lysosomal storage disease continuum with ageing-related neurodegenerative disease. Ageing Res Rev 2016; 32: 104-21.
[http://dx.doi.org/10.1016/j.arr.2016.07.005] [PMID: 27516378]
[26]
Winder-Rhodes SE, Garcia-Reitböck P, Ban M, et al. Genetic and pathological links between Parkinson’s disease and the lysosomal disorder Sanfilippo syndrome. Mov Disord 2012; 27(2): 312-5.
[http://dx.doi.org/10.1002/mds.24029] [PMID: 22102531]
[27]
Lau AA, Tamang SJ, Hemsley KM. MPS-IIIA mice acquire autistic behaviours with age. J Inherit Metab Dis 2018; 41(4): 669-77.
[http://dx.doi.org/10.1007/s10545-018-0160-9] [PMID: 29520737]
[28]
Çöp E. Yurtbaşi P, Öner O, Münir K. Genetic testing in children with autism spectrum disorders. Anadolu Psikiyatri Derg 2015; 16(6): 426-32.
[http://dx.doi.org/10.5455/apd.1414607917] [PMID: 26345476]
[29]
Li K, Hong S, Lin S, Chen K. Genistein inhibits the proliferation, migration and invasion of the squamous cell carcinoma cells via inhibition of MEK/ERK and JNK signalling pathways. J BUON 2020; 25(2): 1172-7.
[30]
Arfi A, Richard M, Gandolphe C, Scherman D. Storage correction in cells of patients suffering from mucopolysaccharidoses types IIIA and VII after treatment with genistein and other isoflavones. J Inherit Metab Dis 2010; 33(1): 61-7.
[http://dx.doi.org/10.1007/s10545-009-9029-2] [PMID: 20084460]
[31]
Malinowska M, Wilkinson FL, Bennett W, et al. Genistein reduces lysosomal storage in peripheral tissues of mucopolysaccharide IIIB mice. Mol Genet Metab 2009; 98(3): 235-42.
[http://dx.doi.org/10.1016/j.ymgme.2009.06.013] [PMID: 19632871]
[32]
Malinowska M, Wilkinson FL, Langford-Smith KJ, et al. Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS One 2010; 5(12): e14192.
[http://dx.doi.org/10.1371/journal.pone.0014192] [PMID: 21152017]
[33]
Condomitti G, de Wit J. Heparan sulfate proteoglycans as emerging players in synaptic specificity. Front Mol Neurosci 2018; 11: 14.
[http://dx.doi.org/10.3389/fnmol.2018.00014] [PMID: 29434536]
[34]
Walkley S. Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol 2004; 15(4): 433-44.
[http://dx.doi.org/10.1016/j.semcdb.2004.03.002] [PMID: 15207833]
[35]
Bigger BW, Begley DJ, Virgintino D, Pshezhetsky AV. Anatomical changes and pathophysiology of the brain in mucopolysaccharidosis disorders. Mol Genet Metab 2018; 125(4): 322-31.
[http://dx.doi.org/10.1016/j.ymgme.2018.08.003] [PMID: 30145178]
[36]
Fecarotta S, Gasperini S, Parenti G. New treatments for the mucopolysaccharidoses: From pathophysiology to therapy. Ital J Pediatr 2018; 44(S1): 124.
[http://dx.doi.org/10.1186/s13052-018-0564-z]
[37]
Dziedzic D. Węgrzyn G, Jakóbkiewicz-Banecka J. Impairment of glycosaminoglycan synthesis in mucopolysaccharidosis type IIIA cells by using siRNA: a potential therapeutic approach for Sanfilippo disease. Eur J Hum Genet 2010; 18(2): 200-5.
[http://dx.doi.org/10.1038/ejhg.2009.144] [PMID: 19690584]
[38]
Kaidonis X, Liaw WC, Roberts AD, Ly M, Anson D, Byers S. Gene silencing of EXTL2 and EXTL3 as a substrate deprivation therapy for heparan sulphate storing mucopolysaccharidoses. Eur J Hum Genet 2010; 18(2): 194-9.
[http://dx.doi.org/10.1038/ejhg.2009.143] [PMID: 19690583]
[39]
Lamanna WC, Lawrence R, Sarrazin S, et al. A genetic model of substrate reduction therapy for mucopolysaccharidosis. J Biol Chem 2012; 287(43): 36283-90.
[http://dx.doi.org/10.1074/jbc.M112.403360] [PMID: 22952226]