Computational Analysis to Predict Drug Targets for the Therapeutic Management of Mycobacterium avium sub. Paratuberculosis

Article ID: e100323214551 Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Mycobacterium avium sp. paratuberculosis (MAP) is a pathogen, which causes paratuberculosis in animals; it has also been found to be associated with a number of autoimmune disorders in humans. The emergence of drug resistance has also been found in this bacillus during disease management.

Objective: The present study’s focus was to identify potential therapeutic targets for the therapeutic management of Mycobacterium avium sp. paratuberculosis infection by in silico analysis.

Methods: Differentially-expressed genes (DEGs) can be good drug targets, which can be identified from microarray studies. We used gene expression profile GSE43645 to identify differentiallyexpressed genes. An integrated network of upregulated DEGs was constructed with the STRING database and the constructed network was analyzed and visualized by Cytoscape. Clusters in the proteinprotein interaction (PPI) network were identified by the Cytoscape app ClusterViz. MAP proteins predicted in clusters were analyzed for their non-homology with the human proteins, and homologous proteins were excluded. Essential proteins and cellular localization analysis and the physicochemical characteristics prediction were also done. Finally, the druggability of the target proteins and drugs that can block the targets was predicted using the DrugBank database and confirmed by molecular docking. Structural prediction and verification of drug target proteins were also carried out.

Results: Two drug targets, MAP_1210 (inhA) and MAP_3961 (aceA), encoding enoyl acyl carrier protein reductase and isocitrate lyase enzymes, respectively, were finally predicted as potential drug targets.

Conclusion: Both of these proteins have been predicted as drug targets in other mycobacterial species also, supporting our results. However, further experiments are required to confirm these results.

Graphical Abstract

[1]
Chacon O, Bermudez LE, Barletta RG. Johne’s disease, inflammatory bowel disease, and Mycobacterium paratuberculosis. Annu Rev Microbiol 2004; 58(1): 329-63.
[http://dx.doi.org/10.1146/annurev.micro.58.030603.123726] [PMID: 15487941]
[2]
Ellingson JLE, Anderson JL, Koziczkowski JJ, et al. Detection of viable Mycobacterium avium subsp. paratuberculosis in retail pasteurized whole milk by two culture methods and PCR. J Food Prot 2005; 68(5): 966-72.
[http://dx.doi.org/10.4315/0362-028X-68.5.966] [PMID: 15895728]
[3]
Pickup RW, Rhodes G, Bull TJ, et al. Mycobacterium avium subsp. paratuberculosis in lake catchments, in river water abstracted for domestic use, and in effluent from domestic sewage treatment works: diverse opportunities for environmental cycling and human exposure. Appl Environ Microbiol 2006; 72(6): 4067-77.
[http://dx.doi.org/10.1128/AEM.02490-05] [PMID: 16751517]
[4]
Abubakar I, Myhill D, Aliyu SH, Hunter PR. Detection of Mycobacterium avium subspecies paratuberculosis from patients with Crohnʼs disease using nucleic acid-based techniques: A systematic review and meta-analysis. Inflamm Bowel Dis 2008; 14(3): 401-10.
[http://dx.doi.org/10.1002/ibd.20276] [PMID: 17886288]
[5]
El-Zaatari FAK, Osato MS, Graham DY. Etiology of Crohn’s disease: the role of Mycobacterium avium paratuberculosis. Trends Mol Med 2001; 7(6): 247-52.
[http://dx.doi.org/10.1016/S1471-4914(01)01983-9] [PMID: 11378513]
[6]
McKay DM. Intestinal inflammation and the gut microflora. Can J Gastroenterol 1999; 13(6): 509-16.
[http://dx.doi.org/10.1155/1999/680206] [PMID: 10464352]
[7]
Ekundayo TC, Olasehinde TA, Falade AO, et al. Systematic review and meta-analysis of Mycobacterium avium subsp. paratuberculosis as environmental trigger of multiple sclerosis. Mult Scler Relat Disord 2022; 59: 103671.
[http://dx.doi.org/10.1016/j.msard.2022.103671] [PMID: 35180618]
[8]
Niegowska M, Rapini N, Piccinini S, et al. Type 1 Diabetes at-risk children highly recognize Mycobacterium avium subspecies paratuberculosis epitopes homologous to human Znt8 and Proinsulin. Sci Rep 2016; 6(1): 22266.
[http://dx.doi.org/10.1038/srep22266] [PMID: 26923214]
[9]
Feller M, Huwiler K, Stephan R, et al. Mycobacterium avium subspecies paratuberculosis and Crohn’s disease: a systematic review and meta-analysis. Lancet Infect Dis 2007; 7(9): 607-13.
[http://dx.doi.org/10.1016/S1473-3099(07)70211-6] [PMID: 17714674]
[10]
Cai Z, Wang S, Li J. Treatment of inflammatory bowel disease: A comprehensive review. Front Med (Lausanne) 2021; 8: 765474.
[http://dx.doi.org/10.3389/fmed.2021.765474] [PMID: 34988090]
[11]
Feller M, Huwiler K, Schoepfer A, Shang A, Furrer H, Egger M. Long-term antibiotic treatment for Crohn’s disease: systematic review and meta-analysis of placebo-controlled trials. Clin Infect Dis 2010; 50(4): 473-80.
[http://dx.doi.org/10.1086/649923] [PMID: 20067425]
[12]
Shin SJ, Collins MT. Thiopurine drugs azathioprine and 6-mercaptopurine inhibit Mycobacterium paratuberculosis growth in vitro. Antimicrob Agents Chemother 2008; 52(2): 418-26.
[http://dx.doi.org/10.1128/AAC.00678-07] [PMID: 18070971]
[13]
Alcedo KP, Thanigachalam S, Naser SA. RHB-104 triple antibiotics combination in culture is bactericidal and should be effective for treatment of Crohn’s disease associated with Mycobacterium paratuberculosis. Gut Pathog 2016; 8(1): 32.
[http://dx.doi.org/10.1186/s13099-016-0115-3] [PMID: 27307791]
[14]
Savarino E, Bertani L, Ceccarelli L, et al. Antimicrobial treatment with the fixed-dose antibiotic combination RHB-104 for Mycobacterium avium subspecies Paratuberculosis in Crohn’s disease: pharmacological and clinical implications. Expert Opin Biol Ther 2019; 19(2): 79-88.
[http://dx.doi.org/10.1080/14712598.2019.1561852] [PMID: 30574820]
[15]
Collins MT. Paratuberculosis: review of present knowledge. Acta Vet Scand 2003; 44(3-4): 217-21.
[PMID: 15074635]
[16]
Rahman MA, Noore MS, Hasan MA, et al. Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach. Comput Biol Chem 2014; 52: 66-72.
[http://dx.doi.org/10.1016/j.compbiolchem.2014.09.005] [PMID: 25254941]
[17]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 2013; 41: D991-5.
[PMID: 23193258]
[18]
Li CY, Cai JH, Tsai JJP, Wang CCN. Identification of hub genes associated with development of head and neck squamous cell carcinoma by integrated bioinformatics analysis. Front Oncol 2020; 10: 681.
[http://dx.doi.org/10.3389/fonc.2020.00681] [PMID: 32528874]
[19]
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S. The string database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 2021; 49(18): 605-12.
[20]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[21]
Wang J, Zhong J, Chen G, Li M, Wu F, Pan Y. ClusterViz: A cytoscape app for cluster analysis of biological network. IEEE/ACM Trans Comput Biol Bioinformatics 2015; 12(4): 815-22.
[http://dx.doi.org/10.1109/TCBB.2014.2361348] [PMID: 26357321]
[22]
Shen H, Cheng X, Cai K, Hu MB. Detect overlapping and hierarchical community structure in networks. Physica A 2009; 388(8): 1706-12.
[http://dx.doi.org/10.1016/j.physa.2008.12.021]
[23]
Hema K, Priyadarshini IV, Pradhan D, et al. Identification of putative drug targets and vaccine candidates for pathogens causing Atherosclerosis. Biochem Anal Biochem 2015; 4(2): 175.
[http://dx.doi.org/10.4172/2161-1009.1000175]
[24]
Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements: Table 1. Nucleic Acids Res 2014; 42(D1): D574-80.
[http://dx.doi.org/10.1093/nar/gkt1131] [PMID: 24243843]
[25]
Barh D, Tiwari S, Jain N, et al. In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev Res 2011; 72(2): 162-77.
[http://dx.doi.org/10.1002/ddr.20413]
[26]
Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins 2006; 64(3): 643-51.
[http://dx.doi.org/10.1002/prot.21018] [PMID: 16752418]
[27]
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD. Protein identification and analysis tools on the ExPASy server. In: John MW, Ed. In John MW EdThe Proteomics Protocols Handbook. Humana Press 2005; pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[28]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[29]
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res 2021; 49(D1): D545-51.
[http://dx.doi.org/10.1093/nar/gkaa970] [PMID: 33125081]
[30]
Ammari MG, Gresham CR, McCarthy FM, Nanduri B. HPIDB2.0: a curated database for host-pathogen interactions. Database (Oxford) 2016; 2016: baw103.
[http://dx.doi.org/10.1093/database/baw103.] [PMID: 27374121]
[31]
Khan AA, Khan Z. COVID-2019-associated overexpressed Prevotella proteins mediated host–pathogen interactions and their role in coronavirus outbreak. Bioinformatics 2020; 36(13): 4065-9.
[http://dx.doi.org/10.1093/bioinformatics/btaa285] [PMID: 32374823]
[32]
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015; 10(6): 845-58.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[33]
Heo L, Park H, Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 2013; 41: W384-8.
[http://dx.doi.org/10.1093/nar/gkt458] [PMID: 23737448]
[34]
Volkamer A, Kuhn D, Rippmann F, Rarey M. DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 2012; 28(15): 2074-5.
[http://dx.doi.org/10.1093/bioinformatics/bts310] [PMID: 22628523]
[35]
Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 2021; 49(D1): D1388-95.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[36]
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform 2011; 3(1): 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[37]
Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 2004; 1(4): 337-41.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[38]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[39]
Chowdhury UF, Saba AA, Sufi AS, et al. Subtractive proteomics approach to Unravel the druggable proteins of the emerging pathogen Waddlia chondrophila and drug repositioning on its MurB protein. Heliyon 2021; 7(6): e07320.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07320] [PMID: 34195427]
[40]
Lee YV, Wahab HA, Choong YS. Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: a summary. BioMed Res Int 2015; 2015: 895453.
[PMID: 25649791]
[41]
Lee YV, Choi SB, Wahab HA, Lim TS, Choong YS. Applications of ensemble docking in potential inhibitor screening for Mycobacterium tuberculosis isocitrate lyase using a local plant database. J Chem Inf Model 2019; 59(5): 2487-95.
[http://dx.doi.org/10.1021/acs.jcim.8b00963] [PMID: 30840452]
[42]
Ibrahim KA, Helmy OM, Kashef MT, Elkhamissy TR, Ramadan MA. Identification of potential drug targets in helicobacter pylori using in silico subtractive proteomics approaches and their possible inhibition through drug repurposing. Pathogens 2020; 9(9): 747.
[http://dx.doi.org/10.3390/pathogens9090747] [PMID: 32932580]
[43]
Zhang X, Wu F, Yang N, et al. In silico methods for identification of potential therapeutic targets. Interdiscip Sci 2022; 14(2): 285-310.
[http://dx.doi.org/10.1007/s12539-021-00491-y] [PMID: 34826045]
[44]
Garg A, Singhal N, Kumar M. Discerning novel drug targets for treating Mycobacterium avium ss. paratuberculosis-associated autoimmune disorders: an in silico approach. Brief Bioinform 2021; 22(3): bbaa195.
[http://dx.doi.org/10.1093/bib/bbaa195] [PMID: 32895696]
[45]
Marrakchi H, Lanéelle MA, Daffé M. Mycolic acids: structures, biosynthesis, and beyond. Chem Biol 2014; 21(1): 67-85.
[http://dx.doi.org/10.1016/j.chembiol.2013.11.011] [PMID: 24374164]
[46]
Prasad MS, Bhole RP, Khedekar PB, Chikhale RV. Mycobacterium enoyl acyl carrier protein reductase (InhA): A key target for antitubercular drug discovery. Bioorg Chem 2021; 115: 105242.
[http://dx.doi.org/10.1016/j.bioorg.2021.105242] [PMID: 34392175]
[47]
Lorenz MC, Fink GR. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 2002; 1(5): 657-62.
[http://dx.doi.org/10.1128/EC.1.5.657-662.2002] [PMID: 12455685]
[48]
Muñoz-Elías EJ, McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 2005; 11(6): 638-44.
[http://dx.doi.org/10.1038/nm1252] [PMID: 15895072]
[49]
Dubnau E, Fontán P, Manganelli R, Soares-Appel S, Smith I. Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun 2002; 70(6): 2787-95.
[http://dx.doi.org/10.1128/IAI.70.6.2787-2795.2002] [PMID: 12010964]
[50]
McKinney JD, zu Bentrup KH, Muñoz-Elías EJ, et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 2000; 406(6797): 735-8.
[http://dx.doi.org/10.1038/35021074] [PMID: 10963599]
[51]
Lewis AH, Falkinham JO III. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int J Mycobacteriol 2015; 4(1): 25-30.
[http://dx.doi.org/10.1016/j.ijmyco.2014.11.066] [PMID: 26655194]
[52]
Sharma R, Das O, Damle SG, Sharma AK. Isocitrate lyase: a potential target for anti-tubercular drugs. Recent Pat Inflamm Allergy Drug Discov 2013; 7(2): 114-23.
[http://dx.doi.org/10.2174/1872213X11307020003] [PMID: 23506018]
[53]
Kwofie S, Dankwa B, Odame E, et al. In silico screening of isocitrate lyase for novel Anti-Buruli ulcer natural products originating from Africa. Molecules 2018; 23(7): 1550.
[http://dx.doi.org/10.3390/molecules23071550] [PMID: 29954088]
[54]
Kondrashov FA, Koonin EV, Morgunov IG, Finogenova TV, Kondrashova MN. Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol Direct 2006; 1(1): 31.
[http://dx.doi.org/10.1186/1745-6150-1-31] [PMID: 17059607]
[55]
Campaniço A, Harjivan SG, Warner DF, Moreira R, Lopes F. Addressing latent tuberculosis: New advances in mimicking the disease, discovering key targets, and designing hit compounds. Int J Mol Sci 2020; 21(22): 8854.
[http://dx.doi.org/10.3390/ijms21228854] [PMID: 33238468]
[56]
López-Gavín A, Tudó G, Rey-Jurado E, Vergara A, Hurtado JC, Gonzalez-Martín J. In vitro time–kill curves study of three antituberculous combinations against Mycobacterium tuberculosis clinical isolates. Int J Antimicrob Agents 2016; 47(1): 97-100.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.10.016] [PMID: 26691020]
[57]
Nandakumar M, Nathan C, Rhee KY. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat Commun 2014; 5(1): 4306.
[http://dx.doi.org/10.1038/ncomms5306] [PMID: 24978671]