Role of Supplements in the Management of COVID-19 - A Comprehensive Review

Article ID: e100323214544 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 (SARS CoV-2) and patients with COVID-19 may be treated primarily with SARS CoV- 2-targeting drugs and the therapeutic agents assisting in the management of COVID-19 complications. This review focuses on the supplements like vitamins, minerals, herbal constituents, and others that help prevent or manage negative outcomes among COVID-19 patients. The literature was searched in databases such as Medline/PubMed Central/PubMed, Google Scholar, Science Direct, EBSCO, Scopus, EMBASE, the Directory of Open Access Journals (DOAJ), and reference lists to identify relevant articles. The vitamins, including vitamin C, and vitamin D, minerals such as zinc, selenium, and copper, herbal constituents like thymoquinone, curcumin, naringenin, quercetin, and glycyrrhizin, and other supplements, including N-acetylcysteine and melatonin. Melatonin have been identified as having the potential to manage patients with COVID-19 along with standard care. Some of the ongoing clinical trials are investigating the effectiveness of different supplements among COVID-19 patients.

Graphical Abstract

[1]
Ludwig S, Zarbock A. Coronaviruses and SARS-CoV-2: A Brief Overview. Anesth Analg 2020; 131(1): 93-6.
[http://dx.doi.org/10.1213/ANE.0000000000004845] [PMID: 32243297]
[2]
W.H.O. Coronavirus. (COVID-19) Dashboard. Available from: https://covid19.who.int/ (Accessed 07 June 2022).
[3]
Maideen NMP. Prophetic Medicine-Nigella Sativa (Black cumin seeds) - Potential herb for COVID-19? J Pharmacopuncture 2020; 23(2): 62-70.
[http://dx.doi.org/10.3831/KPI.2020.23.010] [PMID: 32685234]
[4]
Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020; 323(20): 2052-9.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[5]
Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Crit Rev Clin Lab Sci 2020; 57(6): 389-99.
[http://dx.doi.org/10.1080/10408363.2020.1770685] [PMID: 32503382]
[6]
Kermali M, Khalsa RK, Pillai K, Ismail Z, Harky A. The role of biomarkers in diagnosis of COVID-19 - A systematic review. Life Sci 2020; 254: 117788.
[http://dx.doi.org/10.1016/j.lfs.2020.117788] [PMID: 32475810]
[7]
Velavan TP, Meyer CG. Mild versus severe COVID-19: Laboratory markers. Int J Infect Dis 2020; 95: 304-7.
[http://dx.doi.org/10.1016/j.ijid.2020.04.061] [PMID: 32344011]
[8]
Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clin Chem Lab Med 2020; 58(7): 1131-4.
[http://dx.doi.org/10.1515/cclm-2020-0198] [PMID: 32119647]
[9]
.World Health Organization Clinical management of COVID-19: Interim guidance. 2020. Available from : [https://apps.who.int/iris/bitstream/handle/10665/332196/WHO-2019-nCoV-clinical-2020.5-eng.pdf
[10]
Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant 2020; 39(5): 405-7.
[http://dx.doi.org/10.1016/j.healun.2020.03.012] [PMID: 32362390]
[11]
de Simone G, Mancusi C. COVID-19: Timing is important. Eur J Intern Med 2020; 77: 134-5.
[http://dx.doi.org/10.1016/j.ejim.2020.04.019] [PMID: 32362362]
[12]
Wang Z, Chen X, Lu Y, Chen F, Zhang W. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends 2020; 14(1): 64-8.
[http://dx.doi.org/10.5582/bst.2020.01030] [PMID: 32037389]
[13]
Patel RS, Patel N, Baksh M, Zaidi A, Patel J. Clinical perspective on 2019 novel coronavirus pneumonia: A systematic review of published case reports. Cureus 2020; 12(6): e8488.
[http://dx.doi.org/10.7759/cureus.8488] [PMID: 32656006]
[14]
Phua J, Weng L, Ling L, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med 2020; 8(5): 506-17.
[http://dx.doi.org/10.1016/S2213-2600(20)30161-2] [PMID: 32272080]
[15]
Maideen NMP. Adjuvant therapies of COVID-19 - A literature review. Coronaviruses 2021; 2(10): e170821190562.
[http://dx.doi.org/10.2174/2666796702666210121144902]
[16]
Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020; 368: m1091.
[http://dx.doi.org/10.1136/bmj.m1091] [PMID: 32217556]
[17]
Yang F, Shi S, Zhu J, Shi J, Dai K, Chen X. Analysis of 92 deceased patients with COVID‐19. J Med Virol 2020; 92(11): 2511-5.
[http://dx.doi.org/10.1002/jmv.25891] [PMID: 32293741]
[18]
Maideen NM. Recent updates in the pharmacological management of COVID-19. Lett Appl NanoBioScience 2020; 10(1): 1969-80.
[http://dx.doi.org/10.33263/LIANBS101.19691980]
[19]
Lai CC, Chao CM, Hsueh PR. Clinical efficacy of antiviral agents against coronavirus disease 2019: A systematic review of randomized controlled trials. J Microbiol Immunol Infect 2021; 54(5): 767-75.
[http://dx.doi.org/10.1016/j.jmii.2021.05.011] [PMID: 34253490]
[20]
Vegivinti CTR, Evanson KW, Lyons H, et al. Efficacy of antiviral therapies for COVID-19: a systematic review of randomized controlled trials. BMC Infect Dis 2022; 22(1): 107.
[http://dx.doi.org/10.1186/s12879-022-07068-0] [PMID: 35100985]
[21]
Abd-Elsalam S, Ahmed OA, Mansour NO, et al. Remdesivir efficacy in COVID-19 treatment: a randomized controlled trial. Am J Trop Med Hyg 2021; 106(3): 886-90.
[http://dx.doi.org/10.4269/ajtmh.21-0606] [PMID: 34649223]
[22]
Singh S, Khera D, Chugh A, Khera PS, Chugh VK. Efficacy and safety of remdesivir in COVID-19 caused by SARS-CoV-2: a systematic review and meta-analysis. BMJ Open 2021; 11(6): e048416.
[http://dx.doi.org/10.1136/bmjopen-2020-048416] [PMID: 34168031]
[23]
Lai CC, Chen CH, Wang CY, Chen KH, Wang YH, Hsueh PR. Clinical efficacy and safety of remdesivir in patients with COVID-19: a systematic review and network meta-analysis of randomized controlled trials. J Antimicrob Chemother 2021; 76(8): 1962-8.
[http://dx.doi.org/10.1093/jac/dkab093] [PMID: 33758946]
[24]
Hung DT, Ghula S, Aziz JMA, et al. The efficacy and adverse effects of favipiravir on patients with COVID-19: A systematic review and meta-analysis of published clinical trials and observational studies. Int J Infect Dis 2022; 120: 217-27.
[http://dx.doi.org/10.1016/j.ijid.2022.04.035] [PMID: 35470021]
[25]
Abd-Elsalam S, Noor RA, Badawi R, et al. Clinical study evaluating the efficacy of ivermectin in COVID‐19 treatment: A randomized controlled study. J Med Virol 2021; 93(10): 5833-8.
[http://dx.doi.org/10.1002/jmv.27122] [PMID: 34076901]
[26]
Abd-Elsalam S, Soliman S, Esmail ES, et al. Do zinc supplements enhance the clinical efficacy of hydroxychloroquine?: a randomized, multicenter trial. Biol Trace Elem Res 2021; 199(10): 3642-6.
[http://dx.doi.org/10.1007/s12011-020-02512-1] [PMID: 33247380]
[27]
Wichmann D, Sperhake JP, Lütgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med 2020; 173(4): 268-77.
[http://dx.doi.org/10.7326/M20-2003] [PMID: 32374815]
[28]
Mousavi S, Bereswill S, Heimesaat MM. Immunomodulatory and antimicrobial effects of vitamin C. Eur J Microbiol Immunol (Bp) 2019; 9(3): 73-9.
[http://dx.doi.org/10.1556/1886.2019.00016] [PMID: 31662885]
[29]
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 2020; 11: 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[30]
Colunga Biancatelli RML, Berrill M, Marik PE. The antiviral properties of vitamin C. Expert Rev Anti Infect Ther 2020; 18(2): 99-101.
[http://dx.doi.org/10.1080/14787210.2020.1706483] [PMID: 31852327]
[31]
Soto ME, Guarner-Lans V, Soria-Castro E, Manzano Pech L, Pérez-Torres I. Is antioxidant therapy a useful complementary measure for COVID-19 treatment? An algorithm for its application. Medicina (Kaunas) 2020; 56(8): 386.
[http://dx.doi.org/10.3390/medicina56080386] [PMID: 32752010]
[32]
Farjana M, Moni A, Sohag AAM, et al. Repositioning vitamin C as a promising option to alleviate complications associated with COVID-19. Infect Chemother 2020; 52(4): 461-77.
[http://dx.doi.org/10.3947/ic.2020.52.4.461] [PMID: 33263242]
[33]
Hartman ME, Hernandez RA, Patel K, et al. COVID-19 respiratory failure: Targeting inflammation on VV-ECMO support. ASAIO J 2020; 66(6): 603-6.
[http://dx.doi.org/10.1097/MAT.0000000000001177] [PMID: 32304395]
[34]
Waqas Khan HM, Parikh N, Megala SM, Predeteanu GS. Unusual early recovery of a critical COVID-19 patient after administration of intravenous vitamin C. Am J Case Rep 2020; 21: e925521.
[http://dx.doi.org/10.12659/AJCR.925521] [PMID: 32709838]
[35]
Hiedra R, Lo KB, Elbashabsheh M, et al. The use of IV vitamin C for patients with COVID-19: a case series. Expert Rev Anti Infect Ther 2020; 18(12): 1259-61.
[http://dx.doi.org/10.1080/14787210.2020.1794819] [PMID: 32662690]
[36]
Feyaerts AF, Luyten W. Vitamin C as prophylaxis and adjunctive medical treatment for COVID-19? Nutrition 2020; 79-80: 110948.
[http://dx.doi.org/10.1016/j.nut.2020.110948] [PMID: 32911430]
[37]
Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Medicine in Drug Discovery 2020; 5: 100028.
[http://dx.doi.org/10.1016/j.medidd.2020.100028] [PMID: 32328576]
[38]
Anderson PS. Intravenous ascorbic acid for supportive treatment in hospitalized COVID-19 patients. J Orthomol Med 2020; 35(1): 1-3.
[39]
Carr AC. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit Care 2020; 24(1): 133.
[http://dx.doi.org/10.1186/s13054-020-02851-4] [PMID: 32264963]
[40]
Teymoori-Rad M, Shokri F, Salimi V, Marashi SM. The interplay between vitamin D and viral infections. Rev Med Virol 2019; 29(2): e2032.
[http://dx.doi.org/10.1002/rmv.2032] [PMID: 30614127]
[41]
Martineau AR, Forouhi NG. Vitamin D for COVID-19: a case to answer? Lancet Diabetes Endocrinol 2020; 8(9): 735-6.
[http://dx.doi.org/10.1016/S2213-8587(20)30268-0] [PMID: 32758429]
[42]
Zhou YF, Luo BA, Qin LL. The association between vitamin D deficiency and community-acquired pneumonia. Medicine (Baltimore) 2019; 98(38): e17252.
[http://dx.doi.org/10.1097/MD.0000000000017252] [PMID: 31567995]
[43]
Grant W, Lahore H, McDonnell S, et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12(4): 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[44]
Panfili FM, Roversi M, D’Argenio P, Rossi P, Cappa M, Fintini D. Possible role of vitamin D in COVID-19 infection in pediatric population. J Endocrinol Invest 2021; 44(1): 27-35.
[http://dx.doi.org/10.1007/s40618-020-01327-0] [PMID: 32557271]
[45]
Liu W, Zhang L, Xu HJ, et al. The anti-inflammatory effects of vitamin D in tumorigenesis. Int J Mol Sci 2018; 19(9): 2736.
[http://dx.doi.org/10.3390/ijms19092736] [PMID: 30216977]
[46]
Mokhtari Z, Hekmatdoost A, Nourian M. Antioxidant efficacy of vitamin D. J Parathyroid Dis 2016; 5(1): 11-6.
[http://dx.doi.org/ 10.3390/ijms1909273]
[47]
Arboleda JF, Urcuqui-Inchima S, Vitamin D. Vitamin D supplementation: A potential approach for coronavirus/COVID-19 therapeutics? Front Immunol 2020; 11: 1523.
[http://dx.doi.org/10.3389/fimmu.2020.01523] [PMID: 32655583]
[48]
Carpagnano GE, Di Lecce V, Quaranta VN, et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest 2021; 44(4): 765-71.
[http://dx.doi.org/10.1007/s40618-020-01370-x] [PMID: 32772324]
[49]
Pinzon RT. Angela, Pradana AW. Vitamin D deficiency among patients with COVID-19: case series and recent literature review. Trop Med Health 2020; 48(1): 102.
[http://dx.doi.org/10.1186/s41182-020-00277-w] [PMID: 33342439]
[50]
Shakoor H, Feehan J, Al Dhaheri AS, et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas 2021; 143: 1-9.
[http://dx.doi.org/10.1016/j.maturitas.2020.08.003] [PMID: 33308613]
[51]
Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 2009; 12(6): 646-52.
[http://dx.doi.org/10.1097/MCO.0b013e3283312956] [PMID: 19710611]
[52]
Hojyo S, Fukada T. Roles of zinc signaling in the immune system. J Immunol Res 2016; 2016: 1-21.
[http://dx.doi.org/10.1155/2016/6762343] [PMID: 27872866]
[53]
Skrajnowska D, Bobrowska-Korczak B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 2019; 11(10): 2273.
[http://dx.doi.org/10.3390/nu11102273] [PMID: 31546724]
[54]
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr 2019; 10(4): 696-710.
[http://dx.doi.org/10.1093/advances/nmz013] [PMID: 31305906]
[55]
Finzi E. Treatment of SARS-CoV-2 with high dose oral zinc salts: A report on four patients. Int J Infect Dis 2020; 99: 307-9.
[http://dx.doi.org/10.1016/j.ijid.2020.06.006] [PMID: 32522597]
[56]
de Almeida Brasiel PG. The key role of zinc in elderly immunity: A possible approach in the COVID-19 crisis. Clin Nutr ESPEN 2020; 38: 65-6.
[http://dx.doi.org/10.1016/j.clnesp.2020.06.003] [PMID: 32690179]
[57]
Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses 2020; 143: 109878.
[http://dx.doi.org/10.1016/j.mehy.2020.109878] [PMID: 32464491]
[58]
Duntas LH. Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res 2009; 41(6): 443-7.
[http://dx.doi.org/10.1055/s-0029-1220724] [PMID: 19418416]
[59]
Raha S, Mallick R, Basak S, Duttaroy AK. Is copper beneficial for COVID-19 patients? Med Hypotheses 2020; 142: 109814.
[http://dx.doi.org/10.1016/j.mehy.2020.109814] [PMID: 32388476]
[60]
Mittra I, de Souza R, Bhadade R, et al. Resveratrol and Copper for treatment of severe COVID-19: an observational study (RESCU 002). medRxiv 2020.
[http://dx.doi.org/10.1101/2020.07.21.20151423]
[61]
Maideen NMP. Potential of black seeds (Nigella sativa) in the management of COVID-19 among children. Int J Med Dev Adjuvant Treat 2021; 4: e366.
[62]
Balasubramanian R, Pakkir Maideen NM, Gobinath M, Rafiullah M, Muthusamy S. Therapeutic potentials of black seeds (Nigella sativa) in the management of COVID-19 -A review of clinical and in silico studies. Antiinfect Agents 2023; 21(1): e020822207222.
[http://dx.doi.org/10.2174/2211352520666220802150156]
[63]
Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol Res 2015; 95-96: 138-58.
[http://dx.doi.org/10.1016/j.phrs.2015.03.011] [PMID: 25829334]
[64]
Sommer AP, Försterling HD, Naber KG. Thymoquinone: shield and sword against SARS-CoV-2. Precis Nanomed 2020; 20: 541-8.
[http://dx.doi.org/10.33218/001c.12984]
[65]
Forouzanfar F, Bazzaz BS, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 2014; 17(12): 929-38.
[PMID: 25859296]
[66]
Majdalawieh AF, Fayyad MW. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int Immunopharmacol 2015; 28(1): 295-304.
[http://dx.doi.org/10.1016/j.intimp.2015.06.023] [PMID: 26117430]
[67]
Taka E, Mazzio EA, Goodman CB, et al. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells. J Neuroimmunol 2015; 286: 5-12.
[http://dx.doi.org/10.1016/j.jneuroim.2015.06.011] [PMID: 26298318]
[68]
Ahmad A, Rehman MU, Ahmad P, Alkharfy KM. COVID‐19 and thymoquinone: Connecting the dots. Phytother Res 2020; 34(11): 2786-9.
[http://dx.doi.org/10.1002/ptr.6793] [PMID: 32588453]
[69]
Shaghaghi N. Molecular docking study of novel COVID-19 protease with low risk terpenoides compounds of plants. Cambridge 2020.
[http://dx.doi.org/10.26434/chemrxiv.11935722.v1]
[70]
Ahmad S, Abbasi HW, Shahid S, Gul S, Abbasi SW. Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment. J Biomol Struct Dyn 2020; 39(12): 4225-33.
[http://dx.doi.org/10.1080/07391102.2020.1775129]
[71]
Hewlings S, Kalman D. Curcumin: A review of its effects on human health. Foods 2017; 6(10): 92.
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[72]
Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or synthetic) and nutritional agonists of PPAR-γ as candidates for cytokine storm modulation in COVID-19 disease. Molecules 2020; 25(9): 2076.
[http://dx.doi.org/10.3390/molecules25092076] [PMID: 32365556]
[73]
Liczbiński P, Michałowicz J, Bukowska B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytother Res 2020; 34(8): 1992-2005.
[http://dx.doi.org/10.1002/ptr.6663] [PMID: 32141677]
[74]
Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J Herbmed Pharmacol 2018; 7(4): 211-9.
[http://dx.doi.org/10.15171/jhp.2018.33]
[75]
Suresh PS. Curcumin and Coagulopathy in the COVID-19 Era. Indian J Clin Biochem 2020; 35(4): 504-5.
[http://dx.doi.org/10.1007/s12291-020-00914-5] [PMID: 32837032]
[76]
Zahedipour F, Hosseini SA, Sathyapalan T, et al. Potential effects of curcumin in the treatment of COVID‐19 infection. Phytother Res 2020; 34(11): 2911-20.
[http://dx.doi.org/10.1002/ptr.6738] [PMID: 32430996]
[77]
Utomo RY, Ikawati M, Meiyanto E. Revealing the potency of citrus and galangal constituents to halt SARS-CoV-2 infection. Preprints 2020; 2020030214.
[78]
Suravajhala R, Parashar A, Malik B, Nagaraj VA, Padmanaban G. Comparative docking studies on curcumin with COVID-19 proteins. Preprints 2020; 2020050439.
[79]
Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020; 2020030226.
[80]
Salehi B, Fokou P, Sharifi-Rad M, et al. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel) 2019; 12(1): 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[81]
Cavia-Saiz M, Busto MD, Pilar-Izquierdo MC, Ortega N, Perez-Mateos M, Muñiz P. Antioxidant properties, radical scavenging activity and biomolecule protection capacity of flavonoid naringenin and its glycoside naringin: a comparative study. J Sci Food Agric 2010; 90(7): 1238-44.
[http://dx.doi.org/10.1002/jsfa.3959] [PMID: 20394007]
[82]
Chin LH, Hon CM, Chellappan DK, et al. Molecular mechanisms of action of naringenin in chronic airway diseases. Eur J Pharmacol 2020; 879: 173139.
[http://dx.doi.org/10.1016/j.ejphar.2020.173139] [PMID: 32343971]
[83]
Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Naringenin, a flavanone with antiviral and anti‐inflammatory effects: A promising treatment strategy against COVID‐19. Phytother Res 2020; 34(12): 3137-47.
[http://dx.doi.org/10.1002/ptr.6781] [PMID: 32613637]
[84]
Parasuraman S, Anand David AV, Arulmoli R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn Rev 2016; 10(20): 84-9.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[85]
Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules 2019; 24(6): 1123.
[http://dx.doi.org/10.3390/molecules24061123] [PMID: 30901869]
[86]
Wu W, Li R, Li X, et al. Quercetin as an antiviral agent inhibits influenza a virus (IAV) entry. Viruses 2015; 8(1): 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[87]
Rojas Á, Del Campo JA, Clement S, et al. Effect of quercetin on hepatitis C virus life cycle: from viral to host targets. Sci Rep 2016; 6(1): 31777.
[http://dx.doi.org/10.1038/srep31777] [PMID: 27546480]
[88]
Wong G, He S, Siragam V, et al. Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection. Virol Sin 2017; 32(6): 545-7.
[http://dx.doi.org/10.1007/s12250-017-4057-9] [PMID: 28884445]
[89]
Xiaoxia LI, Lian C, Xiaojie LI, Wang G, Naoki I. In vitro antiviral mechanisms of eugeniin and quercetin against varicella-zoster virus. J MicrobiolImmunol 2016; 36(10): 727-33.
[http://dx.doi.org/10.3760/cma.j.issn.0254-5101.2016.10.002]
[90]
Abd El-Aziz NM, Shehata MG, Awad OM, El-Sohaimy SA. Inhibition of COVID-19 RNA-Dependent RNA Polymerase by Natural Bioactive Compounds: Molecular Docking Analysis. Research square 2020.
[http://dx.doi.org/10.21203/rs.3.rs-25850/v1]
[91]
Murck H. Symptomatic protective action of glycyrrhizin (licorice) in COVID-19 infection? Front Immunol 2020; 11: 1239.
[http://dx.doi.org/10.3389/fimmu.2020.01239] [PMID: 32574273]
[92]
Luo P, Liu D, Li J. Pharmacological perspective: glycyrrhizin may be an efficacious therapeutic agent for COVID-19. Int J Antimicrob Agents 2020; 55(6): 105995.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105995] [PMID: 32335281]
[93]
Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther 2020; 214: 107618.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107618] [PMID: 32592716]
[94]
Yan Y, Shen X, Cao Y, Zhang J, Wang Y, Cheng Y. Discovery of Anti-2019-nCoV agents from 38 Chinese patent drugs toward respiratory diseases via docking screening. Preprint 2020.
[95]
Narkhede RR, Pise AV, Cheke RS, Shinde SD. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In silico evidences. Nat Prod Bioprospect 2020; 10(5): 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[96]
Aldini G, Altomare A, Baron G, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res 2018; 52(7): 751-62.
[http://dx.doi.org/10.1080/10715762.2018.1468564] [PMID: 29742938]
[97]
Puyo C, Kreig D, Saddi V, Ansari E, Prince O. Case Report: Use of hydroxychloroquine and N-acetylcysteine for treatment of a COVID-19 patient. F1000 Res 2020; 9: 491.
[http://dx.doi.org/10.12688/f1000research.23995.2]
[98]
Ibrahim H, Perl A, Smith D, et al. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol 2020; 219: 108544.
[http://dx.doi.org/10.1016/j.clim.2020.108544] [PMID: 32707089]
[99]
Jorge-Aarón RM, Rosa-Ester MP. N-acetylcysteine as a potential treatment for COVID-19. Future Microbiol 2020; 15(11): 959-62.
[http://dx.doi.org/10.2217/fmb-2020-0074] [PMID: 32662664]
[100]
Singh M, Jadhav HR. Melatonin: functions and ligands. Drug Discov Today 2014; 19(9): 1410-8.
[http://dx.doi.org/10.1016/j.drudis.2014.04.014] [PMID: 24792719]
[101]
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61(3): 253-78.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[102]
Zhang R, Wang X, Ni L, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci 2020; 250: 117583.
[http://dx.doi.org/10.1016/j.lfs.2020.117583] [PMID: 32217117]
[103]
Calvo JR, González-Yanes C, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review. J Pineal Res 2013; 55(2): 103-20.
[http://dx.doi.org/10.1111/jpi.12075] [PMID: 23889107]
[104]
Castillo RR, Quizon GRA, Juco MJM, et al. Melatonin as adjuvant treatment for coronavirus disease 2019 pneumonia patients requiring hospitalization (MAC-19 PRO): a case series. Melatonin Research 2020; 3(3): 297-310.
[http://dx.doi.org/10.32794/mr11250063]
[105]
García IG, Rodriguez-Rubio M, Mariblanca AR, et al. A randomized multicenter clinical trial to evaluate the efficacy of melatonin in the prophylaxis of SARS-CoV-2 infection in high-risk contacts (MeCOVID Trial): A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21(1): 466.
[http://dx.doi.org/10.1186/s13063-020-04436-6] [PMID: 32493475]
[106]
Chavda VP, Patel AB, Vihol D, et al. Herbal remedies, nutraceuticals, and dietary supplements for COVID-19 management: An update. Clin Complementary Med Pharmacol 2022; 2(1): 100021.
[http://dx.doi.org/10.1016/j.ccmp.2022.100021] [PMID: 36620357]
[107]
Gutiérrez-Castrellón P, Gandara-Martí T, Abreu AT, et al. Efficacy and safety of novel probiotic formulation in adult COVID-19 outpatients: A randomized, placebo-controlled clinical trial. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.05.20.21256954]
[108]
Wischmeyer PE, Tang H, Ren Y, et al. Daily lactobacillus probiotic versus placebo in COVID-19-exposed household contacts (PROTECT-EHC): A randomized clinical trial. medRxiv 2022.
[http://dx.doi.org/10.1101/2022.01.04.21268275]
[109]
Louca P, Murray B, Klaser K, et al. Modest effects of dietary supplements during the COVID-19 pandemic: Insights from 445 850 users of the COVID-19 Symptom Study app. BMJ Nutrition. Prevent Health 2021; 4(1): 149-57.
[http://dx.doi.org/10.1136/bmjnph-2021-000250] [PMID: 34308122]