Quantitatively Measured Infrapatellar Fat Pad Signal Intensity Alteration is Associated with Joint Effusion-synovitis in Knee Osteoarthritis

Article ID: e100323214543 Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Objective: The objective of this study is to investigate whether quantitatively measured infrapatellar fat pad (IPFP) signal intensity alteration is associated with joint effusion-synovitis in people with knee osteoarthritis (OA) over two years.

Methods: Among 255 knee OA patients, IPFP signal intensity alteration represented by four measurement parameters [standard deviation of IPFP signal intensity (IPFP sDev), upper quartile value of IPFP high signal intensity region (IPFP UQ (H)), ratio of IPFP high signal intensity region volume to whole IPFP volume (IPFP percentage (H)), and clustering factor of IPFP high signal intensity (IPFP clustering factor (H))] was measured quantitatively at baseline and two-year follow-up using magnetic resonance imaging (MRI). Effusion-synovitis of the suprapatellar pouch and other cavities were measured both quantitatively and semi-quantitatively as effusion-synovitis volume and effusion-synovitis score at baseline and two-year follow-up using MRI. Mixed effects models assessed the associations between IPFP signal intensity alteration and effusion-synovitis over two years.

Results: In multivariable analyses, all four parameters of IPFP signal intensity alteration were positively associated with total effusion-synovitis volume and effusion-synovitis volumes of the suprapatellar pouch and of other cavities over two years (all P<0.05). They were also associated with the semiquantitative measure of effusion-synovitis except for IPFP percentage (H) with effusion-synovitis in other cavities.

Conclusion: Quantitatively measured IPFP signal intensity alteration is positively associated with joint effusion-synovitis in people with knee OA, suggesting that IPFP signal intensity alteration may contribute to effusion-synovitis and a coexistent pattern of these two imaging biomarkers could exist in knee OA patients.

[1]
Ruan G, Xu J, Wang K, et al. Associations between serum S100A8/S100A9 and knee symptoms, joint structures and cartilage enzymes in patients with knee osteoarthritis. Osteoarthritis Cartilage 2019; 27(1): 99-105.
[http://dx.doi.org/10.1016/j.joca.2018.08.020] [PMID: 30240939]
[2]
Wang K, Ding C, Hannon MJ, Chen Z, Kwoh CK, Hunter DJ. Quantitative signal intensity alteration in infrapatellar fat pad predicts incident radiographic osteoarthritis: The osteoarthritis initiative. Arthritis Care Res 2019; 71(1): 30-8.
[http://dx.doi.org/10.1002/acr.23577] [PMID: 29648688]
[3]
Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Res Ther 2017; 19(1): 18.
[http://dx.doi.org/10.1186/s13075-017-1229-9] [PMID: 28148295]
[4]
Hügle T, Geurts J. What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology 2017; 56(9): 1461-71.
[PMID: 28003493]
[5]
Burke CJ, Alizai H, Beltran LS, Regatte RR. MRI of synovitis and joint fluid. J Magn Reson Imaging 2019; 49(6): 1512-27.
[http://dx.doi.org/10.1002/jmri.26618] [PMID: 30618151]
[6]
Wang X, Jin X, Blizzard L, et al. Associations between knee effusion-synovitis and joint structural changes in patients with knee osteoarthritis. J Rheumatol 2017; 44(11): 1644-51.
[http://dx.doi.org/10.3899/jrheum.161596] [PMID: 28864651]
[7]
MacFarlane LA, Yang H, Collins JE, et al. Association of changes in effusion-synovitis with progression of cartilage damage over eighteen months in patients with osteoarthritis and meniscal tear. Arthritis Rheumatol 2019; 71(1): 73-81.
[http://dx.doi.org/10.1002/art.40660] [PMID: 30133187]
[8]
Harkey MS, Davis JE, Lu B, et al. Early pre-radiographic structural pathology precedes the onset of accelerated knee osteoarthritis. BMC Musculoskelet Disord 2019; 20(1): 241.
[http://dx.doi.org/10.1186/s12891-019-2624-y] [PMID: 31113401]
[9]
Davis JE, Ward RJ, MacKay JW, et al. Effusion-synovitis and infrapatellar fat pad signal intensity alteration differentiate accelerated knee osteoarthritis. Rheumatology 2019; 58(3): 418-26.
[http://dx.doi.org/10.1093/rheumatology/key305] [PMID: 30346594]
[10]
Jiang LF, Fang JH, Wu LD. Role of infrapatellar fat pad in pathological process of knee osteoarthritis: Future applications in treatment. World J Clin Cases 2019; 7(16): 2134-42.
[http://dx.doi.org/10.12998/wjcc.v7.i16.2134] [PMID: 31531309]
[11]
Han W, Aitken D, Zheng S, et al. Association between quantitatively measured infrapatellar fat pad high signal-intensity alteration and magnetic resonance imaging–assessed progression of knee osteoarthritis. Arthritis Care Res 2019; 71(5): 638-46.
[http://dx.doi.org/10.1002/acr.23713] [PMID: 30044537]
[12]
Chang J, Liao Z, Lu M, Meng T, Han W, Ding C. Systemic and local adipose tissue in knee osteoarthritis. Osteoarthritis Cartilage 2018; 26(7): 864-71.
[http://dx.doi.org/10.1016/j.joca.2018.03.004] [PMID: 29578044]
[13]
Wang K, Ding C, Hannon MJ, et al. Signal intensity alteration within infrapatellar fat pad predicts knee replacement within 5 years: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2018; 26(10): 1345-50.
[http://dx.doi.org/10.1016/j.joca.2018.05.015] [PMID: 29842941]
[14]
Lu M, Chen Z, Han W, et al. A novel method for assessing signal intensity within infrapatellar fat pad on MR images in patients with knee osteoarthritis. Osteoarthritis Cartilage 2016; 24(11): 1883-9.
[http://dx.doi.org/10.1016/j.joca.2016.06.008] [PMID: 27327783]
[15]
Macchi V, Stocco E, Stecco C, et al. The infrapatellar fat pad and the synovial membrane: an anatomo-functional unit. J Anat 2018; 233(2): 146-54.
[http://dx.doi.org/10.1111/joa.12820] [PMID: 29761471]
[16]
Jin X, Jones G, Cicuttini F, et al. Effect of vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis. JAMA 2016; 315(10): 1005-13.
[http://dx.doi.org/10.1001/jama.2016.1961] [PMID: 26954409]
[17]
Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis: Classification of osteoarthritis of the knee. Arthritis Rheum 1986; 29(8): 1039-49.
[http://dx.doi.org/10.1002/art.1780290816] [PMID: 3741515]
[18]
Hochberg MC, Chang RW, Dwosh I, Lindsey S, Pincus T, Wolfe F. The american college of rheumatology 1991 revised criteria for the classification of global functional status in rheumatoid arthritis. Arthritis Rheum 1992; 35(5): 498-502.
[http://dx.doi.org/10.1002/art.1780350502] [PMID: 1575785]
[19]
Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage 2007; 15(Suppl A): A1-56.
[http://dx.doi.org/10.1016/j.joca.2006.11.009]
[20]
Laffont CM, Vandemeulebroecke M, Concordet D. Multivariate analysis of longitudinal ordinal data with mixed effects models, with application to clinical outcomes in osteoarthritis. J Am Stat Assoc 2014; 109(507): 955-66.
[http://dx.doi.org/10.1080/01621459.2014.917977]
[21]
Han W, Aitken D, Zhu Z, et al. Signal intensity alteration in the infrapatellar fat pad at baseline for the prediction of knee symptoms and structure in older adults: A cohort study. Ann Rheum Dis 2016; 75(10): 1783-8.
[http://dx.doi.org/10.1136/annrheumdis-2015-208360] [PMID: 26612337]
[22]
Han W, Aitken D, Zhu Z, et al. Hypointense signals in the infrapatellar fat pad assessed by magnetic resonance imaging are associated with knee symptoms and structure in older adults: a cohort study. Arthritis Res Ther 2016; 18(1): 234.
[http://dx.doi.org/10.1186/s13075-016-1130-y] [PMID: 27729069]
[23]
Ballegaard C, Riis RGC, Bliddal H, et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: A cross-sectional study. Osteoarthritis Cartilage 2014; 22(7): 933-40.
[http://dx.doi.org/10.1016/j.joca.2014.04.018] [PMID: 24821663]
[24]
Roemer FW, Kwoh CK, Hannon MJ, et al. What comes first? multitissue involvement leading to radiographic osteoarthritis: Magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative. Arthritis Rheumatol 2015; 67(8): 2085-96.
[http://dx.doi.org/10.1002/art.39176] [PMID: 25940308]
[25]
Yun SJ, Lim Y, Jin W, Park YS, Lee SH, Ryu KN. Validity of radiograph-based infrapatellar fat pad opacity grading for assessing knee synovitis: Correlation with contrast-enhanced MRI. AJR Am J Roentgenol 2017; 209(6): 1321-30.
[http://dx.doi.org/10.2214/AJR.16.17718] [PMID: 29045182]
[26]
Heilmeier U, Mamoto K, Amano K, et al. Infrapatellar fat pad abnormalities are associated with a higher inflammatory synovial fluid cytokine profile in young adults following ACL tear. Osteoarthritis Cartilage 2020; 28(1): 82-91.
[http://dx.doi.org/10.1016/j.joca.2019.09.001] [PMID: 31526878]
[27]
Eymard F, Pigenet A, Citadelle D, et al. Induction of an inflammatory and prodegradative phenotype in autologous fibroblast-like synoviocytes by the infrapatellar fat pad from patients with knee osteoarthritis. Arthritis Rheumatol 2014; 66(8): 2165-74.
[http://dx.doi.org/10.1002/art.38657] [PMID: 24719336]