Fenugreek (Trigonella foenum-graecum L.) Modulates Energy Metabolism and Anti-inflammatory Response in Obesity via Combinatorial Analysis

Article ID: e090323214506 Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

Since ancient times, fenugreek has been utilized as a dietary condiment as well as for its various therapeutic properties. The goal of this study is to look at the function of fenugreek in regulating obesity metabolism by providing a global picture of gene networks and pathways. The buildup of fat in adipose tissue and other internal organs is a hallmark of obesity, a long-term carbohydrate and lipid metabolic disorder. The fenugreek plant grows up to 60 cm tall, with golden-yellow rhomboidal seeds. Though the seeds of fenugreek are more well-known, the leaves and stems have also been suggested to have therapeutic properties. Various studies have shown that the secondary metabolites in the fenugreek plant are responsible for these properties. Several studies have shown that fenugreek has anti-obesity properties, making it a good plant candidate with a high prospect of being used to treat obesity. This review paper discusses the use of combinatorial analytic approaches to better understand the medicinal uses of fenugreek. Combinatorial analytical methods that use functional modulation and modelling may make it easier to come up with research strategies to fill in research gaps and find possible research niches.

Graphical Abstract

[1]
Singh, V.; Garg, A.N. Availability of essential trace elements in Indian cereals, vegetables and spices using INAA and the contribution of spices to daily dietary intake. Food Chem., 2006, 94(1), 81-89.
[http://dx.doi.org/10.1016/j.foodchem.2004.10.053]
[2]
Visuvanathan, T.; Than, L.T.L.; Stanslas, J.; Chew, S.Y.; Vellasamy, S. Revisiting Trigonella foenum-graecum L.: Pharmacology and therapeutic potentialities. Plants, 2022, 11(11), 1450.
[http://dx.doi.org/10.3390/plants11111450] [PMID: 35684222]
[3]
Sowmya, P.; Rajyalakshmi, P. Hypocholesterolemic effect of germinated fenugreek seeds in human subjects. Plant Foods Hum. Nutr., 1999, 53(4), 359-365.
[http://dx.doi.org/10.1023/A:1008021618733] [PMID: 10540988]
[4]
He, Y.; Ding, C.; Wang, X.; Wang, H.; Suo, Y. Using response surface methodology to optimize countercurrent chromatographic separation of polyphenol compounds from fenugreek (Trigonella foenum-graecum L.) seeds. J. Liq. Chromatogr. Relat. Technol., 2015, 38(1), 29-35.
[http://dx.doi.org/10.1080/10826076.2013.864981]
[5]
Mehrafarin, A.; Rezazadeh, S.; Naghdi Badi, H.; Noormohammadi, G.; Zand, E.; Qaderi, A. A review on biology, cultivation and biotechnology of fenugreek (Trigonella foenum-graecum L.) as a valuable medicinal plant and multipurpose. Faslnamah-i Giyahan-i Daruyi, 2011, 10(37), 6-24.
[6]
Husain, N.; Nair, R.; Verma, B.; Yadav, B. Growth, yield and economics of fenugreek (Trigonella foenum-graecum L.) as influenced by inorganic fertilizers and bio-inoculant (Rhizobium, PSB and KSB). Biol. Forum., 2022, 14(2), 80-83.
[7]
Nagulapalli Venkata, K.C.; Swaroop, A.; Bagchi, D.; Bishayee, A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol. Nutr. Food Res., 2017, 61(6), 1600950.
[http://dx.doi.org/10.1002/mnfr.201600950] [PMID: 28266134]
[8]
Riasat, M.; Heidari, B.; Pakniyat, H.; Jafari, A.A. Assessment of variability in secondary metabolites and expected response to genotype selection in fenugreek (Trigonella spp.). Ind. Crops Prod., 2018, 123, 221-231.
[http://dx.doi.org/10.1016/j.indcrop.2018.06.068]
[9]
Srinivasan, K. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Rev. Int., 2006, 22(2), 203-224.
[http://dx.doi.org/10.1080/87559120600586315]
[10]
Srinivasa, U.M.; Naidu, M.M. Fenugreek (Trigonella foenum-graecum L.) seed: promising source of nutraceutical. Stud. Nat. Prod. Chem., 2021, 71, 141-184.
[http://dx.doi.org/10.1016/B978-0-323-91095-8.00014-3]
[11]
Chacrabati, R.; Afrin, T.; Hasan, M.K.; Goswami, C. Fenugreek (Trigonella foenum-graecum) extract improves hyperglycemia and hyperlipidemia in high sugar diet fed mice. Bangladesh J. Anim. Sci., 2022, 51(3), 90-97.
[http://dx.doi.org/10.3329/bjas.v51i3.61784]
[12]
Pickering, E.; Steels, E.; Rao, A.; Steadman, K.J. An exploratory study of the safety and efficacy of a Trigonella foenum-graecum seed extract in early glucose dysregulation: A double-blind randomized placebo-controlled trial. Pharmaceutics, 2022, 14(11), 2453.
[http://dx.doi.org/10.3390/pharmaceutics14112453] [PMID: 36432644]
[13]
Żuk-Gołaszewska, K.; Wierzbowska, J.; Żuk-Gołaszewska, K. Fenugreek: productivity, nutritional value and uses. J. Elem., 2017, 22(3/2017), 1067-1080.
[http://dx.doi.org/10.5601/jelem.2017.22.1.1396]
[14]
Gharneh, H.A.; Davodalhosseini, S. Evaluation of mineral content in some native Iranian Fenugreek (Trigonella foenum-graceum L.) genotypes. J. Earth. Environ. Health Sci., 2015, 1(1), 38.
[http://dx.doi.org/10.4103/2423-7752.159926]
[15]
Yadav, S.K.; Sehgal, S. Effect of home processing and storage on ascorbic acid and β-carotene content of bathua (Chenopodium album) and fenugreek (Trigonella foenum graecum) leaves. Plant Foods Hum. Nutr., 1997, 50(3), 239-247.
[http://dx.doi.org/10.1007/BF02436060] [PMID: 9373874]
[16]
Bienkowski, T.; Zuk-Golaszewska, K.; Kaliniewicz, J.; Golaszewski, J. Content of biogenic elements and fatty acid composition of fenugreek seeds cultivated under different conditions. Chil. J. Agric. Res., 2017, 77(2), 134-141.
[http://dx.doi.org/10.4067/S0718-58392017000200134]
[17]
Gu, L.B.; Liu, X.N.; Liu, H.M.; Pang, H.L.; Qin, G.Y. Extraction of fenugreek (Trigonella foenum-graceum L.) seed oil using subcritical butane: Characterization and process optimization. Molecules, 2017, 22(2), 228.
[http://dx.doi.org/10.3390/molecules22020228] [PMID: 28157172]
[18]
Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Alara, O.R.; Abayomi, O.O. Extraction, characterization and antioxidant activity of fenugreek (Trigonella-Foenum Graecum) seed oil. Mater. Sci. Energy Technol., 2019, 2(2), 349-355.
[http://dx.doi.org/10.1016/j.mset.2018.12.001]
[19]
Qadir, A.; Khan, N.; Arif, M.; Warsi, M.H.; Ullah, S.N.M.N.; Yusuf, M. GC–MS analysis of phytoconstituents present in Trigonella foenumgraecum L. seeds extract and its antioxidant activity. J. Indian Chem. Soc., 2022, 99(6), 100503.
[http://dx.doi.org/10.1016/j.jics.2022.100503]
[20]
akbari, M.; Rasouli, H.; Bahdor, T. Physiological and pharmaceutical effect of fenugreek: a review. IOSR J. Pharm., 2012, 2(4), 49-53.
[http://dx.doi.org/10.9790/3013-24204953]
[21]
Kang, L.; Zhao, Y.; Pang, X.; Yu, H.; Xiong, C.; Zhang, J.; Gao, Y.; Yu, K.; Liu, C.; Ma, B. Characterization and identification of steroidal saponins from the seeds of Trigonella foenum-graecum by ultra high-performance liquid chromatography and hybrid time-of-flight mass spectrometry. J. Pharm. Biomed. Anal., 2013, 74, 257-267.
[http://dx.doi.org/10.1016/j.jpba.2012.11.005] [PMID: 23245259]
[22]
Rayyan, S.; Fossen, T.; Andersen, O.M. Flavone C-glycosides from seeds of fenugreek, Trigonella foenum-graecum L. J. Agric. Food Chem., 2010, 58(12), 7211-7217.
[http://dx.doi.org/10.1021/jf100848c] [PMID: 20486688]
[23]
Wani, S.A.; Kumar, P. Fenugreek: A review on its nutraceutical properties and utilization in various food products. J. Saudi Soc. Agric. Sci., 2018, 17(2), 97-106.
[http://dx.doi.org/10.1016/j.jssas.2016.01.007]
[24]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. A mini-review of galactomannas and diosgenin in fenugreek. Pharmacogn. Commun., 2021, 11(1), 26-30.
[http://dx.doi.org/10.5530/pc.2021.1.6]
[25]
Jahangir Chughtai, M.F.; Pasha, I.; Shabbir, M.A.; Haider, M.A.; Afzal, B.; Ahmad, S.; Manzoor, M.S. Biochemical evaluation of Trigonella foenum graecum (Fenugreek) with special reference to phenolic acids. Pak. J. Sci. Ind. Res. Ser. B Biol. Sci., 2017, 60(3), 154-161.
[http://dx.doi.org/10.52763/PJSIR.BIOL.SCI.60.3.2017.154.161]
[26]
Arya, P.; Kumar, P. Comparison of ultrasound and microwave assisted extraction of diosgenin from Trigonella foenum graceum seed. Ultrason. Sonochem., 2021, 74, 105572.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105572] [PMID: 33933831]
[27]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Galactomannas and diosgenin, miracle of natural products. Res. Crop Ecophysiol., 2019, 14(1), 52-65.
[28]
Salehi, A.; Fallah, S.; Zitterl-Eglseer, K.; Kaul, H.P.; Abbasi Surki, A.; Mehdi, B. Effect of organic fertilizers on antioxidant activity and bioactive compounds of fenugreek seeds in intercropped systems with buckwheat. Agronomy, 2019, 9(7), 367.
[http://dx.doi.org/10.3390/agronomy9070367]
[29]
Omer, T. The causes of obesity: an in-depth review. Adv. Obes. Weight Manag. Control, 2020, 10(4), 90-94.
[http://dx.doi.org/10.15406/aowmc.2020.10.00312]
[30]
Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism, 2019, 92, 6-10.
[http://dx.doi.org/10.1016/j.metabol.2018.09.005] [PMID: 30253139]
[31]
Uranga, R.M.; Keller, J.N. The complex interactions between obesity, metabolism and the brain. Front. Neurosci., 2019, 13, 513.
[http://dx.doi.org/10.3389/fnins.2019.00513] [PMID: 31178685]
[32]
Spalding, K.L.; Bernard, S.; Näslund, E.; Salehpour, M.; Possnert, G.; Appelsved, L.; Fu, K.Y.; Alkass, K.; Druid, H.; Thorell, A.; Rydén, M.; Arner, P. Impact of fat mass and distribution on lipid turnover in human adipose tissue. Nat. Commun., 2017, 8(1), 15253.
[http://dx.doi.org/10.1038/ncomms15253] [PMID: 28534500]
[33]
Fitch, A.; Fox, C.; Bauerly, K.; Gross, A.; Heim, C.; Judge-Dietz, J.; Kaufman, T.; Krych, E.; Kumar, S.; Landin, D. Prevention and management of obesity for children and adolescents; Inst. Clin. Sys. Improv, 2013, 10.
[34]
Kopelman, P.G. Obesity as a medical problem. Nature, 2000, 404(6778), 635-643.
[http://dx.doi.org/10.1038/35007508] [PMID: 10766250]
[35]
Li, S.; Zhao, J.H.; Luan, J.; Luben, R.N.; Rodwell, S.A.; Khaw, K.T.; Ong, K.K.; Wareham, N.J.; Loos, R.J.F. Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am. J. Clin. Nutr., 2010, 91(1), 184-190.
[http://dx.doi.org/10.3945/ajcn.2009.28403] [PMID: 19812171]
[36]
Bouchard, C.; Tremblay, A.; Després, J.P.; Nadeau, A.; Lupien, P.J.; Thériault, G.; Dussault, J.; Moorjani, S.; Pinault, S.; Fournier, G. The response to long-term overfeeding in identical twins. N. Engl. J. Med., 1990, 322(21), 1477-1482.
[http://dx.doi.org/10.1056/NEJM199005243222101] [PMID: 2336074]
[37]
Schousboe, K.; Visscher, P.M.; Erbas, B.; Kyvik, K.O.; Hopper, J.L.; Henriksen, J.E.; Heitmann, B.L.; Sørensen, T.I.A. Twin study of genetic and environmental influences on adult body size, shape, and composition. Int. J. Obes., 2004, 28(1), 39-48.
[http://dx.doi.org/10.1038/sj.ijo.0802524] [PMID: 14610529]
[38]
Thaker, V.V. Genetic and epigenetic causes of obesity. Adolesc. Med. State Art Rev., 2017, 28(2), 379-405.
[PMID: 30416642]
[39]
Wright, S.M.; Aronne, L.J. Causes of obesity. Abdom. Radiol., 2012, 37(5), 730-732.
[http://dx.doi.org/10.1007/s00261-012-9862-x] [PMID: 22426851]
[40]
Park, S.; Blanck, H.M.; Sherry, B.; Brener, N.; O’Toole, T. Factors associated with sugar-sweetened beverage intake among United States high school students. J. Nutr., 2012, 142(2), 306-312.
[http://dx.doi.org/10.3945/jn.111.148536] [PMID: 22223568]
[41]
Courtemanche, C. Longer hours and larger waistlines: The relationship between work hours and obesity. In: Forum for Health Economics and Policy, 2009, 12(2) De gruyter
[42]
Gangwisch, J.E.; Malaspina, D.; Boden-Albala, B.; Heymsfield, S.B. Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep, 2005, 28(10), 1289-1296.
[http://dx.doi.org/10.1093/sleep/28.10.1289] [PMID: 16295214]
[43]
Kim, B.M.; Lee, B.E.; Park, H.S.; Kim, Y.J.; Suh, Y.J.; Kim, J.; Shin, J.Y.; Ha, E.H. Long working hours and overweight and obesity in working adults. Ann. Occup. Environ. Med., 2016, 28(1), 36.
[http://dx.doi.org/10.1186/s40557-016-0110-7] [PMID: 27555918]
[44]
Ko, G.T.C.; Chan, J.C.N.; Chan, A.W.Y.; Wong, P.T.S.; Hui, S.S.C.; Tong, S.D.Y.; Ng, S-M.; Chow, F.; Chan, C.L.W. Association between sleeping hours, working hours and obesity in Hong Kong Chinese: the ‘better health for better Hong Kong’ health promotion campaign. Int. J. Obes., 2007, 31(2), 254-260.
[http://dx.doi.org/10.1038/sj.ijo.0803389] [PMID: 16718283]
[45]
Simpson, K; Parker, J; Plumer, J; Bloom, S. CCK, PYY and PP: The control of energy balance. Handb. Exp. Pharmacol., 2012, 209, 209-230.
[http://dx.doi.org/10.1007/978-3-642-24716-3_9] [PMID: 22249816]
[46]
Leeners, B.; Geary, N.; Tobler, P.N.; Asarian, L. Ovarian hormones and obesity. Hum. Reprod. Update, 2017, 23(3), 300-321.
[http://dx.doi.org/10.1093/humupd/dmw045] [PMID: 28333235]
[47]
Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; Agyemang, C.; Ahmadvand, A.; Ahrens, W.; Ajlouni, K.; Akhtaeva, N.; Al-Hazzaa, H.M.; Al-Othman, A.R.; Al-Raddadi, R.; Al Buhairan, F.; Al Dhukair, S.; Ali, M.M.; Ali, O.; Alkerwi, A.; Alvarez-Pedrerol, M.; Aly, E.; Amarapurkar, D.N.; Amouyel, P.; Amuzu, A.; Andersen, L.B.; Anderssen, S.A.; Andrade, D.S.; Ängquist, L.H.; Anjana, R.M.; Aounallah-Skhiri, H.; Araújo, J.; Ariansen, I.; Aris, T.; Arlappa, N.; Arveiler, D.; Aryal, K.K.; Aspelund, T.; Assah, F.K.; Assunção, M.C.F.; Aung, M.S.; Avdicová, M.; Azevedo, A.; Azizi, F.; Babu, B.V.; Bahijri, S.; Baker, J.L.; Balakrishna, N.; Bamoshmoosh, M.; Banach, M.; Bandosz, P.; Banegas, J.R.; Barbagallo, C.M.; Barceló, A.; Barkat, A.; Barros, A.J.D.; Barros, M.V.G.; Bata, I.; Batieha, A.M.; Batista, R.L.; Batyrbek, A.; Baur, L.A.; Beaglehole, R.; Romdhane, H.B.; Benedics, J.; Benet, M.; Bennett, J.E.; Bernabe-Ortiz, A.; Bernotiene, G.; Bettiol, H.; Bhagyalaxmi, A.; Bharadwaj, S.; Bhargava, S.K.; Bhatti, Z.; Bhutta, Z.A.; Bi, H.; Bi, Y.; Biehl, A.; Bikbov, M.; Bista, B.; Bjelica, D.J.; Bjerregaard, P.; Bjertness, E.; Bjertness, M.B.; Björkelund, C.; Blokstra, A.; Bo, S.; Bobak, M.; Boddy, L.M.; Boehm, B.O.; Boeing, H.; Boggia, J.G.; Boissonnet, C.P.; Bonaccio, M.; Bongard, V.; Bovet, P.; Braeckevelt, L.; Braeckman, L.; Bragt, M.C.E.; Brajkovich, I.; Branca, F.; Breckenkamp, J.; Breda, J.; Brenner, H.; Brewster, L.M.; Brian, G.R.; Brinduse, L.; Bruno, G.; Bueno-de-Mesquita, H.B.; Bugge, A.; Buoncristiano, M.; Burazeri, G.; Burns, C.; de León, A.C.; Cacciottolo, J.; Cai, H.; Cama, T.; Cameron, C.; Camolas, J.; Can, G.; Cândido, A.P.C.; Capanzana, M.; Capuano, V.; Cardoso, V.C.; Carlsson, A.C.; Carvalho, M.J.; Casanueva, F.F.; Casas, J-P.; Caserta, C.A.; Chamukuttan, S.; Chan, A.W.; Chan, Q.; Chaturvedi, H.K.; Chaturvedi, N.; Chen, C-J.; Chen, F.; Chen, H.; Chen, S.; Chen, Z.; Cheng, C-Y.; Chetrit, A.; Chikova-Iscener, E.; Chiolero, A.; Chiou, S-T.; Chirita-Emandi, A.; Chirlaque, M-D.; Cho, B.; Cho, Y.; Christensen, K.; Christofaro, D.G.; Chudek, J.; Cifkova, R.; Cinteza, E.; Claessens, F.; Clays, E.; Concin, H.; Confortin, S.C.; Cooper, C.; Cooper, R.; Coppinger, T.C.; Costanzo, S.; Cottel, D.; Cowell, C.; Craig, C.L.; Crujeiras, A.B.; Cucu, A.; D’Arrigo, G.; d’Orsi, E.; Dallongeville, J.; Damasceno, A.; Damsgaard, C.T.; Danaei, G.; Dankner, R.; Dantoft, T.M.; Dastgiri, S.; Dauchet, L.; Davletov, K.; De Backer, G.; De Bacquer, D.; De Curtis, A.; de Gaetano, G.; De Henauw, S.; de Oliveira, P.D.; De Ridder, K.; De Smedt, D.; Deepa, M.; Deev, A.D.; Dehghan, A.; Delisle, H.; Delpeuch, F.; Deschamps, V.; Dhana, K.; Di Castelnuovo, A.F.; Dias-da-Costa, J.S.; Diaz, A.; Dika, Z.; Djalalinia, S.; Do, H.T.P.; Dobson, A.J.; Donati, M.B.; Donfrancesco, C.; Donoso, S.P.; Döring, A.; Dorobantu, M.; Dorosty, A.R.; Doua, K.; Drygas, W.; Duan, J.L.; Duante, C.; Duleva, V.; Dulskiene, V.; Dzerve, V.; Dziankowska-Zaborszczyk, E.; Egbagbe, E.E.; Eggertsen, R.; Eiben, G.; Ekelund, U.; El Ati, J.; Elliott, P.; Engle-Stone, R.; Erasmus, R.T.; Erem, C.; Eriksen, L.; Eriksson, J.G.; la Peña, J.E.; Evans, A.; Faeh, D.; Fall, C.H.; Sant’Angelo, V.F.; Farzadfar, F.; Felix-Redondo, F.J.; Ferguson, T.S.; Fernandes, R.A.; Fernández-Bergés, D.; Ferrante, D.; Ferrari, M.; Ferreccio, C.; Ferrieres, J.; Finn, J.D.; Fischer, K.; Flores, E.M.; Föger, B.; Foo, L.H.; Forslund, A-S.; Forsner, M.; Fouad, H.M.; Francis, D.K.; Franco, M.C.; Franco, O.H.; Frontera, G.; Fuchs, F.D.; Fuchs, S.C.; Fujita, Y.; Furusawa, T.; Gaciong, Z.; Gafencu, M.; Galeone, D.; Galvano, F.; Garcia-de-la-Hera, M.; Gareta, D.; Garnett, S.P.; Gaspoz, J-M.; Gasull, M.; Gates, L.; Geiger, H.; Geleijnse, J.M.; Ghasemian, A.; Giampaoli, S.; Gianfagna, F.; Gill, T.K.; Giovannelli, J.; Giwercman, A.; Godos, J.; Gogen, S.; Goldsmith, R.A.; Goltzman, D.; Gonçalves, H.; González-Leon, M.; González-Rivas, J.P.; Gonzalez-Gross, M.; Gottrand, F.; Graça, A.P.; Graff-Iversen, S.; Grafnetter, D.; Grajda, A.; Grammatikopoulou, M.G.; Gregor, R.D.; Grodzicki, T.; Grøntved, A.; Grosso, G.; Gruden, G.; Grujic, V.; Gu, D.; Gualdi-Russo, E.; Guallar-Castillón, P.; Guan, O.P.; Gudmundsson, E.F.; Gudnason, V.; Guerrero, R.; Guessous, I.; Guimaraes, A.L.; Gulliford, M.C.; Gunnlaugsdottir, J.; Gunter, M.; Guo, X.; Guo, Y.; Gupta, P.C.; Gupta, R.; Gureje, O.; Gurzkowska, B.; Gutierrez, L.; Gutzwiller, F.; Hadaegh, F.; Hadjigeorgiou, C.A.; Si-Ramlee, K.; Halkjær, J.; Hambleton, I.R.; Hardy, R.; Kumar, R.H.; Hassapidou, M.; Hata, J.; Hayes, A.J.; He, J.; Heidinger-Felso, R.; Heinen, M.; Hendriks, M.E.; Henriques, A.; Cadena, L.H.; Herrala, S.; Herrera, V.M.; Herter-Aeberli, I.; Heshmat, R.; Hihtaniemi, I.T.; Ho, S.Y.; Ho, S.C.; Hobbs, M.; Hofman, A.; Hopman, W.M.; Horimoto, A.R.V.R.; Hormiga, C.M.; Horta, B.L.; Houti, L.; Howitt, C.; Htay, T.T.; Htet, A.S.; Htike, M.M.T.; Hu, Y.; Huerta, J.M.; Petrescu, C.H.; Huisman, M.; Husseini, A.; Huu, C.N.; Huybrechts, I.; Hwalla, N.; Hyska, J.; Iacoviello, L.; Iannone, A.G.; Ibarluzea, J.M.; Ibrahim, M.M.; Ikeda, N.; Ikram, M.A.; Irazola, V.E.; Islam, M.; Ismail, A-S.; Ivkovic, V.; Iwasaki, M.; Jackson, R.T.; Jacobs, J.M.; Jaddou, H.; Jafar, T.; Jamil, K.M.; Jamrozik, K.; Janszky, I.; Jarani, J.; Jasienska, G.; Jelakovic, A.; Jelakovic, B.; Jennings, G.; Jeong, S-L.; Jiang, C.Q.; Jiménez-Acosta, S.M.; Joffres, M.; Johansson, M.; Jonas, J.B.; Jørgensen, T.; Joshi, P.; Jovic, D.P.; Józwiak, J.; Juolevi, A.; Jurak, G.; Jureša, V.; Kaaks, R.; Kafatos, A.; Kajantie, E.O.; Kalter-Leibovici, O.; Kamaruddin, N.A.; Kapantais, E.; Karki, K.B.; Kasaeian, A.; Katz, J.; Kauhanen, J.; Kaur, P.; Kavousi, M.; Kazakbaeva, G.; Keil, U.; Boker, L.K.; Keinänen-Kiukaanniemi, S.; Kelishadi, R.; Kelleher, C.; Kemper, H.C.G.; Kengne, A.P.; Kerimkulova, A.; Kersting, M.; Key, T.; Khader, Y.S.; Khalili, D.; Khang, Y-H.; Khateeb, M.; Khaw, K-T.; Khouw, I.M.S.L.; Kiechl-Kohlendorfer, U.; Kiechl, S.; Killewo, J.; Kim, J.; Kim, Y-Y.; Klimont, J.; Klumbiene, J.; Knoflach, M.; Koirala, B.; Kolle, E.; Kolsteren, P.; Korrovits, P.; Kos, J.; Koskinen, S.; Kouda, K.; Kovacs, V.A.; Kowlessur, S.; Koziel, S.; Kratzer, W.; Kriemler, S.; Kristensen, P.L.; Krokstad, S.; Kromhout, D.; Kruger, H.S.; Kubinova, R.; Kuciene, R.; Kuh, D.; Kujala, U.M.; Kulaga, Z.; Kumar, R.K.; Kunešová, M.; Kurjata, P.; Kusuma, Y.S.; Kuulasmaa, K.; Kyobutungi, C.; La, Q.N.; Laamiri, F.Z.; Laatikainen, T.; Lachat, C.; Laid, Y.; Lam, T.H.; Landrove, O.; Lanska, V.; Lappas, G.; Larijani, B.; Laugsand, L.E.; Lauria, L.; Laxmaiah, A.; Bao, K.L.N.; Le, T.D.; Lebanan, M.A.O.; Leclercq, C.; Lee, J.; Lee, J.; Lehtimäki, T.; León-Muñoz, L.M.; Levitt, N.S.; Li, Y.; Lilly, C.L.; Lim, W-Y.; Lima-Costa, M.F.; Lin, H-H.; Lin, X.; Lind, L.; Linneberg, A.; Lissner, L.; Litwin, M.; Liu, J.; Loit, H-M.; Lopes, L.; Lorbeer, R.; Lotufo, P.A.; Lozano, J.E.; Luksiene, D.; Lundqvist, A.; Lunet, N.; Lytsy, P.; Ma, G.; Ma, J.; Machado-Coelho, G.L.L.; Machado-Rodrigues, A.M.; Machi, S.; Maggi, S.; Magliano, D.J.; Magriplis, E.; Mahaletchumy, A.; Maire, B.; Majer, M.; Makdisse, M.; Malekzadeh, R.; Malhotra, R.; Rao, K.M.; Malyutina, S.; Manios, Y.; Mann, J.I.; Manzato, E.; Margozzini, P.; Markaki, A.; Markey, O.; Marques, L.P.; Marques-Vidal, P.; Marrugat, J.; Martin-Prevel, Y.; Martin, R.; Martorell, R.; Martos, E.; Marventano, S.; Masoodi, S.R.; Mathiesen, E.B.; Matijasevich, A.; Matsha, T.E.; Mazur, A.; Mbanya, J.C.N.; McFarlane, S.R.; McGarvey, S.T.; McKee, M.; McLachlan, S.; McLean, R.M.; McLean, S.B.; McNulty, B.A.; Yusof, S.M.; Mediene-Benchekor, S.; Medzioniene, J.; Meirhaeghe, A.; Meisfjord, J.; Meisinger, C.; Menezes, A.M.B.; Menon, G.R.; Mensink, G.B.M.; Meshram, I.I.; Metspalu, A.; Meyer, H.E.; Mi, J.; Michaelsen, K.F.; Michels, N.; Mikkel, K.; Miller, J.C.; Minderico, C.S.; Miquel, J.F.; Miranda, J.J.; Mirkopoulou, D.; Mirrakhimov, E.; Mišigoj-Durakovic, M.; Mistretta, A.; Mocanu, V.; Modesti, P.A.; Mohamed, M.K.; Mohammad, K.; Mohammadifard, N.; Mohan, V.; Mohanna, S.; Yusoff, M.F.M.; Molbo, D.; Møllehave, L.T.; Møller, N.C.; Molnár, D.; Momenan, A.; Mondo, C.K.; Monterrubio, E.A.; Monyeki, K.D.K.; Moon, J.S.; Moreira, L.B.; Morejon, A.; Moreno, L.A.; Morgan, K.; Mortensen, E.L.; Moschonis, G.; Mossakowska, M.; Mostafa, A.; Mota, J.; Mota-Pinto, A.; Motlagh, M.E.; Motta, J.; Mu, T.T.; Muc, M.; Muiesan, M.L.; Müller-Nurasyid, M.; Murphy, N.; Mursu, J.; Murtagh, E.M.; Musil, V.; Nabipour, I.; Nagel, G.; Naidu, B.M.; Nakamura, H.; Námešná, J.; Nang, E.E.K.; Nangia, V.B.; Nankap, M.; Narake, S.; Nardone, P.; Navarrete-Muñoz, E.M.; Neal, W.A.; Nenko, I.; Neovius, M.; Nervi, F.; Nguyen, C.T.; Nguyen, N.D.; Nguyen, Q.N.; Nieto-Martínez, R.E.; Ning, G.; Ninomiya, T.; Nishtar, S.; Noale, M.; Noboa, O.A.; Norat, T.; Norie, S.; Noto, D.; Nsour, M.A.; O’Reilly, D.; Obreja, G.; Oda, E.; Oehlers, G.; Oh, K.; Ohara, K.; Olafsson, Ö.; Olinto, M.T.A.; Oliveira, I.O.; Oltarzewski, M.; Omar, M.A.; Onat, A.; Ong, S.K.; Ono, L.M.; Ordunez, P.; Ornelas, R.; Ortiz, A.P.; Osler, M.; Osmond, C.; Ostojic, S.M.; Ostovar, A.; Otero, J.A.; Overvad, K.; Owusu-Dabo, E.; Paccaud, F.M.; Padez, C.; Pahomova, E.; Pajak, A.; Palli, D.; Palloni, A.; Palmieri, L.; Pan, W-H.; Panda-Jonas, S.; Pandey, A.; Panza, F.; Papandreou, D.; Park, S-W.; Parnell, W.R.; Parsaeian, M.; Pascanu, I.M.; Patel, N.D.; Pecin, I.; Pednekar, M.S.; Peer, N.; Peeters, P.H.; Peixoto, S.V.; Peltonen, M.; Pereira, A.C.; Perez-Farinos, N.; Pérez, C.M.; Peters, A.; Petkeviciene, J.; Petrauskiene, A.; Peykari, N.; Pham, S.T.; Pierannunzio, D.; Pigeot, I.; Pikhart, H.; Pilav, A.; Pilotto, L.; Pistelli, F.; Pitakaka, F.; Piwonska, A.; Plans-Rubió, P.; Poh, B.K.; Pohlabeln, H.; Pop, R.M.; Popovic, S.R.; Porta, M.; Portegies, M.L.P.; Posch, G.; Poulimeneas, D.; Pouraram, H.; Pourshams, A.; Poustchi, H.; Pradeepa, R.; Prashant, M.; Price, J.F.; Puder, J.J.; Pudule, I.; Puiu, M.; Punab, M.; Qasrawi, R.F.; Qorbani, M.; Bao, T.Q.; Radic, I.; Radisauskas, R.; Rahman, M.; Rahman, M.; Raitakari, O.; Raj, M.; Rao, S.R.; Ramachandran, A.; Ramke, J.; Ramos, E.; Ramos, R.; Rampal, L.; Rampal, S.; Rascon-Pacheco, R.A.; Redon, J.; Reganit, P.F.M.; Ribas-Barba, L.; Ribeiro, R.; Riboli, E.; Rigo, F.; de Wit, T.F.R.; Rito, A.; Ritti-Dias, R.M.; Rivera, J.A.; Robinson, S.M.; Robitaille, C.; Rodrigues, D.; Rodríguez-Artalejo, F.; del Cristo Rodriguez-Perez, M.; Rodríguez-Villamizar, L.A.; Rojas-Martinez, R.; Rojroongwasinkul, N.; Romaguera, D.; Ronkainen, K.; Rosengren, A.; Rouse, I.; Roy, J.G.R.; Rubinstein, A.; Rühli, F.J.; Ruiz-Betancourt, B.S.; Russo, P.; Rutkowski, M.; Sabanayagam, C.; Sachdev, H.S.; Saidi, O.; Salanave, B.; Martinez, E.S.; Salmerón, D.; Salomaa, V.; Salonen, J.T.; Salvetti, M.; Sánchez-Abanto, J.; Sandjaja; Sans, S.; Marina, L.S.; Santos, D.A.; Santos, I.S.; Santos, O.; dos Santos, R.N.; Santos, R.; Saramies, J.L.; Sardinha, L.B.; Sarrafzadegan, N.; Saum, K-U.; Savva, S.; Savy, M.; Scazufca, M.; Rosario, A.S.; Schargrodsky, H.; Schienkiewitz, A.; Schipf, S.; Schmidt, C.O.; Schmidt, I.M.; Schultsz, C.; Schutte, A.E.; Sein, A.A.; Sen, A.; Senbanjo, I.O.; Sepanlou, S.G.; Serra-Majem, L.; Shalnova, S.A.; Sharma, S.K.; Shaw, J.E.; Shibuya, K.; Shin, D.W.; Shin, Y.; Shiri, R.; Siani, A.; Siantar, R.; Sibai, A.M.; Silva, A.M.; Silva, D.A.S.; Simon, M.; Simons, J.; Simons, L.A.; Sjöberg, A.; Sjöström, M.; Skovbjerg, S.; Slowikowska-Hilczer, J.; Slusarczyk, P.; Smeeth, L.; Smith, M.C.; Snijder, M.B.; So, H-K.; Sobngwi, E.; Söderberg, S.; Soekatri, M.Y.E.; Solfrizzi, V.; Sonestedt, E.; Song, Y.; Sørensen, T.I.A.; Soric, M.; Jérome, C.S.; Soumare, A.; Spinelli, A.; Spiroski, I.; Staessen, J.A.; Stamm, H.; Starc, G.; Stathopoulou, M.G.; Staub, K.; Stavreski, B.; Steene-Johannessen, J.; Stehle, P.; Stein, A.D.; Stergiou, G.S.; Stessman, J.; Stieber, J.; Stöckl, D.; Stocks, T.; Stokwiszewski, J.; Stratton, G.; Stronks, K.; Strufaldi, M.W.; Suárez-Medina, R.; Sun, C-A.; Sundström, J.; Sung, Y-T.; Sunyer, J.; Suriyawongpaisal, P.; Swinburn, B.A.; Sy, R.G.; Szponar, L.; Tai, E.S.; Tammesoo, M-L.; Tamosiunas, A.; Tan, E.J.; Tang, X.; Tanser, F.; Tao, Y.; Tarawneh, M.R.; Tarp, J.; Tarqui-Mamani, C.B.; Tautu, O-F.; Braunerová, R.T.; Taylor, A.; Tchibindat, F.; Theobald, H.; Theodoridis, X.; Thijs, L.; Thuesen, B.H.; Tjonneland, A.; Tolonen, H.K.; Tolstrup, J.S.; Topbas, M.; Topór-Madry, R.; Tormo, M.J.; Tornaritis, M.J.; Torrent, M.; Toselli, S.; Traissac, P.; Trichopoulos, D.; Trichopoulou, A.; Trinh, O.T.H.; Trivedi, A.; Tshepo, L.; Tsigga, M.; Tsugane, S.; Tulloch-Reid, M.K.; Tullu, F.; Tuomainen, T-P.; Tuomilehto, J.; Turley, M.L.; Tynelius, P.; Tzotzas, T.; Tzourio, C.; Ueda, P.; Ugel, E.E.; Ukoli, F.A.M.; Ulmer, H.; Unal, B.; Uusitalo, H.M.T.; Valdivia, G.; Vale, S.; Valvi, D.; van der Schouw, Y.T.; Van Herck, K.; Van Minh, H.; van Rossem, L.; Van Schoor, N.M.; van Valkengoed, I.G.M.; Vanderschueren, D.; Vanuzzo, D.; Vatten, L.; Vega, T.; Veidebaum, T.; Velasquez-Melendez, G.; Velika, B.; Veronesi, G.; Verschuren, W.M.M.; Victora, C.G.; Viegi, G.; Viet, L.; Viikari-Juntura, E.; Vineis, P.; Vioque, J.; Virtanen, J.K.; Visvikis-Siest, S.; Viswanathan, B.; Vlasoff, T.; Vollenweider, P.; Völzke, H.; Voutilainen, S.; Vrijheid, M.; Wade, A.N.; Wagner, A.; Waldhör, T.; Walton, J.; Bebakar, W.M.W.; Mohamud, W.N.W.; Wanderley, R.S. Jr; Wang, M-D.; Wang, Q.; Wang, Y.X.; Wang, Y-W.; Wannamethee, S.G.; Wareham, N.; Weber, A.; Wedderkopp, N.; Weerasekera, D.; Whincup, P.H.; Widhalm, K.; Widyahening, I.S.; Wiecek, A.; Wijga, A.H.; Wilks, R.J.; Willeit, J.; Willeit, P.; Wilsgaard, T.; Wojtyniak, B.; Wong-McClure, R.A.; Wong, J.Y.Y.; Wong, J.E.; Wong, T.Y.; Woo, J.; Woodward, M.; Wu, F.C.; Wu, J.; Wu, S.; Xu, H.; Xu, L.; Yamborisut, U.; Yan, W.; Yang, X.; Yardim, N.; Ye, X.; Yiallouros, P.K.; Yngve, A.; Yoshihara, A.; You, Q.S.; Younger-Coleman, N.O.; Yusoff, F.; Yusoff, M.F.M.; Zaccagni, L.; Zafiropulos, V.; Zainuddin, A.A.; Zambon, S.; Zampelas, A.; Zamrazilová, H.; Zdrojewski, T.; Zeng, Y.; Zhao, D.; Zhao, W.; Zheng, W.; Zheng, Y.; Zholdin, B.; Zhou, M.; Zhu, D.; Zhussupov, B.; Zimmermann, E.; Cisneros, J.Z.; Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A.; Riley, L.M.; Taddei, C.; Hajifathalian, K.; Lu, Y.; Savin, S.; Cowan, M.J.; Paciorek, C.J.; Chirita-Emandi, A.; Hayes, A.J.; Katz, J.; Kelishadi, R.; Kengne, A.P.; Khang, Y-H.; Laxmaiah, A.; Li, Y.; Ma, J.; Miranda, J.J.; Mostafa, A.; Neovius, M.; Padez, C.; Rampal, L.; Zhu, A.; Bennett, J.E.; Danaei, G.; Bhutta, Z.A.; Ezzati, M. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128•9 million children, adolescents, and adults. Lancet, 2017, 390(10113), 2627-2642.
[http://dx.doi.org/10.1016/S0140-6736(17)32129-3] [PMID: 29029897]
[48]
Haththotuwa, R.N.; Wijeyaraline, C.N.; Senarath, U. Worldwide Epidemic of Obesity. In: Obesity and obstetrics, 2nd Ed; Amsterdam, 2020; pp. 3-8.
[http://dx.doi.org/10.1016/B978-0-12-817921-5.00001-1]
[49]
Rokholm, B.; Baker, J.L.; Sørensen, T.I.A. The levelling off of the obesity epidemic since the year 1999 - a review of evidence and perspectives. Obes. Rev., 2010, 11(12), 835-846.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00810.x] [PMID: 20973911]
[50]
Hill, B.; Skouteris, H.; Teede, H.J.; Bailey, C.; Baxter, J.A.B.; Bergmeier, H.J.; Borges, A.L.V.; Harrison, C.L.; Jack, B.; Jorgensen, L.; Lim, S.; Montanaro, C.; Redman, L.; Steegers, E.; Stephenson, J.; Sundseth, H.; Thangaratinam, S.; Walker, R.; Boyle, J.A. Health in preconception, pregnancy and postpartum global alliance: International network preconception research priorities for the prevention of maternal obesity and related pregnancy and long-term complications. J. Clin. Med., 2019, 8(12), 2119.
[http://dx.doi.org/10.3390/jcm8122119] [PMID: 31810312]
[51]
Leddy, M.A.; Power, M.L.; Schulkin, J. The impact of maternal obesity on maternal and fetal health. Rev. Obstet. Gynecol., 2008, 1(4), 170-178.
[PMID: 19173021]
[52]
Ramachandran, A.; Chamukuttan, S.; Shetty, S.A.; Arun, N.; Susairaj, P. Obesity in Asia - is it different from rest of the world. Diabetes Metab. Res. Rev., 2012, 28(Suppl. 2), 47-51.
[http://dx.doi.org/10.1002/dmrr.2353] [PMID: 23280866]
[53]
Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; Abraham, J.P.; Abu-Rmeileh, N.M.E.; Achoki, T.; AlBuhairan, F.S.; Alemu, Z.A.; Alfonso, R.; Ali, M.K.; Ali, R.; Guzman, N.A.; Ammar, W.; Anwari, P.; Banerjee, A.; Barquera, S.; Basu, S.; Bennett, D.A.; Bhutta, Z.; Blore, J.; Cabral, N.; Nonato, I.C.; Chang, J.C.; Chowdhury, R.; Courville, K.J.; Criqui, M.H.; Cundiff, D.K.; Dabhadkar, K.C.; Dandona, L.; Davis, A.; Dayama, A.; Dharmaratne, S.D.; Ding, E.L.; Durrani, A.M.; Esteghamati, A.; Farzadfar, F.; Fay, D.F.J.; Feigin, V.L.; Flaxman, A.; Forouzanfar, M.H.; Goto, A.; Green, M.A.; Gupta, R.; Hafezi-Nejad, N.; Hankey, G.J.; Harewood, H.C.; Havmoeller, R.; Hay, S.; Hernandez, L.; Husseini, A.; Idrisov, B.T.; Ikeda, N.; Islami, F.; Jahangir, E.; Jassal, S.K.; Jee, S.H.; Jeffreys, M.; Jonas, J.B.; Kabagambe, E.K.; Khalifa, S.E.A.H.; Kengne, A.P.; Khader, Y.S.; Khang, Y.H.; Kim, D.; Kimokoti, R.W.; Kinge, J.M.; Kokubo, Y.; Kosen, S.; Kwan, G.; Lai, T.; Leinsalu, M.; Li, Y.; Liang, X.; Liu, S.; Logroscino, G.; Lotufo, P.A.; Lu, Y.; Ma, J.; Mainoo, N.K.; Mensah, G.A.; Merriman, T.R.; Mokdad, A.H.; Moschandreas, J.; Naghavi, M.; Naheed, A.; Nand, D.; Narayan, K.M.V.; Nelson, E.L.; Neuhouser, M.L.; Nisar, M.I.; Ohkubo, T.; Oti, S.O.; Pedroza, A.; Prabhakaran, D.; Roy, N.; Sampson, U.; Seo, H.; Sepanlou, S.G.; Shibuya, K.; Shiri, R.; Shiue, I.; Singh, G.M.; Singh, J.A.; Skirbekk, V.; Stapelberg, N.J.C.; Sturua, L.; Sykes, B.L.; Tobias, M.; Tran, B.X.; Trasande, L.; Toyoshima, H.; van de Vijver, S.; Vasankari, T.J.; Veerman, J.L.; Velasquez-Melendez, G.; Vlassov, V.V.; Vollset, S.E.; Vos, T.; Wang, C.; Wang, X.; Weiderpass, E.; Werdecker, A.; Wright, J.L.; Yang, Y.C.; Yatsuya, H.; Yoon, J.; Yoon, S.J.; Zhao, Y.; Zhou, M.; Zhu, S.; Lopez, A.D.; Murray, C.J.L.; Gakidou, E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the global burden of disease study 2013. Lancet, 2014, 384(9945), 766-781.
[http://dx.doi.org/10.1016/S0140-6736(14)60460-8] [PMID: 24880830]
[54]
Chan, J.C.N.; Malik, V.; Jia, W.; Kadowaki, T.; Yajnik, C.S.; Yoon, K.H.; Hu, F.B. Diabetes in Asia. JAMA, 2009, 301(20), 2129-2140.
[http://dx.doi.org/10.1001/jama.2009.726] [PMID: 19470990]
[55]
Mistry, S.K.; Puthussery, S. Risk factors of overweight and obesity in childhood and adolescence in South Asian countries: A systematic review of the evidence. Public Health, 2015, 129(3), 200-209.
[http://dx.doi.org/10.1016/j.puhe.2014.12.004] [PMID: 25746156]
[56]
Mazidi, M.; Banach, M.; Kengne, A.P. Meta-analysis Collaboration Group. L.B.P. Prevalence of childhood and adolescent overweight and obesity in Asian countries: A systematic review and meta-analysis. Arch. Med. Sci., 2018, 14(6), 1185-1203.
[http://dx.doi.org/10.5114/aoms.2018.79001] [PMID: 30393474]
[57]
Goyal, R.K.; Shah, V.N.; Saboo, B.D.; Phatak, S.R.; Shah, N.N.; Gohel, M.C.; Raval, P.B.; Patel, S.S. Prevalence of overweight and obesity in Indian adolescent school going children: its relationship with socioeconomic status and associated lifestyle factors. J. Assoc. Physicians India, 2010, 58, 151-158.
[PMID: 20848812]
[58]
Khor, G.L. Food availability and the rising obesity prevalence in Malaysia. IeJSME, 2012, 6(Suppl. 1), S61-S68.
[http://dx.doi.org/10.56026/imu.6.Suppl1.S61]
[59]
Sidik, S.; Rampal, L. The prevalence and factors associated with obesity among adult women in Selangor, Malaysia. Asia Pac. Fam. Med., 2009, 8(1), 2.
[http://dx.doi.org/10.1186/1447-056X-8-2] [PMID: 19358728]
[60]
Ariaratnam, S.; Rodzlan Hasani, W.S.; Krishnapillai, A.D.; Abd Hamid, H.A.; Jane Ling, M.Y.; Ho, B.K.; Shariff Ghazali, S.; Tohit, N.M.; Mohd Yusoff, M.F. Prevalence of obesity and its associated risk factors among the elderly in Malaysia: Findings from The National Health and Morbidity Survey (NHMS) 2015. PLoS One, 2020, 15(9), e0238566.
[http://dx.doi.org/10.1371/journal.pone.0238566] [PMID: 32915860]
[61]
Ruban, A.; Stoenchev, K.; Ashrafian, H.; Teare, J. Current treatments for obesity. Clin. Med., 2019, 19(3), 205-212.
[http://dx.doi.org/10.7861/clinmedicine.19-3-205] [PMID: 31092512]
[62]
Krentz, A.J.; Fujioka, K.; Hompesch, M. Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles. Diabetes Obes. Metab., 2016, 18(6), 558-570.
[http://dx.doi.org/10.1111/dom.12657] [PMID: 26936802]
[63]
Dutta, T.; Paul, A.; Majumder, M.; Sultan, R.A.; Emran, T.B. Pharmacological evidence for the use of Cissus assamica as a medicinal plant in the management of pain and pyrexia. Biochem. Biophys. Rep., 2020, 21, 100715.
[http://dx.doi.org/10.1016/j.bbrep.2019.100715] [PMID: 31872083]
[64]
Padwal, R.S.; Majumdar, S.R. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet, 2007, 369(9555), 71-77.
[http://dx.doi.org/10.1016/S0140-6736(07)60033-6] [PMID: 17208644]
[65]
Coulter, A.A.; Rebello, C.J.; Greenway, F.L. Centrally acting agents for obesity: Past, present, and future. Drugs, 2018, 78(11), 1113-1132.
[http://dx.doi.org/10.1007/s40265-018-0946-y] [PMID: 30014268]
[66]
Sharretts, J.; Galescu, O.; Gomatam, S.; Andraca-Carrera, E.; Hampp, C.; Yanoff, L. Cancer risk associated with lorcaserin-The FDA’s review of the CAMELLIA-TIMI 61 trial. N. Engl. J. Med., 2020, 383(11), 1000-1002.
[http://dx.doi.org/10.1056/NEJMp2003873] [PMID: 32905671]
[67]
Joharapurkar, A.; Jain, M.; Dhanesha, N. Inhibition of the methionine aminopeptidase 2 enzyme for the treatment of obesity. Diabetes Metab. Syndr. Obes., 2014, 7, 73-84.
[http://dx.doi.org/10.2147/DMSO.S56924] [PMID: 24611021]
[68]
Wabitsch, M.; Fehnel, S.; Mallya, U.G.; Sluga-O’Callaghan, M.; Richardson, D.; Price, M.; Kühnen, P. Understanding the patient experience of hunger and improved quality of life with setmelanotide treatment in POMC and LEPR deficiencies. Adv. Ther., 2022, 39(4), 1772-1783.
[http://dx.doi.org/10.1007/s12325-022-02059-8] [PMID: 35192151]
[69]
Singh, G.; Krauthamer, M.; Bjalme-Evans, M. Wegovy (semaglutide): a new weight loss drug for chronic weight management. J. Investig. Med., 2022, 70(1), 5-13.
[http://dx.doi.org/10.1136/jim-2021-001952] [PMID: 34706925]
[70]
Das, J.K.; Salam, R.A.; Thornburg, K.L.; Prentice, A.M.; Campisi, S.; Lassi, Z.S.; Koletzko, B.; Bhutta, Z.A. Nutrition in adolescents: physiology, metabolism, and nutritional needs. Ann. N. Y. Acad. Sci., 2017, 1393(1), 21-33.
[http://dx.doi.org/10.1111/nyas.13330] [PMID: 28436102]
[71]
Brener, A.; Peleg, I.; Rosenfeld, T.; Kern, S.; Uretzky, A.; Elkon-Tamir, E.; Rosen, G.; Levinson, H.; Israeli, G.; Interator, H.; Lebenthal, Y. Beyond body mass index-body composition assessment by bioimpedance in routine endocrine practice. Endocr. Pract., 2021, 27(5), 419-425.
[http://dx.doi.org/10.1016/j.eprac.2020.10.013] [PMID: 33934752]
[72]
Kapoor, E.; Collazo-Clavell, M.L.; Faubion, S.S. Weight Gain in Women at Midlife: A Concise Review of the Pathophysiology and Strategies for Management. In: Mayo Clinic Proceedings; Elsevier: Amsterdam, 2017; 92(10), pp. 1552-1558.
[73]
van der Valk, E.S.; Savas, M.; van Rossum, E.F.C. Stress and obesity: Are there more susceptible individuals? Curr. Obes. Rep., 2018, 7(2), 193-203.
[http://dx.doi.org/10.1007/s13679-018-0306-y] [PMID: 29663153]
[74]
Zhang, Y.; Liu, C.Y.; Chen, W.C.; Shi, Y.C.; Wang, C.M.; Lin, S.; He, H.F. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci., 2021, 11(1), 151.
[http://dx.doi.org/10.1186/s13578-021-00657-7] [PMID: 34344469]
[75]
Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; Holst, J.J.; Langhans, W.; Meier, J.J.; Nauck, M.A.; Perez-Tilve, D.; Pocai, A.; Reimann, F.; Sandoval, D.A.; Schwartz, T.W.; Seeley, R.J.; Stemmer, K.; Tang-Christensen, M.; Woods, S.C.; DiMarchi, R.D.; Tschöp, M.H. Glucagon-like peptide 1 (GLP-1). Mol. Metab., 2019, 30, 72-130.
[http://dx.doi.org/10.1016/j.molmet.2019.09.010] [PMID: 31767182]
[76]
Levin, F.; Edholm, T.; Schmidt, P.T.; Grybäck, P.; Jacobsson, H.; Degerblad, M.; Höybye, C.; Holst, J.J.; Rehfeld, J.F.; Hellström, P.M.; Näslund, E. Ghrelin stimulates gastric emptying and hunger in normal-weight humans. J. Clin. Endocrinol. Metab., 2006, 91(9), 3296-3302.
[http://dx.doi.org/10.1210/jc.2005-2638] [PMID: 16772353]
[77]
Álvarez-Castro, P.; Sangiao-Alvarellos, S.; Brandón-Sandá, I.; Cordido, F. Endocrine function in obesity. Endocrinología y Nutrición (English Edition), 2011, 58(8), 422-432.
[http://dx.doi.org/10.1016/j.endoen.2011.05.008] [PMID: 21824829]
[78]
Kersten, S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep., 2001, 2(4), 282-286.
[http://dx.doi.org/10.1093/embo-reports/kve071] [PMID: 11306547]
[79]
Trask, L.E.; Chaidarun, S.S.; Platt, D.; Parkin, C.G. Treatment with novel galactomannan derivative reduces 2-hour postprandial glucose excursions in individuals with type 2 diabetes treated with oral medications and/or insulin. J. Diabetes Sci. Technol., 2014, 8(5), 1018-1022.
[http://dx.doi.org/10.1177/1932296814538939] [PMID: 25172878]
[80]
Kumar, P.; Bhandari, U.; Jamadagni, S. Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats. BioMed Res. Int., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/606021] [PMID: 24868532]
[81]
Madar, Z.; Shomer, I. Polysaccharide composition of a gel fraction derived from fenugreek and its effect on starch digestion and bile acid absorption in rats. J. Agric. Food Chem., 1990, 38(7), 1535-1539.
[http://dx.doi.org/10.1021/jf00097a023]
[82]
Mathern, J.R.; Raatz, S.K.; Thomas, W.; Slavin, J.L. Effect of fenugreek fiber on satiety, blood glucose and insulin response and energy intake in obese subjects. Phytother. Res., 2009, 23(11), 1543-1548.
[http://dx.doi.org/10.1002/ptr.2795] [PMID: 19353539]
[83]
Fontaine, T.; Latgé, J.P. Galactomannan produced by Aspergillus fumigatus: An update on the structure, biosynthesis and biological functions of an emblematic fungal biomarker. J. Fungi, 2020, 6(4), 283.
[http://dx.doi.org/10.3390/jof6040283] [PMID: 33198419]
[84]
Sukhithasri, V.; Nisha, N.; Biswas, L.; Anil Kumar, V.; Biswas, R. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiol. Res., 2013, 168(7), 396-406.
[http://dx.doi.org/10.1016/j.micres.2013.02.005] [PMID: 23578963]
[85]
Geijtenbeek, T.B.H.; Gringhuis, S.I. C-type lectin receptors in the control of T helper cell differentiation. Nat. Rev. Immunol., 2016, 16(7), 433-448.
[http://dx.doi.org/10.1038/nri.2016.55] [PMID: 27291962]
[86]
Reedy, J.L.; Crossen, A.J.; Negoro, P.E.; Brown, H.E.; Ward, R.A.; Blanco, D.A.V.; Timmer, K.D.; Mansour, M.K.; Wüthrich, M.; Fontaine, T. The C-type Lectin Receptor Dectin-2 is a receptor for Aspergillus fumigatus galactomannan. bioRxiv, 2022, e0184-22.
[http://dx.doi.org/10.1101/2022.04.12.488040]
[87]
Toledano, V.; Hernández-Jiménez, E.; Cubillos-Zapata, C.; Flandez, M.; Álvarez, E.; Varela-Serrano, A.; Cantero, R.; Valles, G.; García-Rio, F.; López-Collazo, E. Galactomannan downregulates the inflammation responses in human macrophages via NFκB2/p100. Mediators Inflamm., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/942517] [PMID: 26441484]
[88]
Barreto-Bergter, E.; Figueiredo, R.T. Fungal glycans and the innate immune recognition. Front. Cell. Infect. Microbiol., 2014, 4, 145.
[http://dx.doi.org/10.3389/fcimb.2014.00145] [PMID: 25353009]
[89]
Cornier, M.A.; Després, J.P.; Davis, N.; Grossniklaus, D.A.; Klein, S.; Lamarche, B.; Lopez-Jimenez, F.; Rao, G.; St-Onge, M.P.; Towfighi, A.; Poirier, P. Assessing Adiposity. Circulation, 2011, 124(18), 1996-2019.
[http://dx.doi.org/10.1161/CIR.0b013e318233bc6a] [PMID: 21947291]
[90]
Chen, H.C.; Farese, R.V., Jr Turning WAT into BAT gets rid of fat. Nat. Med., 2001, 7(10), 1102-1103.
[http://dx.doi.org/10.1038/nm1001-1102] [PMID: 11590426]
[91]
Chait, A.; den Hartigh, L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med., 2020, 7, 22.
[http://dx.doi.org/10.3389/fcvm.2020.00022] [PMID: 32158768]
[92]
Rytka, J.M.; Wueest, S.; Schoenle, E.J.; Konrad, D. The portal theory supported by venous drainage-selective fat transplantation. Diabetes, 2011, 60(1), 56-63.
[http://dx.doi.org/10.2337/db10-0697] [PMID: 20956499]
[93]
Aizawa-Abe, M.; Ogawa, Y.; Masuzaki, H.; Ebihara, K.; Satoh, N.; Iwai, H.; Matsuoka, N.; Hayashi, T.; Hosoda, K.; Inoue, G.; Yoshimasa, Y.; Nakao, K. Pathophysiological role of leptin in obesity-related hypertension. J. Clin. Invest., 2000, 105(9), 1243-1252.
[http://dx.doi.org/10.1172/JCI8341] [PMID: 10791999]
[94]
Majumdar, J.; Chakraborty, P.; Mitra, A.; Sarkar, N.; Sarkar, S. Fenugreek, a potent hypoglycaemic herb can cause central hypothyroidism via leptin–a threat to diabetes phytotherapy. Exp. Clin. Endocrinol. Diabetes, 2017, 125(7), 441-448.
[http://dx.doi.org/10.1055/s-0043-103458] [PMID: 28407664]
[95]
Achari, A.; Jain, S. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci., 2017, 18(6), 1321.
[http://dx.doi.org/10.3390/ijms18061321] [PMID: 28635626]
[96]
Patil, S.; Jain, G. Holistic approach of Trigonella foenum-graecum in phytochemistry and pharmacology-a review. Current Trends in Technology and Science, 2014, 3(1), 34-48.
[97]
Chen, Z.; Lei, Y-L.; Wang, W-P.; Lei, Y-Y.; Liu, Y-H.; Hei, J.; Hu, J.; Sui, H. Effects of saponin from Trigonella foenum-graecum seeds on dyslipidemia. Iran. J. Med. Sci., 2017, 42(6), 577-585.
[PMID: 29184266]
[98]
Prasanna, M. Hypolipidemic effect of fenugreek: a clinical study. Indian J. Pharmacol., 2000, 32(1), 34.
[99]
Fedacko, J.; Singh, R.; Niaz, M.; Ghosh, S.; Fedackova, P.; Tripathi, A.; Etharat, A.; Onsaard, E.; Singh, V.; Shastun, S. Fenugreeg seeds decrease blood cholesterol and blood glucose as adjunct to diet therapy in patients with hypercholesterolemia. World Heart J., 2016, 8(3), 239-249.
[100]
Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci., 2013, 36(10), 587-597.
[http://dx.doi.org/10.1016/j.tins.2013.07.001] [PMID: 23968694]
[101]
Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr. Physiol., 2013, 3(1), 1-58.
[http://dx.doi.org/10.1002/cphy.c110062] [PMID: 23720280]
[102]
Scheja, L.; Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol., 2019, 15(9), 507-524.
[http://dx.doi.org/10.1038/s41574-019-0230-6] [PMID: 31296970]
[103]
Sharma, R.D.; Raghuram, T.C.; Rao, N.S. Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. Eur. J. Clin. Nutr., 1990, 44(4), 301-306.
[PMID: 2194788]
[104]
Sauvaire, Y.; Petit, P.; Broca, C.; Manteghetti, M.; Baissac, Y.; Fernandez-Alvarez, J.; Gross, R.; Roye, M.; Leconte, A.; Gomis, R.; Ribes, G. 4-Hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. Diabetes, 1998, 47(2), 206-210.
[http://dx.doi.org/10.2337/diab.47.2.206] [PMID: 9519714]
[105]
Galic, S.; Loh, K.; Murray-Segal, L.; Steinberg, G.R.; Andrews, Z.B.; Kemp, B.E. AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. eLife, 2018, 7, e32656.
[http://dx.doi.org/10.7554/eLife.32656] [PMID: 29433631]
[106]
Mohammad-Sadeghipour, M.; Mahmoodi, M.; Noroozi Karimabad, M.; Mirzaei, M.R.; Hajizadeh, M.R. Diosgenin and 4-hydroxyisoleucine from fenugreek are regulators of genes involved in lipid metabolism in the human colorectal cancer cell line SW480. Cell J., 2021, 22(4), 514-522.
[http://dx.doi.org/10.22074/cellj.2021.6751] [PMID: 32347045]
[107]
Pyra, K.A.; Saha, D.C.; Reimer, R.A. Prebiotic fiber increases hepatic acetyl CoA carboxylase phosphorylation and suppresses glucose-dependent insulinotropic polypeptide secretion more effectively when used with metformin in obese rats. J. Nutr., 2012, 142(2), 213-220.
[http://dx.doi.org/10.3945/jn.111.147132] [PMID: 22223580]
[108]
Broca, C.; Gross, R.; Petit, P.; Sauvaire, Y.; Manteghetti, M.; Tournier, M.; Masiello, P.; Gomis, R.; Ribes, G. 4-Hydroxyisoleucine: experimental evidence of its insulinotropic and antidiabetic properties. Am. J. Physiol. Endocrinol. Metab., 1999, 277(4), E617-E623.
[http://dx.doi.org/10.1152/ajpendo.1999.277.4.E617] [PMID: 10516120]
[109]
Broca, C.; Manteghetti, M.; Gross, R.; Baissac, Y.; Jacob, M.; Petit, P.; Sauvaire, Y.; Ribes, G. 4-Hydroxyisoleucine: effects of synthetic and natural analogues on insulin secretion. Eur. J. Pharmacol., 2000, 390(3), 339-345.
[http://dx.doi.org/10.1016/S0014-2999(00)00030-3] [PMID: 10708743]
[110]
Ramadan, A.A.; Afifi, N.A.; Erian, E.Y.; Saleh, D.O.; Sedik, A.A. Beneficial effect of trigonelline on the metabolic changes associated with insulin resistance in rats. World J. Pharm. Pharm. Sci., 2015, 5(2), 1238-1250.
[111]
Li, Y.; Li, Q.; Wang, C.; Lou, Z.; Li, Q. Trigonelline reduced diabetic nephropathy and insulin resistance in type 2 diabetic rats through peroxisome proliferator activated receptor γ. Exp. Ther. Med., 2019, 18(2), 1331-1337.
[http://dx.doi.org/10.3892/etm.2019.7698] [PMID: 31363374]
[112]
Moore, J.X.; Chaudhary, N.; Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis., 2017, 14, 160287.
[http://dx.doi.org/10.5888/pcd14.160287] [PMID: 28301314]
[113]
Esposito, K.; Chiodini, P.; Colao, A.; Lenzi, A.; Giugliano, D. Metabolic syndrome and risk of cancer: A systematic review and meta-analysis. Diabetes Care, 2012, 35(11), 2402-2411.
[http://dx.doi.org/10.2337/dc12-0336] [PMID: 23093685]
[114]
Misra, A.; Shrivastava, U. Obesity and dyslipidemia in South Asians. Nutrients, 2013, 5(7), 2708-2733.
[http://dx.doi.org/10.3390/nu5072708] [PMID: 23863826]
[115]
Dandona, P.; Aljada, A.; Chaudhuri, A.; Mohanty, P.; Garg, R. Metabolic syndrome. Circulation, 2005, 111(11), 1448-1454.
[http://dx.doi.org/10.1161/01.CIR.0000158483.13093.9D] [PMID: 15781756]
[116]
Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest., 2006, 116(7), 1784-1792.
[http://dx.doi.org/10.1172/JCI29126] [PMID: 16823476]
[117]
Niklowitz, P.; Rothermel, J.; Lass, N.; Barth, A.; Reinehr, T. Link between chemerin, central obesity, and parameters of the metabolic syndrome: Findings from a longitudinal study in obese children participating in a lifestyle intervention. Int. J. Obes., 2018, 42(10), 1743-1752.
[http://dx.doi.org/10.1038/s41366-018-0157-3] [PMID: 30030480]
[118]
Li, X.; Lu, S.; Wang, H.; Li, G.; He, Y.; Liu, X.; Rong, R.; Li, J.; Lu, X. Effects of the fenugreek extracts on high-fat diet-fed and streptozotocin-induced type 2 diabetic mice. Animal Model. Exp. Med., 2018, 1(1), 68-73.
[http://dx.doi.org/10.1002/ame2.12004] [PMID: 30891549]
[119]
Eidi, A.; Eidi, M.; Sokhteh, M. Effect of fenugreek (Trigonella foenum-graecum L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats. Nutr. Res., 2007, 27(11), 728-733.
[http://dx.doi.org/10.1016/j.nutres.2007.09.006]
[120]
Benayad, Z.; Gómez-Cordovés, C.; Es-Safi, N. Characterization of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) crude seeds by HPLC-DAD-ESI/MS analysis. Int. J. Mol. Sci., 2014, 15(11), 20668-20685.
[http://dx.doi.org/10.3390/ijms151120668] [PMID: 25393509]
[121]
Luan, G.; Wang, Y.; Wang, Z.; Zhou, W.; Hu, N.; Li, G.; Wang, H. Flavonoid glycosides from fenugreek seeds regulate glycolipid metabolism by improving mitochondrial function in 3T3-L1 adipocytes in vitro. J. Agric. Food Chem., 2018, 66(12), 3169-3178.
[http://dx.doi.org/10.1021/acs.jafc.8b00179] [PMID: 29526086]
[122]
Liew, F.F.; Chew, B.C.; Ooi, D.J. Wound healing properties of exosomes—a review and modelling of combinatorial analysis strategies. Curr. Mol. Med., 2022, 22(2), 165-191.
[http://dx.doi.org/10.2174/1566524021666210405131238] [PMID: 33820518]
[123]
Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell, 2002, 9(3), 459-470.
[http://dx.doi.org/10.1016/S1097-2765(02)00482-3] [PMID: 11931755]
[124]
Mering, C.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res., 2003, 31(1), 258-261.
[http://dx.doi.org/10.1093/nar/gkg034] [PMID: 12519996]
[125]
Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: the linking mechanism and the complications. Arch. Med. Sci., 2017, 4(4), 851-863.
[http://dx.doi.org/10.5114/aoms.2016.58928] [PMID: 28721154]
[126]
Fantuzzi, G. Adipose tissue, adipokines, and inflammation. J. Allergy Clin. Immunol., 2005, 115(5), 911-919.
[http://dx.doi.org/10.1016/j.jaci.2005.02.023] [PMID: 15867843]
[127]
Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: a review. Diabetologia, 2001, 44(2), 129-146.
[http://dx.doi.org/10.1007/s001250051591] [PMID: 11270668]
[128]
Egaña-Gorroño, L.; López-Díez, R.; Yepuri, G.; Ramirez, L.S.; Reverdatto, S.; Gugger, P.F.; Shekhtman, A.; Ramasamy, R.; Schmidt, A.M. Receptor for advanced glycation end products (RAGE) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: Insights from human subjects and animal models. Front. Cardiovasc. Med., 2020, 7, 37.
[http://dx.doi.org/10.3389/fcvm.2020.00037] [PMID: 32211423]
[129]
Yang, S.; Wang, J.; Brand, D.D.; Zheng, S.G. Role of TNF–TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front. Immunol., 2018, 9, 784.
[http://dx.doi.org/10.3389/fimmu.2018.00784] [PMID: 29725328]
[130]
Pomerantz, J.L.; Baltimore, D. NF-kappa B activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J., 1999, 18(23), 6694-6704.
[http://dx.doi.org/10.1093/emboj/18.23.6694] [PMID: 10581243]
[131]
MacEwan, D.J. TNF receptor subtype signalling: Differences and cellular consequences. Cell. Signal., 2002, 14(6), 477-492.
[http://dx.doi.org/10.1016/S0898-6568(01)00262-5] [PMID: 11897488]
[132]
Fernández-Villa, D.; Aguilar, M.R.; Rojo, L. Folic acid antagonists: antimicrobial and immunomodulating mechanisms and applications. Int. J. Mol. Sci., 2019, 20(20), 4996.
[http://dx.doi.org/10.3390/ijms20204996] [PMID: 31601031]
[133]
Gonen, N.; Assaraf, Y.G. Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resist. Updat., 2012, 15(4), 183-210.
[http://dx.doi.org/10.1016/j.drup.2012.07.002] [PMID: 22921318]
[134]
Goldstein, J.L.; Brown, M.S. The LDL Receptor. Arterioscler. Thromb. Vasc. Biol., 2009, 29(4), 431-438.
[http://dx.doi.org/10.1161/ATVBAHA.108.179564] [PMID: 19299327]
[135]
Shikoo, E.Y.; Bakeel, B.F.H. Effect of honey on blood sugar level and lipids metabolism in male rabbits. Electr. J. Univ. Aden Basic Appl. Sci., 2021, 2(2), 87-92.
[http://dx.doi.org/10.47372/ejua-ba.2021.2.94]
[136]
Grattan, D.R.; Steyn, F.J.; Kokay, I.C.; Anderson, G.M.; Bunn, S.J. Pregnancy-induced adaptation in the neuroendocrine control of prolactin secretion. J. Neuroendocrinol., 2008, 20(4), 497-507.
[http://dx.doi.org/10.1111/j.1365-2826.2008.01661.x] [PMID: 18266946]
[137]
Li, Y.; Kong, X.; Xuan, L.; Wang, Z.; Huang, Y.H. Prolactin and endocrine therapy resistance in breast cancer: The next potential hope for breast cancer treatment. J. Cell. Mol. Med., 2021, 25(22), 10327-10348.
[http://dx.doi.org/10.1111/jcmm.16946] [PMID: 34651424]
[138]
Mangoura, D.; Pelletiere, C.; Leung, S.; Sakellaridis, N.; Wang, D.X. Prolactin concurrently activates Src‐PLD and JAK/Stat signaling pathways to induce proliferation while promoting differentiation in embryonic astrocytes. Int. J. Dev. Neurosci., 2000, 18(7), 693-704.
[http://dx.doi.org/10.1016/S0736-5748(00)00031-9] [PMID: 10978848]
[139]
Arner, P. Insulin resistance in type 2 diabetes - role of the adipokines. Curr. Mol. Med., 2005, 5(3), 333-339.
[http://dx.doi.org/10.2174/1566524053766022] [PMID: 15892652]
[140]
Saini, V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J. Diabetes, 2010, 1(3), 68-75.
[http://dx.doi.org/10.4239/wjd.v1.i3.68] [PMID: 21537430]
[141]
Zampelas, A.; Magriplis, E. New insights into cholesterol functions: A friend or an enemy? Nutrients, 2019, 11(7), 1645.
[http://dx.doi.org/10.3390/nu11071645] [PMID: 31323871]
[142]
Picard, F.; Carter, S.; Caron, A.; Richard, D. Role of leptin resistance in the development of obesity in older patients. Clin. Interv. Aging, 2013, 8, 829-844.
[http://dx.doi.org/10.2147/CIA.S36367] [PMID: 23869170]
[143]
Gual, P.; Le Marchand-Brustel, Y.; Tanti, J.F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie, 2005, 87(1), 99-109.
[http://dx.doi.org/10.1016/j.biochi.2004.10.019] [PMID: 15733744]
[144]
Hurley, R.L.; Anderson, K.A.; Franzone, J.M.; Kemp, B.E.; Means, A.R.; Witters, L.A. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem., 2005, 280(32), 29060-29066.
[http://dx.doi.org/10.1074/jbc.M503824200] [PMID: 15980064]
[145]
Daley-Brown, D.; Oprea-Ilies, G.M.; Lee, R.; Pattillo, R.; Gonzalez-Perez, R.R. Molecular cues on obesity signals, tumor markers and endometrial cancer. Horm. Mol. Biol. Clin. Investig., 2015, 21(1), 89-106.
[http://dx.doi.org/10.1515/hmbci-2014-0049] [PMID: 25781554]
[146]
Testa, U.; Castelli, G.; Pelosi, E. Breast cancer: A molecularly heterogenous disease needing subtype-specific treatments. Med. Sci., 2020, 8(1), 18.
[http://dx.doi.org/10.3390/medsci8010018] [PMID: 32210163]
[147]
Fernandes, S.A.; Demetriades, C. The multifaceted role of nutrient sensing and mTORC1 signaling in physiology and aging. Front. Aging, 2021, 2, 707372.
[http://dx.doi.org/10.3389/fragi.2021.707372] [PMID: 35822019]
[148]
Fontana, L.; Partridge, L.; Longo, V.D. Dietary restriction, growth factors and aging: From yeast to humans. Science, 2010, 328(5976), 321.
[http://dx.doi.org/10.1126/science.1172539] [PMID: 20395504]
[149]
Li, F.; Fernandez, P.P.; Rajendran, P.; Hui, K.M.; Sethi, G. Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett., 2010, 292(2), 197-207.
[http://dx.doi.org/10.1016/j.canlet.2009.12.003] [PMID: 20053498]
[150]
Shishodia, S.; Aggarwal, B.B. Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, IκB kinase activation and NF-κB-regulated gene expression. Oncogene, 2006, 25(10), 1463-1473.
[http://dx.doi.org/10.1038/sj.onc.1209194] [PMID: 16331273]
[151]
Lamfon, H. Effect of fenugreek seed extract on carbendazim- inhibited spermatogenesis in albino rats. J. Appl. Pharm. Sci., 2012, 2(4), 09-13.
[http://dx.doi.org/10.7324/JAPS.2012.2423]
[152]
Stringa, P.; Toledano, V.; Papa-Gobbi, R.; Arreola, M.; Largo, C.; Machuca, M.; Aguirre, L.A.; Rumbo, M.; López-Collazo, E.; Hernández Oliveros, F. Galactomannan as a potential modulator of intestinal ischemia-Reperfusion injury. J. Surg. Res., 2020, 249, 232-240.
[http://dx.doi.org/10.1016/j.jss.2019.10.027] [PMID: 31796217]
[153]
Jaiswal, N.; Maurya, C.K.; Venkateswarlu, K.; Sukanya, P.; Srivastava, A.K.; Narender, T.; Tamrakar, A.K. 4-Hydroxyisoleucine stimulates glucose uptake by increasing surface GLUT4 level in skeletal muscle cells via phosphatidylinositol-3-kinase-dependent pathway. Eur. J. Nutr., 2012, 51(7), 893-898.
[http://dx.doi.org/10.1007/s00394-012-0374-9] [PMID: 22610671]
[154]
Maurya, C.K.; Singh, R.; Jaiswal, N.; Venkateswarlu, K.; Narender, T.; Tamrakar, A.K. 4-Hydroxyisoleucine ameliorates fatty acid-induced insulin resistance and inflammatory response in skeletal muscle cells. Mol. Cell. Endocrinol., 2014, 395(1-2), 51-60.
[http://dx.doi.org/10.1016/j.mce.2014.07.018] [PMID: 25109277]
[155]
Yu, H.; Wu, M.; Lu, F-R.; Xie, J.; Zheng, N.; Qin, Y.; Gao, F.; Du, W.; Jian, L-M. [Effect of Trigonella foenum-graecum 4-hydroxyisoleucine on high-glucose induced insulin resistance in 3T3-L1 adipocytes of mice] Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2013, 33(10), 1394-1399.
[PMID: 24432687]
[156]
Gao, F.; Jian, L.; Zafar, M.I.; Du, W.; Cai, Q.; Shafqat, R.A.; Lu, F. 4-Hydroxyisoleucine improves insulin resistance in HepG2 cells by decreasing TNF-α and regulating the expression of insulin signal transduction proteins. Mol. Med. Rep., 2015, 12(5), 6555-6560.
[http://dx.doi.org/10.3892/mmr.2015.4298] [PMID: 26352439]
[157]
Teyssier, L.; Colussi, J.; Delemasure, S.; Chluba, J.; Wendehenne, D.; Lamotte, O.; Connat, J.L. Inflammatory effects of the plant protection product Stifenia (FEN560) on vertebrates. Front. Public Health, 2017, 5, 74.
[http://dx.doi.org/10.3389/fpubh.2017.00074] [PMID: 28484691]
[158]
Kandhare, A.D.; Bodhankar, S.L.; Mohan, V.; Thakurdesai, P.A. Effect of glycosides based standardized fenugreek seed extract in bleomycin-induced pulmonary fibrosis in rats: Decisive role of Bax, Nrf2, NF-κB, Muc5ac, TNF-α and IL-1β. Chem. Biol. Interact., 2015, 237, 151-165.
[http://dx.doi.org/10.1016/j.cbi.2015.06.019] [PMID: 26093215]
[159]
Jin, Y.; Shi, Y.; Zou, Y.; Miao, C.; Sun, B.; Li, C. Fenugreek prevents the development of STZ-induced diabetic nephropathy in a rat model of diabetes. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/259368] [PMID: 25057273]
[160]
Feki, A.; Ben Saad, H.; Bkhairia, I.; Ktari, N.; Naifar, M.; Boudawara, O.; Droguet, M.; Magné, C.; Nasri, M.; Ben Amara, I. Cardiotoxicity and myocardial infarction-associated DNA damage induced by thiamethoxam in vitro and in vivo: Protective role of Trigonella foenum-graecum seed-derived polysaccharide. Environ. Toxicol., 2019, 34(3), 271-282.
[http://dx.doi.org/10.1002/tox.22682] [PMID: 30520268]
[161]
Ferrucci, L.; Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol., 2018, 15(9), 505-522.
[http://dx.doi.org/10.1038/s41569-018-0064-2] [PMID: 30065258]
[162]
Vincent, H.K.; Innes, K.E.; Vincent, K.R. Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes. Metab., 2007, 9(6), 813-839.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00692.x] [PMID: 17924865]
[163]
Artemniak-Wojtowicz, D.; Kucharska, A. Pyrżak, B. Obesity and chronic inflammation crosslinking. Cent. Eur. J. Immunol., 2020, 45(4), 461-468.
[http://dx.doi.org/10.5114/ceji.2020.103418] [PMID: 33658893]
[164]
Bastard, J-P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw., 2006, 17(1), 4-12.
[PMID: 16613757]
[165]
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature, 2006, 444(7121), 860-867.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[166]
Huang, H.; Wang, X.; Yang, L.; He, W.; Meng, T.; Zheng, K.; Xia, X.; Zhou, Y.; He, J.; Liu, C.; Zou, S.; Xiao, D. The effects of fenugreek extract on growth performance, serum biochemical indexes, immunity and NF-κB signaling pathway in broiler. Front. Vet. Sci., 2022, 9, 882754.
[http://dx.doi.org/10.3389/fvets.2022.882754] [PMID: 35812848]
[167]
Hildebrandt, X.; Ibrahim, M.; Peltzer, N. Cell death and inflammation during obesity: “Know my methods, WAT(son)”. Cell Death Differ., 2023, 30, 279-292.
[http://dx.doi.org/10.1038/s41418-022-01062-4]
[168]
Yamagishi, S. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp. Gerontol., 2011, 46(4), 217-224.
[http://dx.doi.org/10.1016/j.exger.2010.11.007] [PMID: 21111800]
[169]
Huang, J.S.; Guh, J.Y.; Chen, H.C.; Hung, W.C.; Lai, Y.H.; Chuang, L.Y. Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J. Cell. Biochem., 2001, 81(1), 102-113.
[http://dx.doi.org/10.1002/1097-4644(20010401)81:1<102::AIDJCB1027>3.0.CO;2-Y] [PMID: 11180401]
[170]
Meloche, J.; Paulin, R.; Courboulin, A.; Lambert, C.; Barrier, M.; Bonnet, P.; Bisserier, M.; Roy, M.; Sussman, M.A.; Agharazii, M.; Bonnet, S. RAGE-dependent activation of the oncoprotein Pim1 plays a critical role in systemic vascular remodeling processes. Arterioscler. Thromb. Vasc. Biol., 2011, 31(9), 2114-2124.
[http://dx.doi.org/10.1161/ATVBAHA.111.230573] [PMID: 21680901]
[171]
Guh, J.Y.; Huang, J.S.; Chen, H.C.; Hung, W.C.; Lai, Y.H.; Chuang, L.Y. Advanced glycation end product-induced proliferation in NRK-49F cells is dependent on the JAK2/STAT5 pathway and cyclin D1. Am. J. Kidney Dis., 2001, 38(5), 1096-1104.
[http://dx.doi.org/10.1053/ajkd.2001.28616] [PMID: 11684565]
[172]
Bierhaus, A.; Schiekofer, S.; Schwaninger, M.; Andrassy, M.; Humpert, P.M.; Chen, J.; Hong, M.; Luther, T.; Henle, T.; Klöting, I.; Morcos, M.; Hofmann, M.; Tritschler, H.; Weigle, B.; Kasper, M.; Smith, M.; Perry, G.; Schmidt, A.M.; Stern, D.M.; Häring, H.U.; Schleicher, E.; Nawroth, P.P. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes, 2001, 50(12), 2792-2808.
[http://dx.doi.org/10.2337/diabetes.50.12.2792] [PMID: 11723063]
[173]
Kislinger, T.; Tanji, N.; Wendt, T.; Qu, W.; Lu, Y.; Ferran, L.J., Jr; Taguchi, A.; Olson, K.; Bucciarelli, L.; Goova, M.; Hofmann, M.A.; Cataldegirmen, G.; D’Agati, V.; Pischetsrieder, M.; Stern, D.M.; Schmidt, A.M. Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol., 2001, 21(6), 905-910.
[http://dx.doi.org/10.1161/01.ATV.21.6.905] [PMID: 11397695]
[174]
Manning, B.D.; Toker, A. AKT/PKB signaling: Navigating the network. Cell, 2017, 169(3), 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[175]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[176]
Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat. Rev. Cancer, 2002, 2(7), 489-501.
[http://dx.doi.org/10.1038/nrc839] [PMID: 12094235]
[177]
Koh, S.H.; Lo, E.H. The role of the PI3K pathway in the regeneration of the damaged brain by neural stem cells after cerebral infarction. J. Clin. Neurol., 2015, 11(4), 297-304.
[http://dx.doi.org/10.3988/jcn.2015.11.4.297] [PMID: 26320845]
[178]
He, X.; Li, Y.; Deng, B.; Lin, A.; Zhang, G.; Ma, M.; Wang, Y.; Yang, Y.; Kang, X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif., 2022, 55(9), e13275.
[http://dx.doi.org/10.1111/cpr.13275] [PMID: 35754255]