Prominent Targets for Cancer Care: Immunotherapy Perspective

Page: [298 - 317] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Objective: Recent scientific advances have expanded insight into the immune system and its response to malignant cells. In the past few years, immunotherapy has attained a hallmark for cancer treatment, especially for patients suffering from the advanced-stage disease. Modulating the immune system by blocking various immune checkpoint receptor proteins through monoclonal antibodies has improved cancer patients' survival rates.

Methods: The scope of this review spans from 1985 to the present day. Many journals, books, and theses have been used to gather data, as well as Internet-based information such as Wiley, PubMed, Google Scholar, ScienceDirect, EBSCO, SpringerLink, and Online electronic journals.

Key Findings: Current review elaborates on the potential inhibitory and stimulatory checkpoint pathways which are emerged and have been tested in various preclinical models, clinical trials, and practices. Twenty-odd such significant checkpoints are identified and discussed in the present work.

Conclusion: A large number of ongoing studies reveal that combination therapies that target more than one signaling pathway may become effective in order to maximize efficacy and minimize toxicity. Moreover, these immunotherapy targets can be a part of integrated therapeutic strategies in addition to classical approaches. It may become a paradigm shift as a promising strategy for cancer treatment.

Graphical Abstract

[1]
Thomas S, Quinn BA, Das SK, et al. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2013; 17(1): 61-75.
[http://dx.doi.org/10.1517/14728222.2013.733001] [PMID: 23173842]
[2]
Steck E, Bertram H, Abel R, Chen B, Winter A, Richter W. Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells 2005; 23(3): 403-11.
[http://dx.doi.org/10.1634/stemcells.2004-0107] [PMID: 15749935]
[3]
Parsa N. Environmental factors inducing human cancers. Iran J Public Health 2012; 41(11): 1-9.
[PMID: 23304670]
[4]
Jacob L, Freyn M, Kalder M, Dinas K, Kostev K. Impact of tobacco smoking on the risk of developing 25 different cancers in the UK: A retrospective study of 422,010 patients followed for up to 30 years. Oncotarget 2018; 9(25): 17420-9.
[http://dx.doi.org/10.18632/oncotarget.24724] [PMID: 29707117]
[5]
Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer 2019; 11: 151-64.
[http://dx.doi.org/10.2147/BCTT.S176070] [PMID: 31040712]
[6]
Arem H, Loftfield E. Cancer epidemiology: A survey of modifiable risk factors for prevention and survivorship. Am J Lifestyle Med 2018; 12(3): 200-10.
[http://dx.doi.org/10.1177/1559827617700600] [PMID: 30202392]
[7]
Cleeland CS. Cancer-related symptoms. Semin Radiat Oncol 2000; 10(3): 175-90.
[http://dx.doi.org/10.1053/srao.2000.6590] [PMID: 11034629]
[8]
Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel) 2011; 3(3): 3279-330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[9]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[10]
Liu M, Guo F. Recent updates on cancer immunotherapy. Precis Clin Med 2018; 1(2): 65-74.
[http://dx.doi.org/10.1093/pcmedi/pby011] [PMID: 30687562]
[11]
Disis ML. Mechanism of action of immunotherapy. Semin Oncol 2014; 41(S5): S3-S13.
[http://dx.doi.org/10.1053/j.seminoncol.2014.09.004] [PMID: 25438997]
[12]
Bai RL, Chen NF, Li LY, Cui JW. A brand new era of cancer immunotherapy: Breakthroughs and challenges. Chin Med J (Engl) 2021; 134(11): 1267-75.
[http://dx.doi.org/10.1097/CM9.0000000000001490] [PMID: 34039862]
[13]
Ratajczak W. Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W. Immunological memory cells. Cent Eur J Immunol 2018; 43(2): 194-203.
[http://dx.doi.org/10.5114/ceji.2018.77390] [PMID: 30135633]
[14]
Yan S, Zhao P, Yu T, Gu N. Current applications and future prospects of nanotechnology in cancer immunotherapy. Cancer Biol Med 2019; 16(3): 487-97.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2018.0493] [PMID: 31565479]
[15]
Karmakar S, Dhar R, Seethy A, et al. Cancer immunotherapy: Recent advances and challenges. J Cancer Res Ther 2021; 17(4): 834-44.
[http://dx.doi.org/10.4103/jcrt.JCRT_1241_20] [PMID: 34528529]
[16]
Long J, Qi Z, Rongxin Z. PD-1/PD-L1 pathway blockade works as an effective and practical therapy for cancer immunotherapy. Cancer Biol Med 2018; 15(2): 116-23.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0086] [PMID: 29951336]
[17]
Kythreotou A, Siddique A, Mauri FA, Bower M, Pinato DJ. Pd-L1. J Clin Pathol 2018; 71(3): 189-94.
[http://dx.doi.org/10.1136/jclinpath-2017-204853] [PMID: 29097600]
[18]
Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev 2015; 41(10): 868-76.
[http://dx.doi.org/10.1016/j.ctrv.2015.11.001] [PMID: 26589760]
[19]
Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum Vaccin Immunother 2019; 15(5): 1111-22.
[http://dx.doi.org/10.1080/21645515.2019.1571892] [PMID: 30888929]
[20]
Wei R, Guo L, Wang Q, Miao J, Kwok HF, Lin Y. Targeting PD-L1 Protein: Translation, modification and transport. Curr Protein Pept Sci 2018; 20(1): 82-91.
[http://dx.doi.org/10.2174/1389203719666180928105632] [PMID: 30264678]
[21]
Zou W, Wolchok JD, Chen L, Weiping Z, Jedd DW, Lieping C. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy. Sci Transl Med 2016; 8(328): 1-34.
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[22]
Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8(AUG): 561.
[http://dx.doi.org/10.3389/fphar.2017.00561] [PMID: 28878676]
[23]
Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 2019; 12(1): 92.
[http://dx.doi.org/10.1186/s13045-019-0779-5] [PMID: 31488176]
[24]
Huang G, Sun X, Liu D, et al. The efficacy and safety of anti-PD-1/PD-L1 antibody therapy versus docetaxel for pretreated advanced NSCLC: a meta-analysis. Oncotarget 2018; 9(3): 4239-48.
[http://dx.doi.org/10.18632/oncotarget.23279] [PMID: 29423118]
[25]
Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J Immunother Cancer 2018; 6(1): 8.
[http://dx.doi.org/10.1186/s40425-018-0316-z] [PMID: 29357948]
[26]
Verhagen J, Sabatos CA, Wraith DC. The role of CTLA-4 in immune regulation. Immunol Lett 2008; 115(1): 73-4.
[http://dx.doi.org/10.1016/j.imlet.2007.10.010] [PMID: 18035425]
[27]
Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature 1987; 328(6127): 267-70.
[http://dx.doi.org/10.1038/328267a0] [PMID: 3496540]
[28]
McCoy KD, Le Gros G. The role of CTLA-4 in the regulation of T cell immune responses. Immunol Cell Biol 1999; 77(1): 1-10.
[http://dx.doi.org/10.1046/j.1440-1711.1999.00795.x] [PMID: 10101680]
[29]
Eagar TN, Karandikar NJ, Bluestone JA, Miller SD. The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur J Immunol 2002; 32(4): 972-81.
[http://dx.doi.org/10.1002/1521-4141(200204)32:4<972::AID-IMMU972>3.0.CO;2-M] [PMID: 11920563]
[30]
Tai X, Van Laethem F, Pobezinsky L, et al. Basis of CTLA-4 function in regulatory and conventional CD4+ T cells. Blood 2012; 119(22): 5155-63.
[http://dx.doi.org/10.1182/blood-2011-11-388918] [PMID: 22403258]
[31]
Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom? Immunology 2000; 101(2): 169-77.
[http://dx.doi.org/10.1046/j.1365-2567.2000.00121.x] [PMID: 11012769]
[32]
Rowshanravan B, Halliday N, Sansom DM. CTLA-4: A moving target in immunotherapy. Blood 2018; 131(1): 58-67.
[http://dx.doi.org/10.1182/blood-2017-06-741033] [PMID: 29118008]
[33]
Podojil JR, Miller SD. Potential targeting of B7-H4 for the treatment of cancer. Immunol Rev 2017; 276(1): 40-51.
[http://dx.doi.org/10.1111/imr.12530] [PMID: 28258701]
[34]
Simone R, Pesce G, Antola P, et al. The soluble form of CTLA-4from serum of patients with autoimmune diseases regulates T-Cell responses. Biomed Res Int 2014; 2014
[http://dx.doi.org/10.1155/2014/215763]
[35]
Engelhardt JJ, Sullivan TJ, Allison JP. CTLA-4 overexpression inhibits T cell responses through a CD28-B7-dependent mechanism. J Immunol 2006; 177(2): 1052-61.
[http://dx.doi.org/10.4049/jimmunol.177.2.1052] [PMID: 16818761]
[36]
Chen W, Jin W, Wahl SM. Engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) induces transforming growth factor β (TGF-β) production by murine CD4(+) T cells. J Exp Med 1998; 188(10): 1849-57.
[http://dx.doi.org/10.1084/jem.188.10.1849] [PMID: 9815262]
[37]
Wolchok JD, Saenger Y. The mechanism of anti-CTLA-4 activity and the negative regulation of T-cell activation. Oncologist 2008; 13(S4) (Suppl. 4): 2-9.
[http://dx.doi.org/10.1634/theoncologist.13-S4-2] [PMID: 19001145]
[38]
Vandenborre K, Van Gool SW, Kasran A, Ceuppens JL, Boogaerts MA, Vandenberghe P. Interaction of CTLA-4 (CD152) with CD80 or CD86 inhibits human T-cell activation. Immunology 1999; 98(3): 413-21.
[http://dx.doi.org/10.1046/j.1365-2567.1999.00888.x] [PMID: 10583602]
[39]
Liu Y, Zheng P. How does an anti-CTLA-4 antibody promote cancer immunity? Trends Immunol 2018; 39(12): 953-6.
[http://dx.doi.org/10.1016/j.it.2018.10.009] [PMID: 30497614]
[40]
Hurst JH. Cancer immunotherapy innovator James Allison receives the 2015 Lasker~DeBakey Clinical Medical Research Award. J Clin Invest 2015; 125(10): 3732-6.
[http://dx.doi.org/10.1172/JCI84236] [PMID: 26345422]
[41]
Tian X, Zhang A, Qiu C, et al. The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. J Immunol 2015; 194(8): 3873-82.
[http://dx.doi.org/10.4049/jimmunol.1402176] [PMID: 25780040]
[42]
Long L, Zhang X, Chen F, et al. The promising immune checkpoint LAG-3: from tumor microenvironment to cancer immunotherapy. Genes Cancer 2018; 9(5-6): 176-89.
[http://dx.doi.org/10.18632/genesandcancer.180] [PMID: 30603054]
[43]
Shan C, Li X, Zhang J. Progress of immune checkpoint LAG 3 in immunotherapy (Review). Oncol Lett 2020; 20(5): 1.
[http://dx.doi.org/10.3892/ol.2020.12070] [PMID: 32963613]
[44]
Gun SY, Lee SWL, Sieow JL, Wong SC. Targeting immune cells for cancer therapy. Redox Biol 2019; 25(March): 101174.
[http://dx.doi.org/10.1016/j.redox.2019.101174] [PMID: 30917934]
[45]
Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. immunity, NIH public access 44, 989–1004.Ag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specia. Immunity 2016; 44(5): 989-1004.
[http://dx.doi.org/10.1016/j.immuni.2016.05.001] [PMID: 27192565]
[46]
Maruhashi T, Okazaki I, Sugiura D, et al. LAG-3 inhibits the activation of CD4+ T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nat Immunol 2018; 19(12): 1415-26.
[http://dx.doi.org/10.1038/s41590-018-0217-9] [PMID: 30349037]
[47]
Hemon P, Jean-Louis F, Ramgolam K, et al. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol 2011; 186(9): 5173-83.
[http://dx.doi.org/10.4049/jimmunol.1002050] [PMID: 21441454]
[48]
Huang RY, Eppolito C, Lele S, Shrikant P, Matsuzaki J, Odunsi K. LAG3 and PD1 co-inhibitory molecules collaborate to limit CD8+ T cell signaling and dampen antitumor immunity in a murine ovarian cancer model. Oncotarget 2015; 6(29): 27359-77.
[http://dx.doi.org/10.18632/oncotarget.4751] [PMID: 26318293]
[49]
Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DAA. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol 2004; 172(9): 5450-5.
[http://dx.doi.org/10.4049/jimmunol.172.9.5450] [PMID: 15100286]
[50]
Panda A, Rosenfeld JA, Singer EA, Bhanot G, Ganesan S. Genomic and immunologic correlates of LAG-3 expression in cancer. OncoImmunology 2020; 9(1): 1756116.
[http://dx.doi.org/10.1080/2162402X.2020.1756116] [PMID: 32923111]
[51]
Romano E, Michielin O, Voelter V, et al. MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a Phase I trial. J Transl Med 2014; 12(1): 97.
[http://dx.doi.org/10.1186/1479-5876-12-97] [PMID: 24726012]
[52]
Solinas C, Gu-Trantien C, Willard-Gallo K. The rationale behind targeting the ICOS-ICOS ligand costimulatory pathway in cancer immunotherapy. ESMO Open 2020; 5(1): e000544.
[http://dx.doi.org/10.1136/esmoopen-2019-000544] [PMID: 32516116]
[53]
Grosso JF, Kelleher CC, Harris TJ, et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 2007; 117(11): 3383-92.
[http://dx.doi.org/10.1172/JCI31184] [PMID: 17932562]
[54]
Xu F, Liu J, Liu D, et al. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res 2014; 74(13): 3418-28.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2690] [PMID: 24769443]
[55]
Mujib S, Jones RB, Lo C, et al. Antigen-independent induction of Tim-3 expression on human T cells by the common γ-chain cytokines IL-2, IL-7, IL-15, and IL-21 is associated with proliferation and is dependent on the phosphoinositide 3-kinase pathway. J Immunol 2012; 188(8): 3745-56.
[http://dx.doi.org/10.4049/jimmunol.1102609] [PMID: 22422881]
[56]
Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev 2017; 276(1): 97-111.
[http://dx.doi.org/10.1111/imr.12520] [PMID: 28258697]
[57]
Han G, Chen G, Shen B, Li Y. Tim-3: an activation marker and activation limiter of innate immune cells. Front Immunol 2013; 4(DEC): 449.
[http://dx.doi.org/10.3389/fimmu.2013.00449] [PMID: 24339828]
[58]
Meyers JH, Sabatos CA, Chakravarti S, Kuchroo VK. The TIM gene family regulates autoimmune and allergic diseases. Trends Mol Med 2005; 11(8): 362-9.
[http://dx.doi.org/10.1016/j.molmed.2005.06.008] [PMID: 16002337]
[59]
Yoneda A, Jinushi M. T cell immunoglobulin domain and mucin domain-3 as an emerging target for immunotherapy in cancer management. ImmunoTargets Ther 2013; 2: 135-41.
[PMID: 27471694]
[60]
Rodriguez-Manzanet R, DeKruyff R, Kuchroo VK, Umetsu DT. The costimulatory role of TIM molecules. Immunol Rev 2009; 229(1): 259-70.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00772.x] [PMID: 19426227]
[61]
Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 2010; 235(1): 172-89.
[http://dx.doi.org/10.1111/j.0105-2896.2010.00903.x] [PMID: 20536563]
[62]
Du W, Yang M, Turner A, et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci 2017; 18(3): 645.
[http://dx.doi.org/10.3390/ijms18030645] [PMID: 28300768]
[63]
Zhu C, Anderson AC, Schubart A, et al. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 2005; 6(12): 1245-52.
[http://dx.doi.org/10.1038/ni1271] [PMID: 16286920]
[64]
Elahi S, Niki T, Hirashima M, Horton H. Galectin-9 binding to Tim-3 renders activated human CD4+ T cells less susceptible to HIV-1 infection. Blood 2012; 119(18): 4192-204.
[http://dx.doi.org/10.1182/blood-2011-11-389585] [PMID: 22438246]
[65]
Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis 2015; 6(6): e1792.
[http://dx.doi.org/10.1038/cddis.2015.162] [PMID: 26086965]
[66]
Liu Y, Gao LF, Liang XH, Ma CH. Role of Tim-3 in hepatitis B virus infection: An overview. World J Gastroenterol 2016; 22(7): 2294-303.
[http://dx.doi.org/10.3748/wjg.v22.i7.2294] [PMID: 26900291]
[67]
He Y, Cao J, Zhao C, Li X, Zhou C, Hirsch F. TIM-3, a promising target for cancer immunotherapy. OncoTargets Ther 2018; 11: 7005-9.
[http://dx.doi.org/10.2147/OTT.S170385] [PMID: 30410357]
[68]
Zhou E, Huang Q, Wang J, et al. Up-regulation of Tim-3 is associated with poor prognosis of patients with colon cancer. Int J Clin Exp Pathol 2015; 8(7): 8018-27.
[PMID: 26339368]
[69]
Acharya N, Sabatos-Peyton C, Anderson AC, Anderson AC, Anderson AC. Tim-3 finds its place in the cancer immunotherapy landscape. J Immunother Cancer 2020; 8(1): e000911.
[http://dx.doi.org/10.1136/jitc-2020-000911] [PMID: 32601081]
[70]
Anderson AC. Tim-3: An emerging target in the cancer immunotherapy landscape. Cancer Immunol Res 2014; 2(5): 393-8.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0039] [PMID: 24795351]
[71]
Yu X, Harden K, C Gonzalez L, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 2009; 10(1): 48-57.
[http://dx.doi.org/10.1038/ni.1674] [PMID: 19011627]
[72]
Levin SD, Taft DW, Brandt CS, et al. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 2011; 41(4): 902-15.
[http://dx.doi.org/10.1002/eji.201041136] [PMID: 21416464]
[73]
Harjunpää H, Guillerey C. TIGIT as an emerging immune checkpoint. Clin Exp Immunol 2020; 200(2): 108-19.
[http://dx.doi.org/10.1111/cei.13407] [PMID: 31828774]
[74]
Kurtulus S, Sakuishi K, Ngiow SF, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 2015; 125(11): 4053-62.
[http://dx.doi.org/10.1172/JCI81187] [PMID: 26413872]
[75]
Manieri NA, Chiang EY, Grogan JL. TIGIT: A key inhibitor of the cancer immunity cycle. Trends Immunol 2017; 38(1): 20-8.
[http://dx.doi.org/10.1016/j.it.2016.10.002] [PMID: 27793572]
[76]
Sanchez-Correa B, Valhondo I, Hassouneh F, et al. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel immune checkpoints for natural killer cell-based cancer immunotherapy. Cancers 2019; 11(6): 877.
[http://dx.doi.org/10.3390/cancers11060877] [PMID: 31234588]
[77]
Molfetta R, Zitti B, Lecce M, et al. CD155: A multi-functional molecule in tumor progression. Int J Mol Sci 2020; 21(3): 922.
[http://dx.doi.org/10.3390/ijms21030922] [PMID: 32019260]
[78]
Tahara-Hanaoka S, Shibuya K, Onoda Y, et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Int Immunol 2004; 16(4): 533-8.
[http://dx.doi.org/10.1093/intimm/dxh059] [PMID: 15039383]
[79]
Stengel KF, Harden-Bowles K, Yu X, et al. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell–cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci USA 2012; 109(14): 5399-404.
[http://dx.doi.org/10.1073/pnas.1120606109] [PMID: 22421438]
[80]
Chauvin JM, Zarour HM. TIGIT in cancer immunotherapy. J Immunother Cancer 2020; 8(2): e000957.
[http://dx.doi.org/10.1136/jitc-2020-000957] [PMID: 32900861]
[81]
Hoteit M, Oneissi Z, Reda R, et al. Cancer immunotherapy: A comprehensive appraisal of its modes of application. Oncol Lett 2021; 22(3): 655.
[http://dx.doi.org/10.3892/ol.2021.12916] [PMID: 34386077]
[82]
Gao J, Zheng Q, Xin N, Wang W, Zhao C. CD 155, an onco-immunologic molecule in human tumors. Cancer Sci 2017; 108(10): 1934-8.
[http://dx.doi.org/10.1111/cas.13324] [PMID: 28730595]
[83]
Stanietsky N, Simic H, Arapovic J, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA 2009; 106(42): 17858-63.
[http://dx.doi.org/10.1073/pnas.0903474106] [PMID: 19815499]
[84]
Liu S, Zhang H, Li M, et al. Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 2013; 20(3): 456-64.
[http://dx.doi.org/10.1038/cdd.2012.141] [PMID: 23154388]
[85]
Dixon KO, Schorer M, Nevin J, et al. Functional Anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J Immunol 2018; 200(8): 3000-7.
[http://dx.doi.org/10.4049/jimmunol.1700407] [PMID: 29500245]
[86]
Guillerey C, Harjunpää H, Harjunpä H, et al. Brief Report IMMUNOBIOLOGY AND IMMUNOTHERAPY TIGIT Immune Checkpoint Blockade Restores CD8 1 T-Cell Immunity against Multiple Myeloma. Blood 2018; 132(16): 1689-94.
[http://dx.doi.org/10.1182/blood-2018-01-825265] [PMID: 29986909]
[87]
Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD96: New checkpoint receptor targets for cancer immunotherapy. Immunol Rev 2017; 276(1): 112-20.
[http://dx.doi.org/10.1111/imr.12518] [PMID: 28258695]
[88]
Muller S, Victoria Lai W, Adusumilli PS, et al. V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma. Mod Pathol 2020; 33(2): 303-11.
[http://dx.doi.org/10.1038/s41379-019-0364-z] [PMID: 31537897]
[89]
Lines JL, Pantazi E, Mak J, et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res 2014; 74(7): 1924-32.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1504] [PMID: 24691993]
[90]
Wang L, Rubinstein R, Lines JL, et al. VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med 2011; 208(3): 577-92.
[http://dx.doi.org/10.1084/jem.20100619] [PMID: 21383057]
[91]
Rothlin CV, Ghosh S. Lifting the innate immune barriers to antitumor immunity. J Immunother Cancer 2020; 8(1): e000695.
[http://dx.doi.org/10.1136/jitc-2020-000695] [PMID: 32273348]
[92]
Li N, Xu W, Yuan Y, et al. Immune-checkpoint protein VISTA critically regulates the IL-23/IL-17 inflammatory axis. Sci Rep 2017; 7(1): 1485.
[http://dx.doi.org/10.1038/s41598-017-01411-1] [PMID: 28469254]
[93]
Wang J, Wu G, Manick B, et al. VSIG-3 as a ligand of VISTA inhibits human T-cell function. Immunology 2019; 156(1): 74-85.
[http://dx.doi.org/10.1111/imm.13001] [PMID: 30220083]
[94]
Huang X, Zhang X, Li E, et al. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J Hematol Oncol 2020; 13(1): 83.
[http://dx.doi.org/10.1186/s13045-020-00917-y] [PMID: 32600443]
[95]
Hid Cadena R, Reitsema RD, Huitema MG, et al. Decreased expression of negative immune checkpoint VISTA by CD4+ T cells facilitates T Helper 1, T Helper 17, and T follicular helper lineage differentiation in GCA. Front Immunol 2019; 10(JULY): 1638.
[http://dx.doi.org/10.3389/fimmu.2019.01638] [PMID: 31379838]
[96]
Mulati K, Hamanishi J, Matsumura N, et al. VISTA expressed in tumour cells regulates T cell function. Br J Cancer 2019; 120(1): 115-27.
[http://dx.doi.org/10.1038/s41416-018-0313-5] [PMID: 30382166]
[97]
Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 2018; 1069-86.
[98]
Hutloff A, Dittrich AM, Beier KC, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 1999; 397(6716): 263-6.
[http://dx.doi.org/10.1038/16717] [PMID: 9930702]
[99]
Mahajan S, Cervera A, MacLeod M, et al. The role of ICOS in the development of CD4 T cell help and the reactivation of memory T cells. Eur J Immunol 2007; 37(7): 1796-808.
[http://dx.doi.org/10.1002/eji.200636661] [PMID: 17549732]
[100]
McAdam AJ, Chang TT, Lumelsky AE, et al. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 2000; 165(9): 5035-40.
[http://dx.doi.org/10.4049/jimmunol.165.9.5035] [PMID: 11046032]
[101]
Vettermann C, Victor HP, Sun Y, Plewa C, Gupta S. A signaling-enhanced chimeric receptor to activate the ICOS pathway in T cells. J Immunol Methods 2015; 424: 14-9.
[http://dx.doi.org/10.1016/j.jim.2015.04.015] [PMID: 25956037]
[102]
Vocanson M, Rozieres A, Hennino A, et al. Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol 2010; 126(2): 280-9.
[http://dx.doi.org/10.1016/j.jaci.2010.05.022] [PMID: 20624644]
[103]
Martin-Orozco N, Li Y, Wang Y, et al. Melanoma cells express ICOS ligand to promote the activation and expansion of T-regulatory cells. Cancer Res 2010; 70(23): 9581-90.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1379] [PMID: 21098714]
[104]
Amatore F, Gorvel L, Olive D. Inducible Co-Stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy. Expert Opin Ther Targets 2018; 22(4): 343-51.
[http://dx.doi.org/10.1080/14728222.2018.1444753] [PMID: 29468927]
[105]
Roos A, Schilder-Tol EJM, Weening JJ, Aten J. Strong expression of CD134 (OX40), a member of the TNF receptor family, in a T helper 2-type cytokine environment. J Leukoc Biol 1998; 64(4): 503-10.
[http://dx.doi.org/10.1002/jlb.64.4.503] [PMID: 9766631]
[106]
Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 2009; 229(1): 173-91.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00766.x] [PMID: 19426222]
[107]
Jensen SM, Maston LD, Gough MJ, et al. Signaling through OX40 enhances antitumor immunity. Semin Oncol 2010; 37(5): 524-32.
[http://dx.doi.org/10.1053/j.seminoncol.2010.09.013] [PMID: 21074068]
[108]
Yashiro T, Hara M, Ogawa H, Okumura K, Nishiyama C. Critical role of transcription Factor PU.1 in the function of the OX40L/TNFSF4 promoter in dendritic cells. Sci Rep 2016; 6(1): 34825.
[http://dx.doi.org/10.1038/srep34825] [PMID: 27708417]
[109]
Peramuhendige P, Marino S, Bishop RT, et al. TRAF2 in osteotropic breast cancer cells enhances skeletal tumour growth and promotes osteolysis. Sci Rep 2018; 8(1): 39.
[http://dx.doi.org/10.1038/s41598-017-18327-5] [PMID: 29311633]
[110]
Hildebrand JM, Yi Z, Buchta CM, Poovassery J, Stunz LL, Bishop GA. Roles of tumor necrosis factor receptor associated factor 3 (TRAF3) and TRAF5 in immune cell functions. Immunol Rev 2011; 244(1): 55-74.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01055.x] [PMID: 22017431]
[111]
Alves Costa Silva C, Facchinetti F, Routy B, Derosa L. New pathways in immune stimulation: Targeting OX40. ESMO Open 2020; 5(1): e000573.
[http://dx.doi.org/10.1136/esmoopen-2019-000573] [PMID: 32392177]
[112]
Zhang X, Xiao X, Lan P, et al. OX40 costimulation inhibits Foxp3 expression and treg induction via BATF3-dependent and independent mechanisms. Cell Rep 2018; 24(3): 607-18.
[http://dx.doi.org/10.1016/j.celrep.2018.06.052] [PMID: 30021159]
[113]
He Y, Zhang X, Jia K, et al. OX40 and OX40L protein expression of tumor infiltrating lymphocytes in non-small cell lung cancer and its role in clinical outcome and relationships with other immune biomarkers. Transl Lung Cancer Res 2019; 8(4): 352-66.
[http://dx.doi.org/10.21037/tlcr.2019.08.15] [PMID: 31555511]
[114]
Ohshima Y, Yang LP, Uchiyama T, et al. OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood 1998; 92(9): 3338-45.
[http://dx.doi.org/10.1182/blood.V92.9.3338] [PMID: 9787171]
[115]
Zhang Z, Zhong W, Hinrichs D, et al. Activation of OX40 augments Th17 cytokine expression and antigen-specific uveitis. Am J Pathol 2010; 177(6): 2912-20.
[http://dx.doi.org/10.2353/ajpath.2010.100353] [PMID: 20952591]
[116]
Kashima J, Okuma Y, Hosomi Y, Hishima T. High Serum OX40 and OX40 Ligand (OX40L) levels correlate with reduced survival in patients with advanced lung adenocarcinoma. Oncology 2020; 98(5): 303-10.
[http://dx.doi.org/10.1159/000505975] [PMID: 32097938]
[117]
Linch SN, McNamara MJ, Redmond WL. OX40 Agonists and Combination Immunotherapy: Putting the pedal to the metal. Front Oncol 2015; 5(FEB): 34.
[http://dx.doi.org/10.3389/fonc.2015.00034] [PMID: 25763356]
[118]
Guttman-Yassky E, Pavel AB, Zhou L, et al. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J Allergy Clin Immunol 2019; 144(2): 482-493.e7.
[http://dx.doi.org/10.1016/j.jaci.2018.11.053] [PMID: 30738171]
[119]
Ronchetti S, Zollo O, Bruscoli S, et al. Frontline: GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 2004; 34(3): 613-22.
[http://dx.doi.org/10.1002/eji.200324804] [PMID: 14991590]
[120]
Ronchetti S, Nocentini G, Petrillo M G, Riccardi C. CD8+ T Cells: GITR matters. Sci World J 2012; 2012
[121]
Nocentini G, Riccardi C. GITR: A modulator of immune response and inflammation. Adv Exp Med Biol 2009; 647: 156-73.
[http://dx.doi.org/10.1007/978-0-387-89520-8_11] [PMID: 19760073]
[122]
Nocentini G, Riccardi C. GITR: A multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily. Eur J Immunol 2005; 35(4): 1016-22.
[http://dx.doi.org/10.1002/eji.200425818] [PMID: 15770698]
[123]
Shevach EM, Stephens GL. The GITR–GITRL interaction: Co-stimulation or contrasuppression of regulatory activity? Nat Rev Immunol 2006; 6(8): 613-8.
[http://dx.doi.org/10.1038/nri1867] [PMID: 16868552]
[124]
Bae EM, Kim WJ, Suk K, et al. Reverse signaling initiated from GITRL induces NF-κB activation through ERK in the inflammatory activation of macrophages. Mol Immunol 2008; 45(2): 523-33.
[http://dx.doi.org/10.1016/j.molimm.2007.05.013] [PMID: 17602748]
[125]
Snell LM, McPherson AJ, Lin GHY, et al. CD8 T cell-intrinsic GITR is required for T cell clonal expansion and mouse survival following severe influenza infection. J Immunol 2010; 185(12): 7223-34.
[http://dx.doi.org/10.4049/jimmunol.1001912] [PMID: 21076066]
[126]
Kim YH, Shin SM, Choi BK, et al. Authentic GITR signaling fails to induce tumor regression unless Foxp3+ regulatory T cells are depleted. J Immunol 2015; 195(10): 4721-9.
[http://dx.doi.org/10.4049/jimmunol.1403076] [PMID: 26423152]
[127]
Zhu MMT, Burugu S, Gao D, et al. Evaluation of glucocorticoid-induced TNF receptor (GITR) expression in breast cancer and across multiple tumor types. Mod Pathol 2020; 33(9): 1753-63.
[http://dx.doi.org/10.1038/s41379-020-0550-z] [PMID: 32350416]
[128]
Cohen AD, Schaer DA, Liu C, et al. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 2010; 5(5): e10436.
[http://dx.doi.org/10.1371/journal.pone.0010436] [PMID: 20454651]
[129]
Coe D, Begom S, Addey C, White M, Dyson J, Chai JG. Depletion of regulatory T cells by anti-GITR mAb as a novel mechanism for cancer immunotherapy. Cancer Immunol Immunother 2010; 59(9): 1367-77.
[http://dx.doi.org/10.1007/s00262-010-0866-5] [PMID: 20480365]
[130]
Knee DA, Hewes B, Brogdon JL. Rationale for anti-GITR cancer immunotherapy. Eur J Cancer 2016; 67: 1-10.
[http://dx.doi.org/10.1016/j.ejca.2016.06.028] [PMID: 27591414]
[131]
Sukumar S, Wilson DC, Yu Y, et al. Characterization of MK-4166, a clinical agonistic antibody that targets human GITR and inhibits the generation and suppressive effects of T regulatory cells. Cancer Res 2017; 77(16): 4378-88.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1439] [PMID: 28611044]
[132]
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229(1): 152-72.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00782.x] [PMID: 19426221]
[133]
Munroe ME, Bishop GA. A costimulatory function for T Cell CD40. J Immunol 2007; 178(2): 671-82.
[http://dx.doi.org/10.4049/jimmunol.178.2.671]
[134]
Durie FH, Foy TM, Masters SR, Laman JD, Noelle RJ. The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunol Today 1994; 15(9): 406-11.
[http://dx.doi.org/10.1016/0167-5699(94)90269-0] [PMID: 7524518]
[135]
Aloui C, Prigent A, Sut C, Tariket S. The signaling role of CD40 ligand in platelet biology and in platelet component transfusion. Molecular sciences 2014; 15: 22342-64.
[136]
Daoussis D, Andonopoulos AP, Liossis S-NC. Targeting CD40L: a promising therapeutic approach. Clin Diagn Lab Immunol 2004; 11(4): 635-41.
[PMID: 15242934]
[137]
Li R, Chen WC, Pang XQ, Hua C, Li L, Zhang XG. Expression of CD40 and CD40L in gastric cancer tissue and its clinical significance. Int J Mol Sci 2009; 10(9): 3900-17.
[http://dx.doi.org/10.3390/ijms10093900] [PMID: 19865524]
[138]
Piechutta M, Berghoff AS. New emerging targets in cancer immunotherapy: The role of cluster of differentiation 40 (CD40/TNFR5). ESMO Open 2019; 4(e000510) (Suppl. 3): e000510.
[http://dx.doi.org/10.1136/esmoopen-2019-000510] [PMID: 31275618]
[139]
Korniluk A, Kemona H, Dymicka-Piekarska V. Multifunctional CD40L: Pro- and anti-neoplastic activity. Tumour Biol 2014; 35(10): 9447-57.
[http://dx.doi.org/10.1007/s13277-014-2407-x] [PMID: 25117071]
[140]
Ruvolo PP, Deng X, May WS. Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 2001; 15(4): 515-22.
[http://dx.doi.org/10.1038/sj.leu.2402090] [PMID: 11368354]
[141]
Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ. TRAF Proteins in CD40 Signaling.In: Wu H, Ed Advances in Experimental Medicine and Biology, TNF Receptor Associated Factors (TRAFs). New York: New York, NY: Springer 2007; pp. 131-51.
[http://dx.doi.org/10.1007/978-0-387-70630-6_11]
[142]
Rakhmilevich AL, Alderson KL, Sondel PM. T-cell-independent antitumor effects of CD40 ligation. Int Rev Immunol 2012; 31(4): 267-78.
[http://dx.doi.org/10.3109/08830185.2012.698337] [PMID: 22804571]
[143]
Vonderheide RH. Prospect of targeting the CD40 pathway for cancer therapy. Clin Cancer Res 2007; 13(4): 1083-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1893]
[144]
Kobata T, Jacquot S, Kozlowski S, Agematsu K, Schlossman SF, Morimoto C. CD27-CD70 interactions regulate B-cell activation by T cells. Proc Natl Acad Sci USA 1995; 92(24): 11249-53.
[http://dx.doi.org/10.1073/pnas.92.24.11249] [PMID: 7479974]
[145]
Borst J, Hendriks J, Xiao Y. CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol 2005; 17(3): 275-81.
[http://dx.doi.org/10.1016/j.coi.2005.04.004] [PMID: 15886117]
[146]
Hendriks J, Xiao Y, Borst J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med 2003; 198(9): 1369-80.
[http://dx.doi.org/10.1084/jem.20030916] [PMID: 14581610]
[147]
Claus C, Riether C, Schürch C, Matter MS, Hilmenyuk T, Ochsenbein AF. CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res 2012; 72(14): 3664-76.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2791] [PMID: 22628427]
[148]
Jacobs J, Deschoolmeester V, Zwaenepoel K, et al. Unveiling a CD70-positive subset of cancer-associated fibroblasts marked by pro-migratory activity and thriving regulatory T cell accumulation. OncoImmunology 2018; 7(7): e1440167.
[http://dx.doi.org/10.1080/2162402X.2018.1440167] [PMID: 29900042]
[149]
Katayama Y, Sakai A, Oue N, et al. A possible role for the loss of CD27-CD70 interaction in myelomagenesis. Br J Haematol 2003; 120(2): 223-34.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04069.x] [PMID: 12542479]
[150]
Chen D, Gerasimčik N, Camponeschi A. CD27 expression and its association with clinical outcome in children and adults with pro-B acute lymphoblastic leukemia. Blood Cancer J 2017; 7(6): e575.
[http://dx.doi.org/10.1038/bcj.2017.55] [PMID: 28649984]
[151]
Turaj AH, Hussain K, Cox KL, et al. Antibody tumor targeting is enhanced by CD27 agonists through myeloid recruitment. Cancer Cell 2017; 32(6): 777-791.e6.
[http://dx.doi.org/10.1016/j.ccell.2017.11.001] [PMID: 29198913]
[152]
Jacobs J, Deschoolmeester V, Zwaenepoel K, et al. CD70: An emerging target in cancer immunotherapy. Pharmacol Ther 2015; 155(July): 1-10.
[http://dx.doi.org/10.1016/j.pharmthera.2015.07.007] [PMID: 26213107]
[153]
Wang K, Wei G, Liu D. CD19: A biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol 2012; 1(1): 36.
[http://dx.doi.org/10.1186/2162-3619-1-36] [PMID: 23210908]
[154]
Scheuermann RH, Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 1995; 18(5-6): 385-97.
[http://dx.doi.org/10.3109/10428199509059636] [PMID: 8528044]
[155]
Inwald DP, McDowall A, Peters MJ, et al. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res 2003; 92(9): 1041-8.
[http://dx.doi.org/10.1161/01.RES.0000070111.98158.6C] [PMID: 12676820]
[156]
Brudno JN, Lam N, Vanasse D, et al. Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nat Med 2020; 26(2): 270-80.
[http://dx.doi.org/10.1038/s41591-019-0737-3] [PMID: 31959992]
[157]
Cheng J, Zhao L, Zhang Y, et al. Understanding the mechanisms of resistance to CAR T-Cell therapy in malignancies. Front Oncol 2019; 9(November): 1237.
[http://dx.doi.org/10.3389/fonc.2019.01237] [PMID: 31824840]
[158]
van Zelm MC, Smet J, Adams B, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest 2010; 120(4): 1265-74.
[http://dx.doi.org/10.1172/JCI39748] [PMID: 20237408]
[159]
Davila ML, Brentjens RJ. CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia. Clin Adv Hematol Oncol 2016; 14(10): 802-8.
[PMID: 27930631]
[160]
Onea AS, Jazirehi AR. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas. Am J Cancer Res 2016; 6(2): 403-24.
[PMID: 27186412]
[161]
Liu W, Peng B, Lu Y, Xu W, Qian W, Zhang JY. Autoantibodies to tumor-associated antigens as biomarkers in cancer immunodiagnosis. Autoimmun Rev 2011; 10(6): 331-5.
[http://dx.doi.org/10.1016/j.autrev.2010.12.002] [PMID: 21167321]
[162]
Zhang JY, Casiano CA, Peng XX, Koziol JA, Chan EKL, Tan EM. Enhancement of antibody detection in cancer using panel of recombinant tumor-associated antigens. Cancer Epidemiol Biomarkers Prev 2003; 12(2): 136-43.
[PMID: 12582023]
[163]
Zhang JY, Looi KS, Tan EM. Identification of tumor-associated antigens as diagnostic and predictive biomarkers in cancer. Methods Mol Biol 2009; 520: 1-10.
[http://dx.doi.org/10.1007/978-1-60327-811-9_1] [PMID: 19381943]
[164]
Heo CK, Bahk YY, Cho EW. Tumor-associated autoantibodies as diagnostic and prognostic biomarkers. BMB Rep 2012; 45(12): 677-85.
[http://dx.doi.org/10.5483/BMBRep.2012.45.12.236] [PMID: 23261052]
[165]
Nishimura Y, Tomita Y, Yuno A, Yoshitake Y, Shinohara M. Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses. Cancer Sci 2015; 106(5): 505-11.
[http://dx.doi.org/10.1111/cas.12650] [PMID: 25726868]
[166]
Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med 2000; 6(4): 443-6.
[http://dx.doi.org/10.1038/74704] [PMID: 10742152]
[167]
Wittrup KD. Antitumor antibodies can drive therapeutic T Cell responses. Trends Cancer 2017; 3(9): 615-20.
[http://dx.doi.org/10.1016/j.trecan.2017.07.001] [PMID: 28867165]
[168]
Lewis JJ, Houghton AN. Definition of tumor antigens suitable for vaccine construction. Semin Cancer Biol 1995; 6(6): 321-7.
[http://dx.doi.org/10.1016/1044-579X(95)90001-2] [PMID: 8938270]
[169]
Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res 2001; 61(5): 2129-37.
[PMID: 11280777]
[170]
Soliman H, Mediavilla-Varela M, Antonia S. Indoleamine 2,3-Dioxygenase. Cancer J 2010; 16(4): 354-9.
[http://dx.doi.org/10.1097/PPO.0b013e3181eb3343] [PMID: 20693847]
[171]
Badawy AAB. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int J Tryptophan Res 2017; 10(1)
[http://dx.doi.org/10.1177/1178646917691938] [PMID: 28469468]
[172]
Mbongue J, Nicholas D, Torrez T, Kim NS, Firek A, Langridge W. The Role of Indoleamine 2, 3-Dioxygenase in immune suppression and autoimmunity. Vaccines 2015; 3(3): 703-29.
[http://dx.doi.org/10.3390/vaccines3030703] [PMID: 26378585]
[173]
Lanser L, Kink P, Egger EM, et al. Inflammation-induced tryptophan breakdown is related with anemia, fatigue, and depression in cancer. Front Immunol 2020; 11(February): 249.
[http://dx.doi.org/10.3389/fimmu.2020.00249] [PMID: 32153576]
[174]
Prendergast GC, Malachowski WJ, Mondal A, Scherle P, Muller AJ. Indoleamine 2,3-Dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol 2018; 336: 175-203.
[http://dx.doi.org/10.1016/bs.ircmb.2017.07.004] [PMID: 29413890]
[175]
Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 2002; 196(4): 459-68.
[http://dx.doi.org/10.1084/jem.20020121] [PMID: 12186838]
[176]
Nayak-Kapoor A, Hao Z, Sadek R, et al. Phase Ia study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) in patients with recurrent advanced solid tumors. J Immunother Cancer 2018; 6(1): 61.
[http://dx.doi.org/10.1186/s40425-018-0351-9] [PMID: 29921320]
[177]
Fox JM, Sage LK, Huang L, et al. Inhibition of indoleamine 2,3-dioxygenase enhances the T-cell response to influenza virus infection. J Gen Virol 2013; 94(7): 1451-61.
[http://dx.doi.org/10.1099/vir.0.053124-0] [PMID: 23580425]
[178]
Seeber A, Klinglmair G, Fritz J, et al. High IDO -1 expression in tumor endothelial cells is associated with response to immunotherapy in metastatic renal cell carcinoma. Cancer Sci 2018; 109(5): 1583-91.
[http://dx.doi.org/10.1111/cas.13560] [PMID: 29498788]
[179]
Ye Z, Yue L, Shi J, Shao M, Wu T. Role of IDO and TDO in cancers and related diseases and the therapeutic implications. J Cancer 2019; 10(12): 2771-82.
[http://dx.doi.org/10.7150/jca.31727] [PMID: 31258785]
[180]
Moon YW, Hajjar J, Hwu P, Naing A. Targeting the indoleamine 2,3-dioxygenase pathway in cancer. J Immunother Cancer 2015; 3(1): 51.
[http://dx.doi.org/10.1186/s40425-015-0094-9] [PMID: 26674411]
[181]
Amobi A, Qian F, Lugade AA, Odunsi K. Tryptophan catabolism and cancer immunotherapy targeting IDO mediated immune suppression. Adv Exp Med Biol 2017; 1036: 129-44.
[http://dx.doi.org/10.1007/978-3-319-67577-0_9] [PMID: 29275469]
[182]
Peng Z, Hu Y, Ren J, Yu N, Li Z, Xu Z. Circulating Th22 cells, as well as Th17 cells, are elevated in patients with renal cell carcinoma. Int J Med Sci 2021; 18(1): 99-108.
[http://dx.doi.org/10.7150/ijms.47384] [PMID: 33390778]
[183]
Ivanova EA, Orekhov ANT. Helper lymphocyte subsets and plasticity in autoimmunity and cancer: An overview. BioMed Res Int 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/327470] [PMID: 26583100]