Computer-aided Diagnosis of Various Diseases Using Ultrasonography Images

Article ID: e060323214359 Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

This paper is an exhaustive survey of computer-aided diagnosis (CAD) system-based automatic detection of several diseases from ultrasound images. CAD plays a vital role in the automatic and early detection of diseases. Health monitoring, medical database management, and picture archiving systems became very feasible with CAD, assisting radiologists in making decisions over any imaging modality. Imaging modalities mainly rely on machine learning and deep learning algorithms for early and accurate disease detection. CAD approaches are described in this paper in terms of it's their significant tools; digital image processing (DIP), machine learning (ML), and deep learning (DL). Ultrasonography (USG) already has many advantages over other imaging modalities; therefore, CAD analysis of USG assists radiologists in studying it more clearly, leading to USG application over various body parts. This paper includes a review of those major diseases whose detection supports “ML algorithm” based diagnosis from USG images. ML algorithm follows feature extraction, selection, and classification in the required class. The literature survey of these diseases is grouped into the carotid region, transabdominal & pelvic region, musculoskeletal region, and thyroid region. These regions also differ in the types of transducers employed for scanning. Based on the literature survey, we have concluded that texture-based extracted features passed to support vector machine (SVM) classifier results in good classification accuracy. However, the emerging deep learningbased disease classification trend signifies more preciseness and automation for feature extraction and classification. Still, classification accuracy depends on the number of images used for training the model. This motivated us to highlight some of the significant shortcomings of automated disease diagnosis techniques. Research challenges in CAD-based automatic diagnosis system design and limitations in imaging through USG modality are mentioned as separate topics in this paper, indicating future scope and improvement in this field. The success rate of machine learning approaches in USG-based automatic disease detection motivated this review paper to describe different parameters behind machine learning and deep learning algorithms towards improving USG diagnostic performance.

[1]
Doi K. Current status and future potential of computer-aided diagnosis in medical imaging. Br J Radiol 2005; 78(Spec No 1) (Suppl. 1): s3-s19.
[http://dx.doi.org/10.1259/bjr/82933343] [PMID: 15917443]
[2]
Doi K. Computer-Aided Diagnosis in Medical Imaging Achievements and Challenges World Congress on Medical Physics and Biomedical Engineering. September 7 - 12, 2009; Munich, Germany. 2009; pp. 96-6.
[http://dx.doi.org/10.1007/978-3-642-03904-1_26]
[3]
Wernick M, Yang Y, Brankov J, Yourganov G, Strother S. Machine Learning in Medical Imaging. IEEE Signal Process Mag 2010; 27(4): 25-38.
[http://dx.doi.org/10.1109/MSP.2010.936730] [PMID: 25382956]
[4]
Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin Nucl Med 2011; 41(6): 449-62.
[http://dx.doi.org/10.1053/j.semnuclmed.2011.06.004] [PMID: 21978447]
[5]
Lutz H, Buscarini E. Manual of diagnostic ultrasound. (2nd ed.), Switzerland: World Health Organization 2011.
[6]
Sprawls P. Physical Principles of Medical Imaging. (2nd ed.), USA: Medical Physics Publishing 1995.
[7]
Carmody KA, Moore CL, Kopman DF. Handbook of Critical Care and Emergency Ultrasound. China: McGraw-Hill Education 2011.
[8]
Bick U, Diekmann F, Eds. Digital Mammography.Medical Radiology. Berlin, Heidelberg: Springer 2010.
[http://dx.doi.org/10.1007/978-3-540-78450-0]
[9]
Carovac A, Smajlovic F, Junuzovic D. Application of ultrasound in medicine. Acta Inform Med 2011; 19(3): 168-71.
[http://dx.doi.org/10.5455/aim.2011.19.168-171] [PMID: 23408755]
[10]
Sarki R, Ahmed K, Wang H, Zhang Y, Ma J, Wang K. Image preprocessing in classification and identification of diabetic eye diseases. Data Science and Engineering 2021; 445-71.
[http://dx.doi.org/10.1007/s41019-021-00167-z]
[11]
Paulo Mazzoncini DA-M, Arianna M, Marcello S, Rangaraj M. Medical image analysis and informatics: Computer-aided diagnosis and therapy: Computer-aided diagnosis and therapy. CRC Press 2017.
[http://dx.doi.org/10.1201/9781351228343]
[12]
Brattain LJ, Telfer BA, Dhyani M, Grajo JR, Samir AE. Machine learning for medical ultrasound: status, methods, and future opportunities. Abdom Radiol (NY) 2018; 43(4): 786-99.
[http://dx.doi.org/10.1007/s00261-018-1517-0] [PMID: 29492605]
[13]
Huang Q, Zhang F, Li X. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey. BioMed Res Int 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/5137904] [PMID: 29687000]
[14]
Dabbaghchian S, Ghaemmaghami MP, Aghagolzadeh A. Feature extraction using discrete cosine transform and discrimination power analysis with a face recognition technology. Pattern Recognit 2010; 43(4): 1431-40.
[http://dx.doi.org/10.1016/j.patcog.2009.11.001]
[15]
Chang M-C, Bus P, Schmitt G. Feature Extraction and K-means Clustering Approach to Explore Important Features of Urban Identity. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA).
[http://dx.doi.org/10.1109/ICMLA.2017.00015]
[16]
Castiglioni I, Rundo L, Codari M, et al. AI applications to medical images: From machine learning to deep learning. Phys Med 2021; 83: 9-24.
[http://dx.doi.org/10.1016/j.ejmp.2021.02.006] [PMID: 33662856]
[17]
Khanna NN, Jamthikar AD, Gupta D, et al. Rheumatoid Arthritis: Atherosclerosis imaging and cardiovascular risk assessment using machine and deep learning–based tissue characterization. Curr Atheroscler Rep 2019; 21(2): 7.
[http://dx.doi.org/10.1007/s11883-019-0766-x] [PMID: 30684090]
[18]
Acharya RU, Faust O, Alvin APC, et al. Symptomatic vs. asymptomatic plaque classification in carotid ultrasound. J Med Syst 2012; 36(3): 1861-71.
[http://dx.doi.org/10.1007/s10916-010-9645-2] [PMID: 21243411]
[19]
Acharya UR, Fujita H, Bhat S, et al. Decision support system for fatty liver disease using GIST descriptors extracted from ultrasound images. Inf Fusion 2016; 29: 32-9.
[http://dx.doi.org/10.1016/j.inffus.2015.09.006]
[20]
Mougiakakou SG, Golemati S, Gousias I, Nicolaides AN, Nikita KS. Computer-aided diagnosis of carotid atherosclerosis based on ultrasound image statistics, Laws’ texture and neural networks. Ultrasound Med Biol 2007; 33(1): 26-36.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2006.07.032] [PMID: 17189044]
[21]
Tsiaparas N, Golemati S, Andreadis I, Stoitsis JS, Valavanis I, Nikita KS. Comparison of multiresolution features for texture classification of carotid atherosclerosis from B-mode ultrasound. IEEE Trans Inf Technol Biomed 2011; 15(1): 130-7.
[http://dx.doi.org/10.1109/TITB.2010.2091511] [PMID: 21075733]
[22]
Athanasiou LS, Karvelis PS, Tsakanikas VD, et al. A novel semiautomated atherosclerotic plaque characterization method using grayscale intravascular ultrasound images: comparison with virtual histology. IEEE Trans Inf Technol Biomed 2012; 16(3): 391-400.
[http://dx.doi.org/10.1109/TITB.2011.2181529] [PMID: 22203721]
[23]
Acharya UR, Faust O, S VS, et al. Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization. Comput Methods Programs Biomed 2013; 110(1): 66-75.
[http://dx.doi.org/10.1016/j.cmpb.2012.09.008] [PMID: 23122720]
[24]
Menchón-Lara RM, Bastida-Jumilla MC, Morales-Sánchez J, Sancho-Gómez JL. Automatic detection of the intima-media thickness in ultrasound images of the common carotid artery using neural networks. Med Biol Eng Comput 2014; 52(2): 169-81.
[http://dx.doi.org/10.1007/s11517-013-1128-4] [PMID: 24281725]
[25]
Lekadir K, Galimzianova A, Betriu A, et al. A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound. IEEE J Biomed Health Inform 2017; 21(1): 48-55.
[http://dx.doi.org/10.1109/JBHI.2016.2631401] [PMID: 27893402]
[26]
Biswas M, Kuppili V, Saba L, et al. Deep learning fully convolution network for lumen characterization in diabetic patients using carotid ultrasound: a tool for stroke risk. Med Biol Eng Comput 2019; 57(2): 543-64.
[http://dx.doi.org/10.1007/s11517-018-1897-x] [PMID: 30255236]
[27]
Saba L, Sanagala SS, Gupta SK, et al. A multicenter study on carotid ultrasound plaque tissue characterization and classification using six deep artificial intelligence models: A stroke application. IEEE Trans Instrum Meas 2021; 70: 1-12.
[http://dx.doi.org/10.1109/TIM.2021.3052577]
[28]
Vansteenkiste E, Huysmans B, Govaert P, Lequin M, Philips W. Texture-Based Classification of Periventricular Leukomalacia in Preterm Ultrasound Images. Curr Med Imaging Rev 2008; 4(2): 113-24.
[http://dx.doi.org/10.2174/157340508784356761]
[29]
Araki T, Jain PK, Suri HS, et al. Stroke risk stratification and its validation using ultrasonic echolucent carotid wall plaque morphology: A machine learning paradigm. Comput Biol Med 2017; 80: 77-96.
[30]
Saba L, Jain PK, Suri HS, et al. Plaque Tissue Morphology-Based Stroke Risk Stratification Using Carotid Ultrasound: A Polling-Based PCA Learning Paradigm. J Med Syst 2017; 41(6): 98.
[http://dx.doi.org/10.1007/s10916-017-0745-0] [PMID: 28501967]
[31]
Yeh WC, Jeng YM, Li CH, Lee PH, Li PC. Liver steatosis classification using high-frequency ultrasound. Ultrasound Med Biol 2005; 31(5): 599-605.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2005.01.009] [PMID: 15866409]
[32]
Ribeiro R, Sanches J. Fatty liver characterization and classification by ultrasound. Lect Notes Comput Sci 2009; 5524: 354-61.
[http://dx.doi.org/10.1007/978-3-642-02172-5_46]
[33]
Acharya UR. Data mining framework for fatty liver disease classification in ultrasound : A hybrid feature extraction paradigm. 2012; 39(7): 4255-64.
[34]
Minhas FAA, Sabih D, Hussain M. Automated classification of liver disorders using ultrasound images. J Med Syst 2012; 36(5): 3163-72.
[http://dx.doi.org/10.1007/s10916-011-9803-1] [PMID: 22072280]
[35]
Acharya UR, Fujita H, Sudarshan VK, et al. An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images. Inf Fusion 2016; 31: 43-53.
[http://dx.doi.org/10.1016/j.inffus.2015.12.007]
[36]
Kuppili V, Biswas M, Sreekumar A, et al. Extreme Learning Machine Framework for Risk Stratification of Fatty Liver Disease Using Ultrasound Tissue Characterization. J Med Syst 2017; 41(10): 152.
[http://dx.doi.org/10.1007/s10916-017-0797-1] [PMID: 28836045]
[37]
Biswas M, Kuppili V, Edla DR, et al. Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput Methods Programs Biomed 2018; 155: 165-77.
[http://dx.doi.org/10.1016/j.cmpb.2017.12.016] [PMID: 29512496]
[38]
Acharya UR, Raghavendra U, Fujita H, et al. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med 2016; 79: 250-8.
[http://dx.doi.org/10.1016/j.compbiomed.2016.10.022] [PMID: 27825038]
[39]
Wu JY, Tuomi A, Beland MD, et al. Quantitative analysis of ultrasound images for computer-aided diagnosis. J Med Imaging (Bellingham) 2016; 3(1): 014501.
[http://dx.doi.org/10.1117/1.JMI.3.1.014501] [PMID: 26835502]
[40]
Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Eur Radiol 2021; 31(7): 4576-86.
[http://dx.doi.org/10.1007/s00330-020-07562-6] [PMID: 33447862]
[41]
Sahli H, Sayadi M, Rachdi R. Intelligent detection of fetal hydrocephalus. Comput Methods Biomech Biomed Eng Imaging Vis 2020; 8(6): 641-8.
[http://dx.doi.org/10.1080/21681163.2020.1780156]
[42]
Chen CY, Chiou HJ, Chou YH, et al. Computer-aided diagnosis of soft tissue tumors on high-resolution ultrasonography with geometrical and morphological features. Acad Radiol 2009; 16(5): 618-26.
[http://dx.doi.org/10.1016/j.acra.2008.12.016] [PMID: 19345903]
[43]
Kia S, Setayeshi S, Shamsaei M, Kia M. Computer-aided diagnosis (CAD) of the skin disease based on an intelligent classification of sonogram using neural network. Neural Comput Appl 2013; 22(6): 1049-62.
[http://dx.doi.org/10.1007/s00521-012-0864-y]
[44]
Andrėkutė K, Linkevičiūtė G, Raišutis R, Valiukevičienė S, Makštienė J. Automatic Differential Diagnosis of Melanocytic Skin Tumors Using Ultrasound Data. Ultrasound Med Biol 2016; 42(12): 2834-43.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.07.026] [PMID: 27637934]
[45]
König T, Steffen J, Rak M, Neumann G, von Rohden L, Tönnies KD. Ultrasound texture-based CAD system for detecting neuromuscular diseases. Int J CARS 2015; 10(9): 1493-503.
[http://dx.doi.org/10.1007/s11548-014-1133-6] [PMID: 25451320]
[46]
Burlina P, Billings S, Joshi N, Albayda J. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods. PLoS One 2017; 12(8): e0184059.
[http://dx.doi.org/10.1371/journal.pone.0184059] [PMID: 28854220]
[47]
Chang RF, Lee CC, Lo CM. Computer-aided diagnosis of different rotator cuff lesions using shoulder musculoskeletal ultrasound. Ultrasound Med Biol 2016; 42(9): 2315-22.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2016.05.016] [PMID: 27381057]
[48]
Lin BS, Chen JL, Tu YH, et al. Using Deep Learning in Ultrasound Imaging of Bicipital Peritendinous Effusion to Grade Inflammation Severity. IEEE J Biomed Health Inform 2020; 24(4): 1037-45.
[http://dx.doi.org/10.1109/JBHI.2020.2968815] [PMID: 31985446]
[49]
Shrivastava VK, Londhe ND, Sonawane RS, Suri JS. First review on psoriasis severity risk stratification: An engineering perspective. Comput Biol Med 2015; 63: 52-63.
[http://dx.doi.org/10.1016/j.compbiomed.2015.05.005] [PMID: 26005793]
[50]
Czajkowska J, Badura P, Korzekwa S, Płatkowska-Szczerek A, Słowińska M. Deep learning-based high-frequency ultrasound skin image classification with multicriteria model evaluation. Sensors (Basel) 2021; 21(17): 5846.
[http://dx.doi.org/10.3390/s21175846] [PMID: 34502735]
[51]
Tsantis S, Dimitropoulos N, Cavouras D, Nikiforidis G. Morphological and wavelet features towards sonographic thyroid nodules evaluation. Comput Med Imaging Graph 2009; 33(2): 91-9.
[http://dx.doi.org/10.1016/j.compmedimag.2008.10.010] [PMID: 19111442]
[52]
Ma J, Luo S, Dighe M, Lim DJ, Kim Y. Differential diagnosis of thyroid nodules with ultrasound elastographybased on support vector machines IEEE Ultrason Symp. 1372-5.
[53]
Iakovidis DK, Keramidas EG, Maroulis D. Fusion of fuzzy statistical distributions for classification of thyroid ultrasound patterns. Artif Intell Med 2010; 50(1): 33-41.
[http://dx.doi.org/10.1016/j.artmed.2010.04.004] [PMID: 20427164]
[54]
Chang CY, Chen SJ, Tsai MF. Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images. Pattern Recognit 2010; 43(10): 3494-506.
[http://dx.doi.org/10.1016/j.patcog.2010.04.023]
[55]
Acharya UR, Faust O, Sree SV, Molinari F, Garberoglio R, Suri JS. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan™ algorithms. Technol Cancer Res Treat 2011; 10(4): 371-80.
[http://dx.doi.org/10.7785/tcrt.2012.500214] [PMID: 21728394]
[56]
Acharya UR, Faust O, Sree SV, Molinari F, Suri JS. ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed 2012; 107(2): 233-41.
[http://dx.doi.org/10.1016/j.cmpb.2011.10.001] [PMID: 22054816]
[57]
Rajendra Acharya U, Vinitha Sree S, Muthu Rama Krishnan M, Molinari F, Garberoglio R, Suri JS. Non-invasive automated 3D thyroid lesion classification in ultrasound: A class of ThyroScan™ systems. Ultrasonics 2012; 52(4): 508-20.
[http://dx.doi.org/10.1016/j.ultras.2011.11.003] [PMID: 22154208]
[58]
Acharya UR, Sree SV, Swapna G, et al. Effect of complex wavelet transform filter on thyroid tumor classification in three-dimensional ultrasound. Proc Inst Mech Eng H 2013; 227(3): 284-92.
[http://dx.doi.org/10.1177/0954411912472422] [PMID: 23662344]
[59]
Chi J, Walia E, Babyn P, Wang J, Groot G, Eramian M. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. J Digit Imaging 2017; 30(4): 477-86.
[http://dx.doi.org/10.1007/s10278-017-9997-y] [PMID: 28695342]
[60]
Raghavendra U, et al. Optimized multi-level elongated quinary patterns for the assessment of thyroid nodules in ultrasound images. Comput Biol Med 2018; 95: 55-62.
[http://dx.doi.org/10.1016/j.compbiomed.2018.02.002]
[61]
Li D, Zhang Y, Du L, Zhou X, Shen Y. Texture analysis and classification of diffuse thyroid diseases based on ultrasound images. I2MTC 2018 - 2018 IEEE Int Instrum Meas Technol Conf Discov New Horizons Instrum Meas Proc. (61501141): 1-6.
[62]
Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. Artificial Intelligence in Healthcare 2020; 295-336.
[http://dx.doi.org/10.1016/B978-0-12-818438-7.00012-5]
[63]
Chan HP, Hadjiiski LM, Samala RK. Computer‐aided diagnosis in the era of deep learning. Med Phys 2020; 47(5): e218-27.
[http://dx.doi.org/10.1002/mp.13764] [PMID: 32418340]
[64]
Perone CS, Cohen-Adad J. Promises and limitations of deep learning for medical image segmentation. J Med Artif Intell 2019; 2: 1.
[http://dx.doi.org/10.21037/jmai.2019.01.01]
[65]
Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Jt Summits Transl Sci Proc 2020; 2020: 191-200.
[PMID: 32477638]
[66]
El-said SA, Azar AT. Speckles Suppression Techniques for Ultrasound Images. J Med Imaging Radiat Sci 2012; 43(4): 200-13.
[http://dx.doi.org/10.1016/j.jmir.2012.06.001] [PMID: 31052006]
[67]
Gupta M, Taneja H, Chand L. Performance enhancement and analysis of filters in ultrasound image denoising. Procedia Comput Sci 2018; 132: 643-52.
[http://dx.doi.org/10.1016/j.procs.2018.05.063]
[68]
Arnal J, Mayzel I. Parallel techniques for speckle noise reduction in medical ultrasound images. Adv Eng Softw 2020; 148: 102867.
[http://dx.doi.org/10.1016/j.advengsoft.2020.102867]
[69]
Singh K, Sharma B, Singh J, et al. Local statistics-based speckle reducing bilateral filter for medical ultrasound images. Mob Netw Appl 2020; 25(6): 2367-89.
[http://dx.doi.org/10.1007/s11036-020-01615-2]
[70]
Kaur P, Singh G, Kaur P. A review of denoising medical images using machine learning approaches. Curr Med Imaging Rev 2018; 14(5): 675-85.
[http://dx.doi.org/10.2174/1573405613666170428154156] [PMID: 30532667]
[71]
Mohd Sagheer SV, George SN. A review on medical image denoising algorithms. Biomed Signal Process Control 2020; 61: 102036.
[http://dx.doi.org/10.1016/j.bspc.2020.102036]
[72]
Tian C, Fei L, Zheng W, Xu Y, Zuo W, Lin CW. Deep learning on image denoising: An overview. Neural Netw 2020; 131: 251-75.
[http://dx.doi.org/10.1016/j.neunet.2020.07.025] [PMID: 32829002]
[73]
Duarte-Salazar CA, Castro-Ospina AE, Becerra MA, Delgado-Trejos E. Speckle noise reduction in ultrasound images for improving the metrological evaluation of biomedical applications: An overview. IEEE Access 2020; 8: 15983-99.
[http://dx.doi.org/10.1109/ACCESS.2020.2967178]
[74]
Szabo TL, Lewin PA. Ultrasound transducer selection in clinical imaging practice. J Ultrasound Med 2013; 32(4): 573-82.
[http://dx.doi.org/10.7863/jum.2013.32.4.573] [PMID: 23525382]
[75]
Lee W, Roh Y. Ultrasonic transducers for medical diagnostic imaging. Biomed Eng Lett 2017; 7(2): 91-7.
[http://dx.doi.org/10.1007/s13534-017-0021-8] [PMID: 30603155]
[76]
von Ramm OT, Smith SW. Prospects And Limitations Of Diagnostic Ultrasound. Proc. SPIE 0206. Rec Fut Develop Med Imaging 1979; II: 6-18.
[http://dx.doi.org/10.1117/12.958184]
[78]
Khandpur RS. Biomedical Instrumentation: Technology and Applications. (1st ed.), India: Mc-Graw Hill Education 2004.