CUBOSOME-A Novel Drug Delivery for Anticancer Drugs

Page: [206 - 223] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

This literature study will investigate cubosomal preparation in various pharmaceutical compositions. Cubosomal particles are nanostructured liquid crystalline particles with submicron diameters ranging from 10 to 500 nanometers with high encapsulation efficacy. This literature has investigated the anatomy and function of cubosomal units, as well as their formulation, material application, benefit, disadvantage, and preparation technique. Due to their nano-irritancy, cubosomal nanostructures have become a preferred method for treating a range of illnesses.

Graphical Abstract

[1]
Prange, J.A.; Aleandri, S.; Komisarski, M.; Luciani, A.; Käch, A.; Schuh, C.D.; Hall, A.M.; Mezzenga, R.; Devuyst, O.; Landau, E.M. Overcoming endocytosis deficiency by cubosome nanocarriers. ACS Appl. Bio Mater., 2019, 2(6), 2490-2499.
[http://dx.doi.org/10.1021/acsabm.9b00187] [PMID: 35030705]
[2]
Tang, Q.; Zhou, Z.; Chen, Z. Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 2013, 5(11), 4541-4583.
[http://dx.doi.org/10.1039/c3nr33218g] [PMID: 23443470]
[3]
Khalili Fard, J.; Jafari, S.; Eghbal, M.A. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv. Pharm. Bull., 2015, 5(4), 447-454.
[http://dx.doi.org/10.15171/apb.2015.061] [PMID: 26819915]
[4]
Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med., 2019, 4(3), e10143.
[http://dx.doi.org/10.1002/btm2.10143] [PMID: 31572799]
[5]
Wolfram, J. Ferrari, M Clinical cancer nanomedicine. Nano Today, 2019, 25, 85-98.
[6]
Barreto, J.A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: applications in cancer imaging and therapy. Adv. Mater., 2011, 23(12), H18-H40.
[http://dx.doi.org/10.1002/adma.201100140] [PMID: 21433100]
[7]
Zhai, J.; Fong, C.; Tran, N.; Drummond, C.J. Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. ACS Nano, 2019, 13(6), 6178-6206.
[http://dx.doi.org/10.1021/acsnano.8b07961] [PMID: 31082192]
[8]
Mezzenga, R.; Seddon, J.M.; Drummond, C.J.; Boyd, B.J.; Schröder-Turk, G.E.; Sagalowicz, L. Nature‐inspired design and application of lipidic lyotropic liquid crystals. Adv. Mater., 2019, 31(35), 1900818.
[http://dx.doi.org/10.1002/adma.201900818] [PMID: 31222858]
[9]
Barriga, H.M.G.; Holme, M.N.; Stevens, M.M. Cubosomes: the next generation of smart lipid nanoparticles? Angew. Chem. Int. Ed., 2019, 58(10), 2958-2978.
[http://dx.doi.org/10.1002/anie.201804067] [PMID: 29926520]
[10]
Murgia, S.; Biffi, S.; Mezzenga, R. Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Curr. Opin. Colloid Interface Sci., 2020, 48, 28-39.
[http://dx.doi.org/10.1016/j.cocis.2020.03.006]
[11]
Chan, G.G.; Koch, C.M.; Connors, L.H. Blood proteomic profiling in inherited (ATTRm) and acquired (ATTRwt) forms of transthyretin-associated cardiac amyloidosis. J. Proteome Res., 2017, 16(4), 1659-1668.
[http://dx.doi.org/10.1021/acs.jproteome.6b00998] [PMID: 28196416]
[12]
Bodratti, A.; Alexandridis, P. Formulation of poloxamers for drug delivery. J. Funct. Biomater., 2018, 9(1), 11.
[http://dx.doi.org/10.3390/jfb9010011] [PMID: 29346330]
[13]
Tasca, E.; Giudice, A.D.; Galantini, L.; Schillén, K.; Giuliani, A.M.; Giustini, M. A fluorescence study of the loading and time stability of doxorubicin in sodium cholate/PEO-PPO-PEO triblock copolymer mixed micelles. J. Colloid Interface Sci., 2019, 540, 593-601.
[http://dx.doi.org/10.1016/j.jcis.2019.01.075] [PMID: 30677613]
[14]
Vickers, N.J. Animal communication: when i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[15]
Bayati, S.; Galantini, L.; Knudsen, K.D.; Schillén, K. Effects of bile salt sodium glycodeoxycholate on the self-assembly of PEO–PPO–PEO triblock copolymer P123 in aqueous solution. Langmuir, 2015, 31(50), 13519-13527.
[http://dx.doi.org/10.1021/acs.langmuir.5b03828] [PMID: 26616587]
[16]
Azmi, I.D.M.; Wibroe, P.P.; Wu, L.P.; Kazem, A.I.; Amenitsch, H.; Moghimi, S.M.; Yaghmur, A. A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies. J. Control. Release, 2016, 239, 1-9.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.011] [PMID: 27524284]
[17]
Chong, J.Y.T.; Mulet, X.; Postma, A.; Keddie, D.J.; Waddington, L.J.; Boyd, B.J.; Drummond, C.J. Novel RAFT amphiphilic brush copolymer steric stabilisers for cubosomes: poly(octadecyl acrylate)-block-poly(polyethylene glycol methyl ether acrylate). Soft Matter, 2014, 10(35), 6666-6676.
[http://dx.doi.org/10.1039/C4SM01064G] [PMID: 25058647]
[18]
Johnsson, M.; Barauskas, J.; Norlin, A.; Tiberg, F. Physicochemical and drug delivery aspects of lipid-based liquid crystalline nanoparticles: a case study of intravenously administered propofol. J. Nanosci. Nanotechnol., 2006, 6(9), 3017-3024.
[http://dx.doi.org/10.1166/jnn.2006.402] [PMID: 17048513]
[19]
Chong, J.Y.T.; Mulet, X.; Keddie, D.J.; Waddington, L.; Mudie, S.T.; Boyd, B.J.; Drummond, C.J. Novel steric stabilizers for lyotropic liquid crystalline nanoparticles: PEGylated-phytanyl copolymers. Langmuir, 2015, 31(9), 2615-2629.
[http://dx.doi.org/10.1021/la501471z] [PMID: 25068381]
[20]
Grace, J.L.; Alcaraz, N.; Truong, N.P.; Davis, T.P.; Boyd, B.J.; Quinn, J.F.; Whittaker, M.R. Lipidated polymers for the stabilization of cubosomes: nanostructured drug delivery vehicles. Chem. Commun. (Camb.), 2017, 53(76), 10552-10555.
[http://dx.doi.org/10.1039/C7CC05842J] [PMID: 28890981]
[21]
Zhai, J.; Hinton, T.M.; Waddington, L.J.; Fong, C.; Tran, N.; Mulet, X.; Drummond, C.J.; Muir, B.W. Lipid-PEG conjugates sterically stabilize and reduce the toxicity of phytantriol-based lyotropic liquid crystalline nanoparticles. Langmuir, 2015, 31(39), 10871-10880.
[http://dx.doi.org/10.1021/acs.langmuir.5b02797] [PMID: 26362479]
[22]
Zhai, J.; Suryadinata, R.; Luan, B.; Tran, N.; Hinton, T.M.; Ratcliffe, J.; Hao, X.; Drummond, C.J. Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles. Faraday Discuss., 2016, 191, 545-563.
[http://dx.doi.org/10.1039/C6FD00039H] [PMID: 27453499]
[23]
Steinbach, T.; Wurm, F.R. Poly (phosphoester) s: A new platform for degradable polymers. Angew. Chem. Int. Ed., 2015, 54(21), 6098-6108.
[http://dx.doi.org/10.1002/anie.201500147] [PMID: 25951459]
[24]
Worm, M.; Kang, B.; Dingels, C.; Wurm, F.R.; Frey, H. Acid‐labile amphiphilic PEO‐b‐PPO‐b‐PEO copolymers: degradable poloxamer analogs. Macromol. Rapid Commun., 2016, 37(9), 775-780.
[http://dx.doi.org/10.1002/marc.201600080] [PMID: 27000789]
[25]
Simon, J.; Bauer, K.N.; Langhanki, J.; Opatz, T.; Mailänder, V.; Landfester, K.; Wurm, F.R. Noncovalent targeting of nanocarriers to immune cells with polyphosphoester‐based surfactants in human blood plasma. Adv. Sci. (Weinh.), 2019, 6(22), 1901199.
[http://dx.doi.org/10.1002/advs.201901199] [PMID: 31763142]
[26]
Clément, B.; Grignard, B.; Koole, L.; Jérôme, C.; Lecomte, P. Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters. Macromolecules, 2012, 45(11), 4476-4486.
[http://dx.doi.org/10.1021/ma3004339]
[27]
Mazzarino, L.; Loch-Neckel, G.; dos Santos Bubniak, L.; Ourique, F.; Otsuka, I.; Halila, S.; Curi Pedrosa, R.; Santos-Silva, M.C.; Lemos-Senna, E.; Curti Muniz, E.; Borsali, R. Nanoparticles made from xyloglucan-block-polycaprolactone copolymers: Safety assessment for drug delivery. Toxicol. Sci., 2015, 147(1), 104-115.
[http://dx.doi.org/10.1093/toxsci/kfv114] [PMID: 26048652]
[28]
Marzari, R.; Sblattero, D.; Macor, P.; Fischetti, F.; Gennaro, R.; Marks, J.D.; Bradbury, A.; Tedesco, F. The cleavage site of C5 from man and animals as a common target for neutralizing human monoclonal antibodies: In vitro and in vivo studies. Eur. J. Immunol., 2002, 32(10), 2773-2782.
[http://dx.doi.org/10.1002/1521-4141(2002010)32:10<2773:AID-IMMU2773>3.0.CO;2-G] [PMID: 12355429]
[29]
Demurtas, D.; Guichard, P.; Martiel, I.; Mezzenga, R.; Hébert, C.; Sagalowicz, L. Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography. Nat. Commun., 2015, 6(1), 8915.
[http://dx.doi.org/10.1038/ncomms9915] [PMID: 26573367]
[30]
Nakano, M.; Sugita, A.; Matsuoka, H.; Handa, T. Small-angle X-ray scattering and 13C NMR investigation on the internal structure of “cubosomes”. Langmuir, 2001, 17(13), 3917-3922.
[http://dx.doi.org/10.1021/la010224a]
[31]
Murgia, S.; Falchi, A.M.; Meli, V.; Schillén, K.; Lippolis, V.; Monduzzi, M.; Rosa, A.; Schmidt, J.; Talmon, Y.; Bizzarri, R.; Caltagirone, C. Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids Surf. B Biointerfaces, 2015, 129, 87-94.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.025] [PMID: 25829131]
[32]
Akhlaghi, S.P.; Ribeiro, I.R.; Boyd, B.J.; Loh, W. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubosomes. Colloids Surf. B Biointerfaces, 2016, 145, 845-853.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.091] [PMID: 27315333]
[33]
Beattie, J.K.; Djerdjev, A.M. The pristine oil/water interface: surfactant-free hydroxide-charged emulsions. Angew. Chem. Int. Ed., 2004, 43(27), 3568-3571.
[http://dx.doi.org/10.1002/anie.200453916] [PMID: 15293247]
[34]
Driever, C.D.; Mulet, X.; Waddington, L.J.; Postma, A.; Thissen, H.; Caruso, F.; Drummond, C.J. Layer-by-layer polymer coating on discrete particles of cubic lyotropic liquid crystalline dispersions (cubosomes). Langmuir, 2013, 29(42), 12891-12900.
[http://dx.doi.org/10.1021/la401660h] [PMID: 24033086]
[35]
Qiu, H.; Caffrey, M. The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials, 2000, 21(3), 223-234.
[http://dx.doi.org/10.1016/S0142-9612(99)00126-X] [PMID: 10646938]
[36]
Dong, Y.D.; Tilley, A.J.; Larson, I.; Lawrence, M.J.; Amenitsch, H.; Rappolt, M.; Hanley, T.; Boyd, B.J. Nonequilibrium effects in self-assembled mesophase materials: unexpected supercooling effects for cubosomes and hexosomes. Langmuir, 2010, 26(11), 9000-9010.
[http://dx.doi.org/10.1021/la904803c] [PMID: 20364857]
[37]
Murgia, S.; Falchi, A.M.; Mano, M.; Lampis, S.; Angius, R.; Carnerup, A.M.; Schmidt, J.; Diaz, G.; Giacca, M.; Talmon, Y.; Monduzzi, M. Nanoparticles from lipid-based liquid crystals: emulsifier influence on morphology and cytotoxicity. J. Phys. Chem. B, 2010, 114(10), 3518-3525.
[http://dx.doi.org/10.1021/jp9098655] [PMID: 20170140]
[38]
Falchi, A.M.; Rosa, A.; Atzeri, A.; Incani, A.; Lampis, S.; Meli, V.; Caltagirone, C.; Murgia, S. Effects of monoolein-based cubosome formulations on lipid droplets and mitochondria of HeLa cells. Toxicol. Res. (Camb.), 2015, 4(4), 1025-1036.
[http://dx.doi.org/10.1039/C5TX00078E]
[39]
Tan, A.; Hong, L.; Du, J.D.; Boyd, B.J. Self‐assembled nanostructured lipid systems: is there a link between structure and cytotoxicity? Adv. Sci. (Weinh.), 2019, 6(3), 1801223.
[http://dx.doi.org/10.1002/advs.201801223] [PMID: 30775224]
[40]
Rosa, A.; Murgia, S.; Putzu, D.; Meli, V.; Falchi, A.M. Monoolein-based cubosomes affect lipid profile in HeLa cells. Chem. Phys. Lipids, 2015, 191, 96-105.
[http://dx.doi.org/10.1016/j.chemphyslip.2015.08.017] [PMID: 26341749]
[41]
Biffi, S.; Andolfi, L.; Caltagirone, C.; Garrovo, C.; Falchi, A.M.; Lippolis, V.; Lorenzon, A.; Macor, P.; Meli, V.; Monduzzi, M.; Obiols-Rabasa, M.; Petrizza, L.; Prodi, L.; Rosa, A.; Schmidt, J.; Talmon, Y.; Murgia, S. Cubosomes for in vivo fluorescence lifetime imaging. Nanotechnology, 2017, 28(5), 055102.
[http://dx.doi.org/10.1088/1361-6528/28/5/055102] [PMID: 28032617]
[42]
Wibroe, P.P.; Mat Azmi, I.D.; Nilsson, C.; Yaghmur, A.; Moghimi, S.M. Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation: Towards development of safe tunable intravenous lipid nanocarriers. Nanomedicine, 2015, 11(8), 1909-1914.
[http://dx.doi.org/10.1016/j.nano.2015.08.003] [PMID: 26348655]
[43]
Mat Azmi, I.D.; Wu, L.; Wibroe, P.P.; Nilsson, C.; Østergaard, J.; Stürup, S.; Gammelgaard, B.; Urtti, A.; Moghimi, S.M.; Yaghmur, A. Modulatory effect of human plasma on the internal nanostructure and size characteristics of liquid-crystalline nanocarriers. Langmuir, 2015, 31(18), 5042-5049.
[http://dx.doi.org/10.1021/acs.langmuir.5b00830] [PMID: 25884233]
[44]
Barauskas, J.; Cervin, C.; Jankunec, M.; Špandyreva, M.; Ribokaitė, K.; Tiberg, F.; Johnsson, M. Interactions of lipid-based liquid crystalline nanoparticles with model and cell membranes. Int. J. Pharm., 2010, 391(1-2), 284-291.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.016] [PMID: 20214966]
[45]
Bode, J.C.; Kuntsche, J.; Funari, S.S.; Bunjes, H. Interaction of dispersed cubic phases with blood components. Int. J. Pharm., 2013, 448(1), 87-95.
[http://dx.doi.org/10.1016/j.ijpharm.2013.03.016] [PMID: 23524124]
[46]
Yu, K.; Lai, B.F.L.; Foley, J.H.; Krisinger, M.J.; Conway, E.M.; Kizhakkedathu, J.N. Modulation of complement activation and amplification on nanoparticle surfaces by glycopolymer conformation and chemistry. ACS Nano, 2014, 8(8), 7687-7703.
[http://dx.doi.org/10.1021/nn504186b] [PMID: 25106451]
[47]
Xiang, D.F.; Bigley, A.N.; Ren, Z.; Xue, H.; Hull, K.G.; Romo, D.; Raushel, F.M. Interrogation of the substrate profile and catalytic properties of the phosphotriesterase from Sphingobium sp. strain TCM1: an enzyme capable of hydrolyzing organophosphate flame retardants and plasticizers. Biochemistry, 2015, 54(51), 7539-7549.
[http://dx.doi.org/10.1021/acs.biochem.5b01144] [PMID: 26629649]
[48]
Wang, Y.C.; Tang, L.Y.; Sun, T.M.; Li, C.H.; Xiong, M.H.; Wang, J. Self-assembled micelles of biodegradable triblock copolymers based on poly(ethyl ethylene phosphate) and poly(-caprolactone) as drug carriers. Biomacromolecules, 2008, 9(1), 388-395.
[http://dx.doi.org/10.1021/bm700732g] [PMID: 18081252]
[49]
Schöttler, S.; Becker, G.; Winzen, S.; Steinbach, T.; Mohr, K.; Landfester, K.; Mailänder, V.; Wurm, F.R. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol., 2016, 11(4), 372-377.
[http://dx.doi.org/10.1038/nnano.2015.330] [PMID: 26878141]
[50]
Thapa, R.K.; Choi, J.Y.; Gupta, B.; Ramasamy, T.; Poudel, B.K.; Ku, S.K.; Youn, Y.S.; Choi, H.G.; Yong, C.S.; Kim, J.O. Liquid crystalline nanoparticles encapsulating cisplatin and docetaxel combination for targeted therapy of breast cancer. Biomater. Sci., 2016, 4(9), 1340-1350.
[http://dx.doi.org/10.1039/C6BM00376A] [PMID: 27412822]
[51]
Meli, V.; Caltagirone, C.; Falchi, A.M.; Hyde, S.T.; Lippolis, V.; Monduzzi, M.; Obiols-Rabasa, M.; Rosa, A.; Schmidt, J.; Talmon, Y.; Murgia, S. Docetaxel-loaded fluorescent liquid-crystalline nanoparticles for cancer theranostics. Langmuir, 2015, 31(35), 9566-9575.
[http://dx.doi.org/10.1021/acs.langmuir.5b02101] [PMID: 26293620]
[52]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[53]
Zhai, J.; Luwor, R.B.; Ahmed, N.; Escalona, R.; Tan, F.H.; Fong, C.; Ratcliffe, J.; Scoble, J.A.; Drummond, C.J.; Tran, N. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer. ACS Appl. Mater. Interfaces, 2018, 10(30), 25174-25185.
[http://dx.doi.org/10.1021/acsami.8b08125] [PMID: 29963859]
[54]
Dou, Q.L.; Wei, Y.Y.; Gu, Y.N.; Zheng, H. Investigating the therapeutic effects of N-acetylcysteine decorated poly (L-lactic acid) nanoparticles on transfusion induced acute lung injury. J. Biomater. Tissue Eng., 2017, 7(1), 69-76.
[http://dx.doi.org/10.1166/jbt.2017.1540]
[55]
Tian, Y.; Li, J.; Zhu, J.; Zhu, N.; Zhang, H.; Liang, L.; Sun, L. Folic acid-targeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy. Med. Sci. Monit., 2017, 23, 2426-2435.
[http://dx.doi.org/10.12659/MSM.904683] [PMID: 28529305]
[56]
Nazaruk, E.; Majkowska-Pilip, A.; Bilewicz, R. Lipidic cubic‐phase nanoparticles—cubosomes for efficient drug delivery to cancer cells. ChemPlusChem, 2017, 82(4), 570-575.
[http://dx.doi.org/10.1002/cplu.201600534] [PMID: 31961592]
[57]
Faria, A.R.; Silvestre, O.F.; Maibohm, C.; Adão, R.M.R.; Silva, B.F.B.; Nieder, J.B. Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NADPH multi-photon fluorescence lifetime imaging. Nano Res., 2019, 12(5), 991-998.
[http://dx.doi.org/10.1007/s12274-018-2231-5]
[58]
Chang, D.P.; Barauskas, J.; Dabkowska, A.P.; Wadsäter, M.; Tiberg, F.; Nylander, T. Non-lamellar lipid liquid crystalline structures at interfaces. Adv. Colloid Interface Sci., 2015, 222, 135-147.
[http://dx.doi.org/10.1016/j.cis.2014.11.003] [PMID: 25435157]
[59]
Chaudhary, K.; Sharma, D. Cubosomes: a potential drug delivery system. Asian Journal of Pharmaceutical Research and Development, 2021, 9(5), 93-101.
[http://dx.doi.org/10.22270/ajprd.v9i5.981]
[60]
Abdelrahman, F.E.; Elsayed, I.; Gad, M.K.; Badr, A.; Mohamed, M.I. Investigating the cubosomal ability for transnasal brain targeting: In vitro optimization, Mex vivo permeation and in vivo biodistribution. Int. J. Pharm., 2015, 490(1-2), 281-291.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.064] [PMID: 26026251]
[61]
Nithya, R.; Jerold, P.; Siram, K. Cubosomes of dapsone enhanced permeation across the skin. J. Drug Deliv. Sci. Technol., 2018, 48, 75-81.
[http://dx.doi.org/10.1016/j.jddst.2018.09.002]
[62]
von Halling Laier, C.; Gibson, B.; van de Weert, M.; Boyd, B.J.; Rades, T.; Boisen, A.; Hook, S.; Nielsen, L.H. Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int. J. Pharm., 2018, 550(1-2), 35-44.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.036] [PMID: 30134183]
[63]
Rarokar, N.R.; Saoji, S.D.; Raut, N.A.; Taksande, J.B.; Khedekar, P.B.; Dave, V.S. Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel. AAPS PharmSciTech, 2016, 17(2), 436-445.
[http://dx.doi.org/10.1208/s12249-015-0369-y] [PMID: 26208439]
[64]
Kamal, A.; Haggag, E.; Abdelhady, M.; Youssif, K.; Sleem, A. Quality control of herbal products in the egyptian market used for some gastro-intestinal tract disorders. J. Adv. Pharm. Educ. Res., 2017, 1(1), 43-57.
[65]
El-Laithy, H.M.; Badawi, A.; Abdelmalak, N.S.; El-Sayyad, N. Cubosomes as oral drug delivery systems: a promising approach for enhancing the release of clopidogrel bisulphate in the intestine. Chem. Pharm. Bull. (Tokyo), 2018, 66(12), 1165-1173.
[http://dx.doi.org/10.1248/cpb.c18-00615] [PMID: 30232306]
[66]
Huang, J.; Peng, T.; Li, Y.; Zhan, Z.; Zeng, Y.; Huang, Y.; Pan, X.; Wu, C.Y.; Wu, C. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, Mex vivo, and in vivo evaluation. AAPS PharmSciTech, 2017, 18(8), 2919-2926.
[http://dx.doi.org/10.1208/s12249-017-0763-8] [PMID: 28429294]
[67]
Ali, Z.; Sharma, P.; Warsi, M. Fabrication and evaluation of ketorolac loaded cubosome for ocular drug delivery. J. Appl. Pharm. Sci., 2016, 6(9), 204-208.
[http://dx.doi.org/10.7324/JAPS.2016.60930]
[68]
Ahirrao, M.; Shrotriya, S. In vitro and in vivo evaluation of cubosomal in situ nasal gel containing resveratrol for brain targeting. Drug Dev. Ind. Pharm., 2017, 43(10), 1686-1693.
[http://dx.doi.org/10.1080/03639045.2017.1338721] [PMID: 28574732]
[69]
Patil, R.P.; Pawara, D.D.; Gudewar, C.S.; Tekade, A.R. Nanostructured cubosomes in an in situ nasal gel system: an alternative approach for the controlled delivery of donepezil HCl to brain. J. Liposome Res., 2019, 29(3), 264-273.
[http://dx.doi.org/10.1080/08982104.2018.1552703] [PMID: 30501444]
[70]
Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine (Taipei), 2017, 7(4), 23.
[http://dx.doi.org/10.1051/bmdcn/2017070423] [PMID: 29130448]
[71]
Zhang, L.; Li, J.; Tian, D.; Sun, L.; Wang, X.; Tian, M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis., 2020, 11(1), 1-2.
[http://dx.doi.org/10.1038/s41419-019-2182-0] [PMID: 31911576]
[72]
Cytryniak, A.; Nazaruk, E.; Bilewicz, R.; Górzyńska, E.; Żelechowska-Matysiak, K.; Walczak, R.; Mames, A.; Bilewicz, A.; Majkowska-Pilip, A. lipidic cubic-phase nanoparticles (cubosomes) loaded with doxorubicin and labeled with 177Lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials (Basel), 2020, 10(11), 2272.
[http://dx.doi.org/10.3390/nano10112272] [PMID: 33207760]
[73]
Nasr, M.; Ghorab, M.K.; Abdelazem, A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B, 2015, 5(1), 79-88.
[http://dx.doi.org/10.1016/j.apsb.2014.12.001] [PMID: 26579429]
[74]
Han, N.; Zhang, B.; Wei, X.; Yu, L. Retracted : The inhibitory function of icariin in cell model of benign prostatic hyperplasia by upregulation of miR‐7. Biofactors, 2019. biof.1591.
[http://dx.doi.org/10.1002/biof.1591] [PMID: 31785072]
[75]
Fahmy, U.A.; Fahmy, O.; Alhakamy, N.A. Optimized icariin cubosomes exhibit augmented cytotoxicity against SKOV-3 Ovarian cancer cells. Pharmaceutics, 2020, 13(1), 20.
[http://dx.doi.org/10.3390/pharmaceutics13010020] [PMID: 33374293]
[76]
Sugimoto, S.; Chi, G.; Kato, Y.; Nakamura, S.; Matsuda, H.; Yoshikawa, M. Medicinal Flowers. XXVI. structures of acylated oleanane-type triterpene oligoglycosides, yuchasaponins A, B, C, and D, from the flower buds of Camellia oleifera-gastroprotective, aldose reductase inhibitory, and radical scavenging effects-. Chem. Pharm. Bull. (Tokyo), 2009, 57(3), 269-275.
[http://dx.doi.org/10.1248/cpb.57.269] [PMID: 19252318]
[77]
Archana, A.; Vijayasri, K.; Madhurim, M.; Kumar, C. Curcumin loaded nano cubosomal hydrogel: preparation, in vitro characterization and antibacterial activity. Chem. Sci. Trans., 2015, 4(1), 75-80.
[78]
Tu, Y.S.; Fu, J.W.; Sun, D.M.; Zhang, J.J.; Yao, N.; Huang, D.E.; Shi, Z.Q. Preparation, characterisation and evaluation of curcumin with piperine-loaded cubosome nanoparticles. J. Microencapsul., 2014, 31(6), 551-559.
[http://dx.doi.org/10.3109/02652048.2014.885607] [PMID: 24641575]
[79]
Chang, C.; Meikle, T.G.; Drummond, C.J.; Yang, Y.; Conn, C.E. Comparison of cubosomes and liposomes for the encapsulation and delivery of curcumin. Soft Matter, 2021, 17(12), 3306-3313.
[http://dx.doi.org/10.1039/D0SM01655A] [PMID: 33623948]
[80]
Flak, D.K.; Adamski, V.; Nowaczyk, G.; Szutkowski, K.; Synowitz, M.; Jurga, S.; Held-Feindt, J. AT101-loaded cubosomes as an alternative for improved glioblastoma therapy. Int. J. Nanomedicine, 2020, 15, 7415-7431.
[http://dx.doi.org/10.2147/IJN.S265061] [PMID: 33116479]
[81]
Manivannan, S.; Nagaraj, S.; Narayan, S. A reflection on the mechanism of the role of nanoparticles in increasing the efficacy of anti-tumour properties of docetaxel. Curr. Pathobiol. Rep., 2021, 9(3), 79-91.
[http://dx.doi.org/10.1007/s40139-021-00223-3]
[82]
Janakiraman, K.; Krishnaswami, V.; Sethuraman, V.; Rajendran, V.; Kandasamy, R. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl. Nanosci., 2019, 9(8), 1781-1796.
[http://dx.doi.org/10.1007/s13204-019-00976-9]
[83]
Liu, G.; Pei, F.; Yang, F.; Li, L.; Amin, A.; Liu, S.; Buchan, J.; Cho, W. Role of autophagy and apoptosis in non-small-cell lung cancer. Int. J. Mol. Sci., 2017, 18(2), 367.
[http://dx.doi.org/10.3390/ijms18020367] [PMID: 28208579]
[84]
Zhang, Z.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, T.; Cui, Y.; Huang, C. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct. Target. Ther., 2020, 5(1), 113.
[http://dx.doi.org/10.1038/s41392-020-00213-8] [PMID: 32616710]
[85]
Parvathaneni, V.; Elbatanony, R.S.; Goyal, M.; Chavan, T.; Vega, N.; Kolluru, S.; Muth, A.; Gupta, V.; Kunda, N.K. Repurposing bedaquiline for effective non-small cell lung Cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. Int. J. Mol. Sci., 2021, 22(9), 4783.
[http://dx.doi.org/10.3390/ijms22094783] [PMID: 33946414]
[86]
Patil, S.M.; Sawant, S.S.; Kunda, N.K. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int. J. Pharm., 2021, 607, 121046.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121046] [PMID: 34450225]
[87]
Elnaggar, Y.; Etman, S.; Abdelmonsif, D.; Abdallah, O. Novel piperine-loaded Tween-integrated monoolein cubosomes as brain-targeted oral nanomedicine in Alzheimer’s disease: pharmaceutical, biological, and toxicological studies. Int. J. Nanomedicine, 2015, 10, 5459-5473.
[http://dx.doi.org/10.2147/IJN.S87336] [PMID: 26346130]
[88]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[89]
Rakotoarisoa, M.; Angelov, B.; Garamus, V.M.; Angelova, A. Curcumin-and fish oil-loaded spongosome and cubosome nanoparticles with neuroprotective potential against H2O2-induced oxidative stress in differentiated human SH-SY5Y cells. ACS Omega, 2019, 4(2), 3061-3073.
[http://dx.doi.org/10.1021/acsomega.8b03101]
[90]
Singh, A.; Kumar, A.; Verma, R.K.; Shukla, R. Silymarin encapsulated nanoliquid crystals for improved activity against beta amyloid induced cytotoxicity. Int. J. Biol. Macromol., 2020, 149, 1198-1206.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.041] [PMID: 32044368]
[91]
Meikle, T.G.; Dyett, B.P.; Strachan, J.B.; White, J.; Drummond, C.J.; Conn, C.E. Preparation, characterization, and antimicrobial activity of cubosome encapsulated metal nanocrystals. ACS Appl. Mater. Interfaces, 2020, 12(6), 6944-6954.
[http://dx.doi.org/10.1021/acsami.9b21783] [PMID: 31917545]
[92]
Zabara, M.; Senturk, B.; Gontsarik, M.; Ren, Q.; Rottmar, M.; Maniura-Weber, K.; Mezzenga, R.; Bolisetty, S.; Salentinig, S. Multifunctional nano‐biointerfaces: cytocompatible antimicrobial nanocarriers from stabilizer‐Free cubosomes. Adv. Funct. Mater., 2019, 29(35), 1904007.
[http://dx.doi.org/10.1002/adfm.201904007]
[93]
Martin-Serrano, Á.; Gómez, R.; Ortega, P.; de la Mata, F.J. Nanosystems as vehicles for the delivery of antimicrobial peptides (AMPs). Pharmaceutics, 2019, 11(9), 448.
[http://dx.doi.org/10.3390/pharmaceutics11090448] [PMID: 31480680]
[94]
Boge, L.; Hallstensson, K.; Ringstad, L.; Johansson, J.; Andersson, T.; Davoudi, M.; Larsson, P.T.; Mahlapuu, M.; Håkansson, J.; Andersson, M. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur. J. Pharm. Biopharm., 2019, 134, 60-67.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.009] [PMID: 30445164]
[95]
Angelova, A.; Garamus, V.M.; Angelov, B.; Tian, Z.; Li, Y.; Zou, A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv. Colloid Interface Sci., 2017, 249, 331-345.
[http://dx.doi.org/10.1016/j.cis.2017.04.006] [PMID: 28477868]
[96]
Tran, N.; Mulet, X.; Hawley, A.M.; Fong, C.; Zhai, J.; Le, T.C.; Ratcliffe, J.; Drummond, C.J. Manipulating the ordered nanostructure of self-assembled monoolein and phytantriol nanoparticles with unsaturated fatty acids. Langmuir, 2018, 34(8), 2764-2773.
[http://dx.doi.org/10.1021/acs.langmuir.7b03541] [PMID: 29381863]
[97]
Mehner, M.; Kubelt, C.; Adamski, V.; Schmitt, C.; Synowitz, M.; Held-Feindt, J. Combined treatment of AT101 and demethoxycurcumin yields an enhanced anti-proliferative effect in human primary glioblastoma cells. J. Cancer Res. Clin. Oncol., 2020, 146(1), 117-126.
[http://dx.doi.org/10.1007/s00432-019-03107-7] [PMID: 31844979]
[98]
Ozdemir-Kaynak, E.; Qutub, A.A.; Yesil-Celiktas, O. Advances in glioblastoma multiforme treatment: new models for nanoparticle therapy. Front. Physiol., 2018, 9, 170.
[http://dx.doi.org/10.3389/fphys.2018.00170] [PMID: 29615917]
[99]
Adamski, V.; Hempelmann, A.; Flüh, C.; Lucius, R.; Synowitz, M.; Hattermann, K.; Held-Feindt, J. Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment. Oncotarget, 2017, 8(64), 108064-108078.
[http://dx.doi.org/10.18632/oncotarget.22514] [PMID: 29296224]
[100]
Szutkowski, K.; Sikorska, E.; Bakanovych, I.; Choudhury, A.R.; Perdih, A.; Jurga, S.; Novič, M.; Zhukov, I. Structural analysis and dynamic processes of the transmembrane segment inside different micellar environments—implications for the tm4 fragment of the bilitranslocase protein. Int. J. Mol. Sci., 2019, 20(17), 4172.
[http://dx.doi.org/10.3390/ijms20174172] [PMID: 31454948]
[101]
Ali, M.A.; Kataoka, N.; Ranneh, A.H.; Iwao, Y.; Noguchi, S.; Oka, T.; Itai, S. Enhancing the solubility and oral bioavailability of poorly water-soluble drugs using monoolein cubosomes. Chem. Pharm. Bull. (Tokyo), 2017, 65(1), 42-48.
[http://dx.doi.org/10.1248/cpb.c16-00513] [PMID: 28049915]
[102]
Seo, M.Y.; Rhee, K. Caspase-mediated cleavage of the centrosomal proteins during apoptosis. Cell Death Dis., 2018, 9(5), 571.
[http://dx.doi.org/10.1038/s41419-018-0632-8] [PMID: 29752437]
[103]
Shen, S.; Wu, Y.; Li, K.; Wang, Y.; Wu, J.; Zeng, Y.; Wu, D. Versatile hyaluronic acid modified AQ4N-Cu(II)-gossypol infinite coordination polymer nanoparticles: Multiple tumor targeting, highly efficient synergistic chemotherapy, and real-time self-monitoring. Biomaterials, 2018, 154, 197-212.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.001] [PMID: 29128847]
[104]
Yaghmur, A.; Tran, B.V.; Moghimi, S.M. Non-lamellar liquid crystalline nanocarriers for thymoquinone encapsulation. Molecules, 2019, 25(1), 16.
[http://dx.doi.org/10.3390/molecules25010016] [PMID: 31861549]
[105]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[106]
Salah, S.; Mahmoud, A.A.; Kamel, A.O. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: Mex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv., 2017, 24(1), 846-856.
[http://dx.doi.org/10.1080/10717544.2017.1326539] [PMID: 28535740]
[107]
Dyett, B.P.; Yu, H.; Strachan, J.; Drummond, C.J.; Conn, C.E. Fusion dynamics of cubosome nanocarriers with model cell membranes. Nat. Commun., 2019, 10(1), 4492.
[108]
Rakotoarisoa, M.; Angelov, B.; Espinoza, S.; Khakurel, K.; Bizien, T.; Angelova, A. Cubic liquid crystalline nanostructures involving catalase and curcumin: BioSAXS study and catalase peroxidatic function after cubosomal nanoparticle treatment of differentiated SH-SY5Y cells. Molecules, 2019, 24(17), 3058.
[http://dx.doi.org/10.3390/molecules24173058] [PMID: 31443533]
[109]
Valldeperas, M.; Salis, A.; Barauskas, J.; Tiberg, F.; Arnebrant, T.; Razumas, V.; Monduzzi, M.; Nylander, T. Enzyme encapsulation in nanostructured self-assembled structures: Toward biofunctional supramolecular assemblies. Curr. Opin. Colloid Interface Sci., 2019, 44, 130-142.
[http://dx.doi.org/10.1016/j.cocis.2019.09.007]
[110]
Liu, Q.; Dong, Y.D.; Hanley, T.L.; Boyd, B.J. Sensitivity of nanostructure in charged cubosomes to phase changes triggered by ionic species in solution. Langmuir, 2013, 29(46), 14265-14273.
[http://dx.doi.org/10.1021/la402426y] [PMID: 24111826]
[111]
Mele, S.; Söderman, O.; Ljusberg-Wahrén, H.; Thuresson, K.; Monduzzi, M.; Nylander, T. Phase behavior in the biologically important oleic acid/sodium oleate/water system. Chem. Phys. Lipids, 2018, 211, 30-36.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.11.017] [PMID: 29203417]
[112]
Wei, Y.; Zhang, J.; Zheng, Y.; Gong, Y.; Fu, M.; Liu, C.; Xu, L.; Sun, C.C.; Gao, Y.; Qian, S. Cubosomes with surface cross-linked chitosan exhibit sustained release and bioavailability enhancement for vinpocetine. RSC Advances, 2019, 9(11), 6287-6298.
[http://dx.doi.org/10.1039/C8RA10302J] [PMID: 35517286]
[113]
Mathews, P.D.; Fernandes Patta, A.C.M.; Gonçalves, J.V.; Gama, G.S.; Garcia, I.T.S.; Mertins, O. Targeted drug delivery and treatment of endoparasites with biocompatible particles of pH-responsive structure. Biomacromolecules, 2018, 19(2), 499-510.
[http://dx.doi.org/10.1021/acs.biomac.7b01630] [PMID: 29283560]
[114]
Li, P.; Nielsen, H.M.; Müllertz, A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin. Drug Deliv., 2012, 9(10), 1289-1304.
[http://dx.doi.org/10.1517/17425247.2012.717068] [PMID: 22897647]
[115]
Angelov, B.; Angelova, A.; Drechsler, M.; Garamus, V.M.; Mutafchieva, R.; Lesieur, S. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter, 2015, 11(18), 3686-3692.
[http://dx.doi.org/10.1039/C5SM00169B] [PMID: 25820228]
[116]
Barriga, H.M.G.; Ces, O.; Law, R.V.; Seddon, J.M.; Brooks, N.J. Engineering swollen cubosomes using cholesterol and anionic lipids. Langmuir, 2019, 35(50), 16521-16527.
[http://dx.doi.org/10.1021/acs.langmuir.9b02336] [PMID: 31702159]
[117]
Leung, S.S.W.; Leal, C. The stabilization of primitive bicontinuous cubic phases with tunable swelling over a wide composition range. Soft Matter, 2019, 15(6), 1269-1277.
[http://dx.doi.org/10.1039/C8SM02059K] [PMID: 30462135]
[118]
Li, Y.; Angelova, A.; Hu, F.; Garamus, V.M.; Peng, C.; Li, N.; Liu, J.; Liu, D.; Zou, A. PH responsiveness of hexosomes and cubosomes for combined delivery of Brucea javanica oil and doxorubicin. Langmuir, 2019, 35(45), 14532-14542.
[http://dx.doi.org/10.1021/acs.langmuir.9b02257] [PMID: 31635451]
[119]
Oka, T.; Hasan, M.; Islam, M.Z.; Moniruzzaman, M.; Yamazaki, M. Low-pH-induced lamellar to bicontinuous primitive cubic phase transition in dioleoylphosphatidylserine/monoolein membranes. Langmuir, 2017, 33(43), 12487-12496.
[http://dx.doi.org/10.1021/acs.langmuir.7b02512] [PMID: 28967756]
[120]
Stephenson, J.; Celorrio, V.; Tiwari, D.; Hall, S.R.; Green, D.C.; Fermín, D.J. Photoelectrochemical properties of BiOCl microplatelets. J. Electroanal. Chem. (Lausanne), 2018, 819, 171-177.
[http://dx.doi.org/10.1016/j.jelechem.2017.10.024]
[121]
Fong, C.; Zhai, J.; Drummond, C.J.; Tran, N. Micellar Fd3m cubosomes from monoolein – long chain unsaturated fatty acid mixtures: Stability on temperature and pH response. J. Colloid Interface Sci., 2020, 566, 98-106.
[http://dx.doi.org/10.1016/j.jcis.2020.01.041] [PMID: 31991369]
[122]
Kluzek, M.; Tyler, A.I.I.; Wang, S.; Chen, R.; Marques, C.M.; Thalmann, F.; Seddon, J.M.; Schmutz, M. Influence of a pH-sensitive polymer on the structure of monoolein cubosomes. Soft Matter, 2017, 13(41), 7571-7577.
[http://dx.doi.org/10.1039/C7SM01620D] [PMID: 28994440]
[123]
Chountoulesi, M.; Pippa, N.; Chrysostomou, V.; Pispas, S.; Chrysina, E.D.; Forys, A.; Otulakowski, L.; Trzebicka, B.; Demetzos, C. Stimuli-responsive lyotropic liquid crystalline nanosystems with incorporated poly (2-dimethylamino ethyl methacrylate)-b-poly (lauryl methacrylate) amphiphilic block copolymer. Polymers (Basel), 2019, 11(9), 1400.
[http://dx.doi.org/10.3390/polym11091400] [PMID: 31454966]
[124]
Borges, L.G.A.; Savi, A.; Teixeira, C.; de Oliveira, R.P.; De Camillis, M.L.F.; Wickert, R.; Brodt, S.F.M.; Tonietto, T.F.; Cremonese, R.; da Silva, L.S.; Gehm, F.; Oliveira, E.S.; Barth, J.H.D.; Macari, J.G.; de Barros, C.D.; Vieira, S.R.R. Mechanical ventilation weaning protocol improves medical adherence and results. J. Crit. Care, 2017, 41, 296-302.
[http://dx.doi.org/10.1016/j.jcrc.2017.07.014] [PMID: 28797619]
[125]
Gaware, S.A.; Rokade, K.A.; Kale, S.N. Silica-chitosan nanocomposite mediated pH-sensitive drug delivery. J. Drug Deliv. Sci. Technol., 2019, 49, 345-351.
[http://dx.doi.org/10.1016/j.jddst.2018.11.022]
[126]
Dash, T.K.; Konkimalla, V.B. Polymeric modification and its implication in drug delivery: poly-ε-caprolactone (PCL) as a model polymer. Mol. Pharm., 2012, 9(9), 2365-2379.
[http://dx.doi.org/10.1021/mp3001952] [PMID: 22823097]
[127]
Chacko, R.T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev., 2012, 64(9), 836-851.
[http://dx.doi.org/10.1016/j.addr.2012.02.002] [PMID: 22342438]
[128]
Jain, A.; Chauhan, J.S.; Budhwani, A.K. CUBOSOME: A novel approach for nanotechnology. Int. J. Appl. Biol. Pharm. Technol., 2011, 2(2), 19-21.
[129]
Jayoti, D. Khushboo; Malik, P.; Singh, A. Effect of polymer concentration on morphology, dielectric and optical properties in a polymer-dispersed ferroelectric liquid crystal. Liq. Cryst., 2016, 43(5), 623-631.
[http://dx.doi.org/10.1080/02678292.2015.1130867]
[130]
Gaballa, SA; El Garhy, OH; Abdelkader, H Cubosomes: composition, preparation, and drug delivery applications. Journal of advanced Biomedical and Pharmaceutical Sciences, 2020, 3(1), 1-9.
[131]
Azmi, I.D.M.; Moghimi, S.M.; Yaghmur, A. Cubosomes and hexosomes as versatile platforms for drug delivery. Ther. Deliv., 2015, 6(12), 1347-1364.
[http://dx.doi.org/10.4155/tde.15.81] [PMID: 26652281]
[132]
Ha, S.; La, Y.; Kim, K.T. Polymer cubosomes: Infinite cubic mazes and possibilities. Acc. Chem. Res., 2020, 53(3), 620-631.
[http://dx.doi.org/10.1021/acs.accounts.9b00563] [PMID: 31920073]
[133]
Bei, D.; Zhang, T.; Murowchick, J.B.; Youan, B.B.C. Formulation of dacarbazine-loaded cubosomes. Part III. Physicochemical characterization. AAPS PharmSciTech, 2010, 11(3), 1243-1249.
[http://dx.doi.org/10.1208/s12249-010-9496-7] [PMID: 20694534]
[134]
Peng, X.; Zhou, Y.; Han, K.; Qin, L.; Dian, L.; Li, G.; Pan, X.; Wu, C. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des. Devel. Ther., 2015, 9, 4209-4218.
[http://dx.doi.org/10.2147/DDDT.S86370] [PMID: 26345516]
[135]
Boyd, B.; Khoo, S.; Whittaker, D.; Davey, G.; Porter, C. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int. J. Pharm., 2007, 340(1-2), 52-60.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.020] [PMID: 17467935]
[136]
Chung, H.; Kim, J.; Um, J.Y.; Kwon, I.C.; Jeong, S.Y. Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia, 2002, 45(3), 448-451.
[http://dx.doi.org/10.1007/s00125-001-0751-z] [PMID: 11914752]
[137]
Jin, X.; Zhang, Z.; Li, S.; Sun, E.; Tan, X.; Song, J.; Jia, X. A nanostructured liquid crystalline formulation of 20(S)-protopanaxadiol with improved oral absorption. Fitoterapia, 2013, 84, 64-71.
[http://dx.doi.org/10.1016/j.fitote.2012.09.013] [PMID: 23006538]
[138]
Chong, J.Y.T.; Mulet, X.; Waddington, L.J.; Boyd, B.J.; Drummond, C.J. Steric stabilisation of self-assembled cubic lyotropic liquid crystalline nanoparticles: high throughput evaluation of triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Soft Matter, 2011, 7(10), 4768-4777.
[http://dx.doi.org/10.1039/c1sm05181d]
[139]
Prashar, D.; Sharma, D. Cubosomes: a sustained drug delivery carrier. Asian J. Res. Pharm. Sci., 2011, 1(3), 59-62.
[140]
Thadanki, M.; Kumari, P.S.; Prabha, K.S. Overview of cubosomes: a nano particle. Int. J. Res. Pharm. Chem., 2011, 1(3), 535-541.
[141]
Akhlaghi, S.P.; Loh, W. Interactions and release of two palmitoyl peptides from phytantriol cubosomes. Eur. J. Pharm. Biopharm., 2017, 117, 60-67.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.022] [PMID: 28377272]