(a) Wurm, T.; Bucher, J.; Duckworth, S.B.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. On the gold-catalyzed generation of vinyl cations from 1,5-diynes.
Angew. Chem. Int. Ed., 2017,
56(12), 3364-3368.
[
http://dx.doi.org/10.1002/anie.201700057] [PMID:
28194865];
(b) Sekine, K.; Stuck, F.; Schulmeister, J.; Wurm, T.; Zetschok, D.; Rominger, F.; Rudolph, M.; Hashmi, A.S.K. N-heterocycle-fused pentalenes by a gold-catalyzed annulation of diethynyl-quinoxalines and -phenazines.
Chem. Eur. J., 2018,
24(48), 12515-12518.
[
http://dx.doi.org/10.1002/chem.201803096] [PMID:
29923240];
(c) Hashmi, A.S.K. Gold-catalyzed organic reactions.
Chem. Rev., 2007,
107(7), 3180-3211.
[
http://dx.doi.org/10.1021/cr000436x] [PMID:
17580975];
(d) Krause, N.; Winter, C. Gold-catalyzed nucleophilic cyclization of functionalized allenes: A powerful access to carbo- and heterocycles.
Chem. Rev., 2011,
111(3), 1994-2009.
[
http://dx.doi.org/10.1021/cr1004088] [PMID:
21314182];
(e) Arcadi, A. Alternative synthetic methods through new developments in catalysis by gold.
Chem. Rev., 2008,
108(8), 3266-3325.
[
http://dx.doi.org/10.1021/cr068435d] [PMID:
18651778];
(f) Jiménez-Núñez, E.; Echavarren, A.M. Gold-catalyzed cycloisomerizations of enynes: A mechanistic perspective.
Chem. Rev., 2008,
108(8), 3326-3350.
[
http://dx.doi.org/10.1021/cr0684319] [PMID:
18636778];
(g) Gorin, D.J.; Toste, F.D. Relativistic effects in homogeneous gold catalysis.
Nature, 2007,
446(7134), 395-403.
[
http://dx.doi.org/10.1038/nature05592] [PMID:
17377576];
(h) Hashmi, A.S.K. Introduction: Gold Chemistry.
Chem. Rev., 2021,
121(14), 8309-8310.
[
http://dx.doi.org/10.1021/acs.chemrev.1c00393] [PMID:
34315211];
(i) Witzel, S.; Hashmi, A.S.K.; Xie, J. Light in gold catalysis.
Chem. Rev., 2021,
121(14), 8868-8925.
[
http://dx.doi.org/10.1021/acs.chemrev.0c00841] [PMID:
33492123];
(j) Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Cyclic (Alkyl)- and (Aryl)-(amino)carbene coinage metal complexes and their applications.
Chem. Rev., 2020,
120(9), 4141-4168.
[
http://dx.doi.org/10.1021/acs.chemrev.0c00043];
(k) Hendrich, C.M.; Sekine, K.; Koshikawa, T.; Tanaka, K.; Hashmi, A.S.K. Homogeneous and heterogeneous gold catalysis for materials science.
Chem. Rev., 2021,
121(14), 9113-9163.
[
http://dx.doi.org/10.1021/acs.chemrev.0c00824] [PMID:
33315377];
(l) Hashmi, A.S.K.; Toste, F.D.
Modern Gold Catalyzed Synthesis; Wiley-VCH: Weinheim,
2012.
[
http://dx.doi.org/ 10.1002/9783527646869];
(m) Toste, F.D.; Michelet, V.
Gold Catalysis: An Homogeneous Approach; Imperial College Press: London,
2014.
[
http://dx.doi.org/10.1142/p831];
(n) Hopkinson, M.N.; Tlahuext-Aca, A.; Glorius, F. Merging visible light photoredox and gold catalysis.
Acc. Chem. Res., 2016,
49(10), 2261-2272.
[
http://dx.doi.org/10.1021/acs.accounts.6b00351] [PMID:
27610939];
(o) Nijamudheen, A.; Datta, A. gold‐catalyzed cross‐coupling reactions: An overview of design strategies, mechanistic studies, and applications.
Chem. Eur. J., 2020,
26(7), 1442-1487.
[
http://dx.doi.org/10.1002/chem.201903377] [PMID:
31657487];
(p) Banerjee, S.; Bhoyare, V.W.; Patil, N.T. Gold and hypervalent iodine(III): Liaisons over a decade for electrophilic functional group transfer reactions.
Chem. Commun. (Camb.), 2020,
56(18), 2677-2690.
[
http://dx.doi.org/10.1039/D0CC00106F] [PMID:
32090230]