Protective Effects of Chrysin on Hippocampal Damage Induced by Chlorpyrifos in Adult Rats

Article ID: e020323214241 Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Objective: This study aimed to evaluate the possible effects of chlorpyrifos on the rat hippocampus and evaluate whether these effects can be decreased with chrysin co-administration in an animal model.

Methods: Male Wistar rats were randomly divided into 5 groups; Control (C), Chlorpyrifos (CPF), Chlorpyrifos + Chrysin (12.5 mg/kg) (CPF + CH1), Chlorpyrifos + Chrysin (25 mg/kg) (CPF + CH2), Chlorpyrifos + Chrysin (50 mg/kg) (CPF + CH3). After 45 days, hippocampus tissues were evaluated by biochemical and histopathological tests.

Results: Biochemical findings indicated that CPF and CPF plus CH administration could not significantly change SOD activity, and MAD, GSH, and NO levels in the hippocampus tissue of animals versus controls. Histopathological findings of the toxic effects of CPF on hippocampus tissue as evidenced by inflammatory cell infiltration, degeneration/necrosis, and mild hyperemia. CH could ameliorate these histopathological changes in a dose-dependent manner.

Conclusion: In conclusion, CH was effective against histopathological damage induced by CPF in the hippocampus through modulating inflammation and apoptosis.

Graphical Abstract

[1]
Eddleston M. Poisoning by pesticides. Medicine 2020; 48(3): 214-7.
[http://dx.doi.org/10.1016/j.mpmed.2019.12.019]
[2]
Mew EJ, Padmanathan P, Konradsen F, et al. The global burden of fatal self-poisoning with pesticides 2006-15: Systematic review. J Affect Disord 2017; 219: 93-104.
[http://dx.doi.org/10.1016/j.jad.2017.05.002] [PMID: 28535450]
[3]
Peter JV, Sudarsan T, Moran J. Clinical features of organophosphate poisoning: A review of different classification systems and approaches. Indian J Crit Care Med 2014; 18(11): 735-45.
[http://dx.doi.org/10.4103/0972-5229.144017] [PMID: 25425841]
[4]
Buratti FM, De Angelis G, Ricceri L, Venerosi A, Calamandrei G, Testai E. Foetal and neonatal exposure to chlorpyrifos: Biochemical and metabolic alterations in the mouse liver at different developmental stages. Toxicology 2011; 280(3): 98-108.
[http://dx.doi.org/10.1016/j.tox.2010.11.013] [PMID: 21129432]
[5]
Tian Y, Ishikawa H, Yamaguchi T, Yamauchi T, Yokoyama K. Teratogenicity and developmental toxicity of chlorpyrifos. Reprod Toxicol 2005; 20(2): 267-70.
[http://dx.doi.org/10.1016/j.reprotox.2005.01.012] [PMID: 15907662]
[6]
Saillenfait AM, Sabaté JP, Denis F, Antoine G, Robert A, Eljarrat E. The pyrethroid insecticides permethrin and esfenvalerate do not disrupt testicular steroidogenesis in the rat fetus. Toxicology 2018; 410: 116-24.
[http://dx.doi.org/10.1016/j.tox.2018.09.007] [PMID: 30243954]
[7]
Whyatt RM, Camann D, Perera FP, et al. Biomarkers in assessing residential insecticide exposures during pregnancy and effects on fetal growth. Toxicol Appl Pharmacol 2005; 206(2): 246-54.
[http://dx.doi.org/10.1016/j.taap.2004.11.027] [PMID: 15967215]
[8]
Solomon KR, Williams WM, Mackay D, Purdy J, Giddings JM, Giesy JP. Properties and uses of chlorpyrifos in the United States. Rev Environ Contam Toxicol 2014; 231: 13-34.
[http://dx.doi.org/10.1007/978-3-319-03865-0_2]
[9]
Kwong TC. Organophosphate pesticides: Biochemistry and clinical toxicology. Ther Drug Monit 2002; 24(1): 144-9.
[http://dx.doi.org/10.1097/00007691-200202000-00022] [PMID: 11805735]
[10]
Saulsbury MD, Heyliger SO, Wang K, Johnson DJ. Chlorpyrifos induces oxidative stress in oligodendrocyte progenitor cells. Toxicology 2009; 259(1-2): 1-9.
[http://dx.doi.org/10.1016/j.tox.2008.12.026] [PMID: 19167454]
[11]
Lukaszewicz-Hussain A. Role of oxidative stress in organophosphate insecticide toxicity-short review. Pestic Biochem Physiol 2010; 98(2): 145-50.
[http://dx.doi.org/10.1016/j.pestbp.2010.07.006]
[12]
Hill JM, Switzer RC III. The regional distribution and cellular localization of iron in the rat brain. Neuroscience 1984; 11(3): 595-603.
[http://dx.doi.org/10.1016/0306-4522(84)90046-0] [PMID: 6717804]
[13]
Venkateshappa C, Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK. Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: Implications for neurodegeneration in Alzheimer’s disease. Neurochem Res 2012; 37(8): 1601-14.
[http://dx.doi.org/10.1007/s11064-012-0755-8] [PMID: 22461064]
[14]
Naz S, Imran M, Rauf A, et al. Chrysin: Pharmacological and therapeutic properties. Life Sci 2019; 235: 116797.
[http://dx.doi.org/10.1016/j.lfs.2019.116797] [PMID: 31472146]
[15]
Talebi M, Talebi M, Farkhondeh T, et al. An updated review on the versatile role of chrysin in neurological diseases: Chemistry, pharmacology, and drug delivery approaches. Biomed Pharmacother 2021; 141: 111906.
[http://dx.doi.org/10.1016/j.biopha.2021.111906] [PMID: 34328092]
[16]
Souza LC, Antunes MS, Filho CB, et al. Flavonoid chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain. Pharmacol Biochem Behav 2015; 134: 22-30.
[http://dx.doi.org/10.1016/j.pbb.2015.04.010] [PMID: 25931267]
[17]
He XL, Wang YH, Bi MG, Du GH. Chrysin improves cognitive deficits and brain damage induced by chronic cerebral hypoperfusion in rats. Eur J Pharmacol 2012; 680(1-3): 41-8.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.025] [PMID: 22314218]
[18]
Anand KV, Mohamed Jaabir MS, Thomas PA, Geraldine P. Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model. Geriatr Gerontol Int 2012; 12(4): 741-50.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00843.x] [PMID: 22469068]
[19]
Yu YB, Su KH, Kou YR, et al. Role of transient receptor potential vanilloid 1 in regulating erythropoietin-induced activation of endothelial nitric oxide synthase. Acta Physiol 2017; 219(2): 465-77.
[http://dx.doi.org/10.1111/apha.12723] [PMID: 27232578]
[20]
Naughton SX, Terry AVJT Jr. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018; 408: 101-12.
[21]
Cobley JN, Fiorello ML. Bailey DMJRb. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol 2018; 15: 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008]
[22]
Sapbamrer R, Hongsibsong S, Sittitoon N, Amput P. DNA damage and adverse neurological outcomes among garlic farmers exposed to organophosphate pesticides. Environ Toxicol Pharmacol 2019; 72: 103241.
[23]
McDonald BE, Costa LG. Murphy SDJTl. Spatial memory impairment and central muscarinic receptor loss following prolonged treatment with organophosphates. Toxicol Lett 1988; 40(1): 47-56.
[http://dx.doi.org/10.1016/0378-4274(88)90182-8]
[24]
López-Granero C, Ruiz-Muñoz AM, Nieto-Escámez FA, Colomina MT, Aschner M, Sánchez-Santed FJN. Chronic dietary chlorpyrifos causes long-term spatial memory impairment and thigmotaxic behavior. Neurotoxicology 2016; 53: 85-92.
[25]
Akande M, Aliu Y, Ambali S, Ayo JO. Taurine mitigates cognitive impairment induced by chronic co-exposure of male Wistar rats to chlorpyrifos and lead acetate. Environ Toxicol Pharmacol 2014; 37(1): 315-25.
[26]
Sharma AK, Bhattacharya SK, Khanna N, et al. Effect of progesterone on phosphamidon-induced impairment of memory and oxidative stress in rats. Hum Exp Toxicol 2011; 30(10): 1626-34.
[http://dx.doi.org/10.1177/0960327110396522]
[27]
De Felice A, Greco A, Calamandrei G, Minghetti L. Prenatal exposure to the organophosphate insecticide chlorpyrifos enhances brain oxidative stress and prostaglandin E 2 synthesis in a mouse model of idiopathic autism. J Neuroinflammation 2016; 13(1): 149.
[http://dx.doi.org/10.1186/s12974-016-0617-4]
[28]
Samarghandian S, Azimi‐Nezhad M, Afshari R, Farkhondeh T, Karimnezhad F. Effects of buprenorphine on balance of oxidant/antioxidant system in the different ages of male rat liver. J Biochem Mol Toxicol 2015; 29(6): 249-53.
[29]
Hussein RM, Mohamed WR, Omar H. A neuroprotective role of kaempferol against chlorpyrifos-induced oxidative stress and memory deficits in rats via GSK3β-Nrf2 signaling pathway. Pestic Biochem Physiol 2018; 152: 29-37.
[30]
Ibrahim KAE-M, Abdelrahman SM, Elhakim HK, Ragab EAJES, Research P. Single or combined exposure to chlorpyrifos and cypermethrin provoke oxidative stress and downregulation in monoamine oxidase and acetylcholinesterase gene expression of the rat’s brain. Environ Sci Pollut Res Int 2020; 27(11): 12692-703.
[31]
Basha PM. Poojary AJNr. Oxidative macromolecular alterations in the rat central nervous system in response to experimentally co-induced chlorpyrifos and cold stress: A comparative assessment in aging rats. Neurochem Res 2012; 37(2): 335-48.
[32]
AlKahtane AA, Ghanem E, Bungau SG, et al. Carnosic acid alleviates chlorpyrifos-induced oxidative stress and inflammation in mice cerebral and ocular tissues. Environ Sci Pollut Res Int 2020; 27(11): 11663-70.
[http://dx.doi.org/10.1007/s11356-020-07736-1]
[33]
Singh V, Panwar RJM. In vivo antioxidative and neuroprotective effect of 4-Allyl-2-methoxyphenol against chlorpyrifos-induced neurotoxicity in rat brain. Mol Cell Biochem 2014; 388(1-2): 61-74.
[34]
Eronat K, Sağır DJAH. Protective effects of curcumin and Ganoderma lucidum on hippocampal damage caused by the organophosphate insecticide chlorpyrifos in the developing rat brain: Stereological, histopathological and immunohistochemical study. Acta Histochem 2020; 122(7): 151621.
[http://dx.doi.org/10.1016/j.acthis.2020.151621]
[35]
Farkhondeh T, Amirabadizadeh A, Samarghandian S, Mehrpour OJES, Research P. Impact of chlorpyrifos on blood glucose concentration in an animal model: A systematic review and meta-analysis. Environ Sci Pollut Res Int 2020; 27(3): 2474-81.
[36]
Li J-W, Fang B, Pang G-F, Zhang M, Ren F-Z. Age-and diet-specific effects of chronic exposure to chlorpyrifos on hormones, inflammation and gut microbiota in rats. Pestic Biochem Physiol 2019; 159: 68-79.
[37]
Altun S. Özdemir S, Arslan HJEP. Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.). Environ Pollut 2017; 230: 432-43.
[http://dx.doi.org/10.1016/j.envpol.2017.06.085]
[38]
Brasil FB, de Almeida FJS, Luckachaki MD, Dall’Oglio EL, de Oliveira MRJMBD. Pinocembrin pretreatment counteracts the chlorpyrifos-induced HO-1 downregulation, mitochondrial dysfunction, and inflammation in the SH-SY5Y cells. Metab Brain Dis 2021; 36(8): 2377-91.
[http://dx.doi.org/10.1007/s11011-021-00803-7]
[39]
Postolache TT, Wadhawan A, Can A, et al. Inflammation in traumatic brain injury. J Alzheimers Dis 2020; 74(1): 1-28.
[http://dx.doi.org/10.3233/JAD-191150]
[40]
Varadkar S, Bien CG, Kruse CA, et al. Rasmussen’s encephalitis: Clinical features, pathobiology, and treatment advances. Lancet Neurol 2014; 13(2): 195-205.
[41]
Hou L, Liu K, Li Y, Ma S, Ji X. Liu LJJs. Necrotic pyknosis is a morphologically and biochemically distinct event from apoptotic pyknosis. J Cell Sci 2016; 129(16): 3084-90.
[http://dx.doi.org/10.1242/jcs.184374]
[42]
Caughlan A, Newhouse K, Namgung U, Xia ZJTs. Chlorpyrifos induces apoptosis in rat cortical neurons that is regulated by a balance between p38 and ERK/JNK MAP kinases. Toxicol Sci 2004; 78(1): 125-34.
[http://dx.doi.org/10.1093/toxsci/kfh038]
[43]
Raszewski G, Lemieszek MK, Lukawski K, et al. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y. Basic Clin Pharmacol Toxicol 2015; 116(2): 158-67.